A Water Footprint Management Construct in Agri-Food Supply Chains: A Content Validity Analysis
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
3.1. Item Identification
3.2. Experts Selection
3.3. Items’ Assessment
4. Results
5. Discussions
Contributions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lohrmann, A.; Child, M.; Breyer, C. Assessment of the water footprint for the European power sector during the transition towards a 100% renewable energy system. Energy 2021, 233, 121098. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.K. Virtual Water Trade: A Quantification of Virtual Water Flows between Nations in Relation to International Crop Trade; UNESCO-IHE: Delft, The Netherlands, 2002; Volume 11. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; TJ International Ltd.: Cornwall, UK, 2011; ISBN 9781849712798. [Google Scholar]
- Sun, S.K.; Song, J.F.; Wang, F.F.; Wu, P.T.; Wang, Y.B. Evaluating the impacts of socio-economic factors on regional grain virtual water flows in China using a structural equation modeling approach. J. Hydrol. 2019, 571, 132–141. [Google Scholar] [CrossRef]
- Ambrosio, E.D.; Gentile, F.; De Girolamo, A.M. Assessing the sustainability in water use at the basin scale through water footprint indicators. J. Clean. Prod. 2020, 244, 118847. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Ruqun, S.; Gong, M.; Du, Y.; Wang, J.; Li, Y.; Liu, J. Spatial-temporal assessment of water footprint, water scarcity and crop water productivity in a major crop production region. J. Clean. Prod. 2019, 224, 375–383. [Google Scholar] [CrossRef]
- Jia, F.; Hubbard, M.; Zhang, T.; Chen, L. Water stewardship in agricultural supply chains. J. Clean. Prod. 2019, 235, 1170–1188. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Water footprint assessment: Evolvement of a new research field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef] [Green Version]
- Palhares, J.C.P.; Pezzopane, J.R.M. Water footprint accounting and scarcity indicators of conventional and organic dairy production systems. J. Clean. Prod. 2015, 93, 299–307. [Google Scholar] [CrossRef]
- Ansorge, L.; Dlabal, J.; Dostálová, A. How truthful are water accounting data? J. Urban Environ. Eng. 2016, 10, 25–34. [Google Scholar] [CrossRef]
- Vanham, D.; Bidoglio, G. A review on the indicator water footprint for the EU28. Ecol. Indic. 2013, 26, 61–75. [Google Scholar] [CrossRef]
- Morillo, J.G.; Díaz, J.A.R.; Camacho, E.; Montesinos, P. Linking water footprint accounting with irrigation management in high value crops. J. Clean. Prod. 2015, 87, 594–602. [Google Scholar] [CrossRef]
- Feng, B.; Zhuo, L.; Xie, D.; Mao, Y.; Gao, J.; Xie, P.; Wu, P. A quantitative review of water footprint accounting and simulation for crop production based on publications during 2002–2018. Ecol. Indic. 2021, 120, 106962. [Google Scholar] [CrossRef]
- Vanham, D.; Bidoglio, G. The water footprint of agricultural products in European river basins. Environ. Res. Lett. 2014, 9, 064007. [Google Scholar] [CrossRef]
- Madani, K.; Khatami, S. Water for energy: Inconsistent assessment standards and inability to judge properly. Curr. Sustain. Energy Rep. 2015, 2, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Pfister, S.; Ridoutt, B.G. Water footprint: Pitfalls on common ground. Environ. Sci. Technol. 2014, 48, 4. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 2016, 66, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Gerbens-Leenes, W.; Berger, M.; Allan, J.A. Water footprint and life cycle assessment: The complementary strengths of analyzing global freshwater appropriation and resulting local impacts. Water 2021, 13, 803. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water footprint of crop productions: A review. Sci. Total Environ. 2016, 548–549, 236–251. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Hinkin, T.R. A review of scale development practices in the study of organizations. J. Manag. 1995, 21, 967–988. [Google Scholar] [CrossRef]
- Churchill, G.A. A paradigm for developing better measures of marketing constructs. J. Mark. Res. 1979, 16, 64–73. [Google Scholar] [CrossRef]
- DeVellis, R.F.; Thorpe, C.T. Scale Development: Theory and Applications, 5th ed.; Sage Publications: London, UK, 2021. [Google Scholar]
- Hardesty, D.M.; Bearden, W.O. The use of expert judges in scale development. Implications for improving face validity of measures of unobservable constructs. J. Bus. Res. 2004, 57, 98–107. [Google Scholar] [CrossRef]
- Rossiter, J.R. The C-OAR-SE procedure for scale development in marketing. Int. J. Res. Mark. 2002, 19, 305–335. [Google Scholar] [CrossRef] [Green Version]
- Hart, S.L.; Dowell, G. A natural-resource-based view of the firm: Fifteen years after. J. Manag. 2011, 37, 1464–1479. [Google Scholar] [CrossRef]
- Caldera, H.T.S.; Desha, C.; Dawes, L. Exploring the characteristics of sustainable business practice in small and medium-sized enterprises: Experiences from the Australian manufacturing industry. J. Clean. Prod. 2018, 177, 338–349. [Google Scholar] [CrossRef]
- Latan, H.; Jabbour, C.J.C.; Jabbour, A.B.L.S.; Wamba, S.F.; Shahbaz, M. Effects of environmental strategy, environmental uncertainty and top management’s commitment on corporate environmental performance: The role of environmental management accounting. J. Clean. Prod. 2018, 180, 297–306. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, S.; Han, X.; Gao, X.; He, G.; Zhao, Y.; Li, H. A bibliometrics review of water footprint research in China: 2003–2018. Sustainability 2019, 11, 5082. [Google Scholar] [CrossRef] [Green Version]
- Aivazidou, E.; Tsolakis, N.; Iakovou, E.; Vlachos, D. The emerging role of water footprint in supply chain management: A critical literature synthesis and a hierarchical decision-making framework. J. Clean. Prod. 2016, 137, 1018–1037. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Borsato, E.; Galindo, A.; Tarolli, P.; Sartori, L.; Marinello, F. Evaluation of the grey water footprint comparing the indirect effects of different agricultural practices. Sustainability 2018, 10, 3992. [Google Scholar] [CrossRef] [Green Version]
- Hogeboom, R.J. The water footprint concept and water’s grand environmental challenges. One Earth 2020, 2, 218–222. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, K.; Yu, Y.; Yang, B. Mapping of water footprint research: A bibliometric analysis during 2006–2015. J. Clean. Prod. 2017, 149, 70–79. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Oel, P.R. Van progress in water footprint assessment: Towards collective action in water governance. Water 2019, 11, 1070. [Google Scholar] [CrossRef] [Green Version]
- Ding, G.K.C.; Ghosh, S. Sustainable water management—A strategy for maintaining future water resources. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2017; pp. 91–103. ISBN 9780124095489. [Google Scholar]
- Gómez-Llanos, E.; Durán-Barroso, P.; Robina-Ramírez, R. Analysis of consumer awareness of sustainable water consumption by the water footprint concept. Sci. Total Environ. 2020, 721, 137743. [Google Scholar] [CrossRef] [PubMed]
- Ladeira, M.B.; de Oliveira, M.P.V.; de Sousa, P.R.; Barbosa, M.W. Firm’s supply chain agility enabling resilience and performance in turmoil times. Int. J. Agil. Syst. Manag. 2021, 14, 224–253. [Google Scholar] [CrossRef]
- Aivazidou, E.; Tsolakis, N.; Vlachos, D.; Iakovou, E. A water footprint management framework for supply chains under green market behaviour. J. Clean. Prod. 2018, 197, 592–606. [Google Scholar] [CrossRef]
- Tsolakis, N.K.; Keramydas, C.A.; Toka, A.K.; Aidonis, D.A.; Iakovou, E.T. Agrifood supply chain management: A comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 2014, 120, 47–64. [Google Scholar] [CrossRef]
- Tsolakis, N.; Srai, J.S.; Aivazidou, E. Blue water footprint management in a UK poultry supply chain under environmental regulatory constraints. Sustainability 2018, 10, 625. [Google Scholar] [CrossRef] [Green Version]
- Lv, T.; Wang, L.; Xie, H.; Zhang, X.; Zhang, Y. Evolutionary overview of water resource management (1990–2019) based on a bibliometric analysis in Web of Science. Ecol. Inform. 2021, 61, 101218. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Bali, R.; Khan, H.; Mohamed, H.I.; Sharma, S.K. Improved water resource management framework for water sustainability and security. Environ. Res. 2021, 201, 111527. [Google Scholar] [CrossRef]
- Aivazidou, E.; Tsolakis, N.; Vlachos, D.; Iakovou, E. Water footprint management policies for agrifood supply chains: A critical taxonomy and a system dynamics modelling approach. Chem. Eng. Trans. 2015, 43, 115–120. [Google Scholar] [CrossRef]
- Christ, K.L. Water management accounting and the wine supply chain: Empirical evidence from Australia. Br. Account. Rev. 2014, 46, 379–396. [Google Scholar] [CrossRef]
- Chico, D.; Aldaya, M.; Garrido, A. A water footprint assessment of a pair of jeans: The influence of agricultural policies on the sustainability of consumer products. J. Clean. Prod. 2013, 57, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Elangovan, N.; Sundaravel, E. Method of preparing a document for survey instrument validation by experts. MethodsX 2021, 8, 101326. [Google Scholar] [CrossRef] [PubMed]
- Yamada, J.; Stevens, B.; Sidani, S.; Watt-Watson, J.; De Silva, N. Content validity of a process evaluation checklist to measure intervention implementation fidelity of the EPIC intervention. Worldviews Evid.-Based Nurs. 2010, 7, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Hasson, F.; Keeney, S. Enhancing rigour in the Delphi technique research. Technol. Forecast. Soc. Chang. 2011, 78, 1695–1704. [Google Scholar] [CrossRef]
- Papadas, K.K.; Avlonitis, G.J.; Carrigan, M. Green marketing orientation: Conceptualization, scale development and validation. J. Bus. Res. 2017, 80, 236–246. [Google Scholar] [CrossRef]
- Boateng, G.O.; Neilands, T.B.; Frongillo, E.A.; Melgar-Quiñonez, H.R.; Young, S.L. Best practices for developing and validating scales for health, social, and behavioral research: A primer. Front. Public Health 2018, 6, 149. [Google Scholar] [CrossRef]
- Netemeyer, R.G.; Bearden, W.O.; Sharma, S. Scaling Procedures: Issues and Applications; Sage Publications: Thousand Oaks, CA, USA, 2003. [Google Scholar]
- Mhatre, P.; Panchal, R.; Singh, A.; Bibyan, S. A systematic literature review on the circular economy initiatives in the European Union. Sustain. Prod. Consum. 2020, 26, 187–202. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Govindan, K.; Hasanagic, M. A systematic review on drivers, barriers, and practices towards circular economy: A supply chain perspective. Int. J. Prod. Res. 2018, 56, 278–311. [Google Scholar] [CrossRef]
- Barbosa, M.W. A critical appraisal of review studies in circular economy: A tertiary study. Circ. Econ. Sustain. 2021. [Google Scholar] [CrossRef]
- de Souza, A.C.; Alexandre, N.M.C.; de Guirardello, E.B. Psychometric properties in instruments evaluation of reliability and validity. Epidemiol. Serv. Saude Rev. Sist. Unico Saude Bras. 2017, 26, 649–659. [Google Scholar] [CrossRef]
- Martins, C.L.; Pato, M.V. Supply chain sustainability: A tertiary literature review. J. Clean. Prod. 2019, 225, 995–1016. [Google Scholar] [CrossRef]
- Belton, I.; MacDonald, A.; Wright, G.; Hamlin, I. Improving the practical application of the Delphi method in group-based judgment: A six-step prescription for a well-founded and defensible process. Technol. Forecast. Soc. Chang. 2019, 147, 72–82. [Google Scholar] [CrossRef]
- Mauksch, S.; von der Gracht, H.A.; Gordon, T.J. Who is an expert for foresight? A review of identification methods. Technol. Forecast. Soc. Chang. 2020, 154, 119982. [Google Scholar] [CrossRef]
- Beiderbeck, D.; Frevel, N.; von der Gracht, H.A.; Schmidt, S.L.; Schweitzer, V.M. Preparing, conducting, and analyzing Delphi surveys: Cross-disciplinary practices, new directions, and advancements. MethodsX 2021, 8, 101401. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhou, T.; Zeng, D.; Ma, Y. Development of the competency assessment scale for clinical nursing teachers: Results of a Delphi study and validation. Nurse Educ. Today 2021, 101, 104876. [Google Scholar] [CrossRef]
- Wu, C.; Wu, P.; Li, P.; Cheng, F.; Du, Y.; He, S.; Lang, H. Construction of an index system of core competence assessment for infectious disease specialist nurse in China: A Delphi study. BMC Infect. Dis. 2021, 21, 791. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Li, C.; Li, P.; Zhu, H. Using the Delphi method to identify risk factors contributing to adverse events in residential aged care facilities. Risk Manag. Healthc. Policy 2020, 13, 523–537. [Google Scholar] [CrossRef]
- Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Munizaga, J.; Sáez, K.; Arumí, J.L. Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile. Ecol. Indic. 2019, 98, 19–28. [Google Scholar] [CrossRef]
- Yevenes, M.A.; Arumí, J.L.; Farías, L. Unravel biophysical factors on river water quality response in Chilean Central-Southern watersheds. Environ. Monit. Assess. 2016, 188, 264. [Google Scholar] [CrossRef]
- Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Sáez, K.; de la Barrera, F.; Arumí, J.L. Understanding agricultural water footprint variability to improve water management in Chile. Sci. Total Environ. 2019, 670, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Su, X.; Du, Y. The environmental sustainability of an exhibition in visitors’ eyes: Scale development and validation. J. Hosp. Tour. Manag. 2021, 46, 172–182. [Google Scholar] [CrossRef]
- Piha, L.; Papadas, K.; Davvetas, V. Brand orientation: Conceptual extension, scale development and validation. J. Bus. Res. 2021, 134, 203–222. [Google Scholar] [CrossRef]
- Lynn, M.R. Determination and quantification of content validity. Nurs. Res. 1986, 35, 382–386. [Google Scholar] [CrossRef]
- Rodrigues, I.B.; Adachi, J.D.; Beattie, K.A.; MacDermid, J.C. Development and validation of a new tool to measure the facilitators, barriers and preferences to exercise in people with osteoporosis. BMC Musculoskelet. Disord. 2017, 18, 540. [Google Scholar] [CrossRef] [Green Version]
- Zamanzadeh, V.; Ghahramanian, A.; Rassouli, M.; Abbaszadeh, A.; Alavi-Majd, H.; Nikanfar, A.-R. Design and implementation content validity study: Development of an instrument for measuring patient-centered communication. J. Caring Sci. 2015, 4, 165–178. [Google Scholar] [CrossRef]
- Jansen, M.; Doornebosch, A.J.; de Waal, M.W.M.; Wattel, E.M.; Visser, D.; Spek, B.; Smit, E.B. Psychometrics of the observational scales of the Utrecht Scale for Evaluation of Rehabilitation (USER): Content and structural validity, internal consistency and reliability. Arch. Gerontol. Geriatr. 2021, 97, 104509. [Google Scholar] [CrossRef]
- Lawshe, C.H. A quantative approach to content validity. Persistent Psychol. 1975, 28, 563–575. [Google Scholar] [CrossRef]
- Penfield, R.D.; Giacobbi, P.R. Measurement in physical education and exercise science applying a score confidence interval to Aiken’s item content-relevance index. Meas. Phys. Educ. Exerc. Sci. 2004, 8, 213–225. [Google Scholar] [CrossRef]
- Acosta-Banda, A.; Aguilar-Esteva, V.; Ortiz, M.P.; Ortiz, J.P. Construction and Validity of an Instrument to Evaluate Renewable Energies and Energy Sustainability Perceptions for Social Consciousness. Sustainability 2021, 13, 2333. [Google Scholar] [CrossRef]
- Shrotryia, V.K.; Dhanda, U. Content validity of assessment instrument for employee engagement. SAGE Open 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- ISO 14046:2014; Environmental Management—Water Footprint—Principles, Requirements and Guidelines. ISO: Geneva, Switzerland, 2014.
- Bai, X.; Ren, X.; Zheng, N.; Zhou, N.; Hu, M. Comprehensive water footprint assessment of the dairy industry chain based on ISO 14046: A case study in China. Resour. Conserv. Recycl. 2018, 132, 369–375. [Google Scholar] [CrossRef]
- Gilsbach, L.; Schütte, P.; Franken, G. Applying water risk assessment methods in mining: Current challenges and opportunities. Water Resour. Ind. 2019, 22, 100118. [Google Scholar] [CrossRef]
- Dania, W.A.P.; Xing, K.; Amer, Y. Collaboration behavioural factors for sustainable agri-food supply chains: A systematic review. J. Clean. Prod. 2018, 186, 851–864. [Google Scholar] [CrossRef]
- Asian, S.; Hafezalkotob, A.; John, J.J. Sharing economy in organic food supply chains: A pathway to sustainable development. Int. J. Prod. Econ. 2019, 218, 322–338. [Google Scholar] [CrossRef]
- Adams, D.; Donovan, J.; Topple, C. Achieving sustainability in food manufacturing operations and their supply chains: Key insights from a systematic literature review. Sustain. Prod. Consum. 2021, 28, 1491–1499. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Network, W.F.; Hague, T. Water Footprint: State of the Art: What, Why, and How? Elsevier: Amsterdam, The Netherlands, 2017; Volume 4, ISBN 9780124095489. [Google Scholar]
- Schornagel, J.; Niele, F.; Worrell, E.; Böggemann, M. Water accounting for (agro) industrial operations and its application to energy pathways. Resour. Conserv. Recycl. 2012, 61, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sanders, K.T.; Masri, S.F. The energy-water agriculture nexus: The past, present and future of holistic resource management via remote sensing technologies. J. Clean. Prod. 2016, 117, 73–88. [Google Scholar] [CrossRef]
- Pantazi, X.E.; Moshou, D.; Bochtis, D. Sensors in agriculture. Intell. Data Min. Fusion Syst. Agric. 2020, 1, 1–15. [Google Scholar] [CrossRef]
- Cazcarro, I.; Hoekstra, A.Y.; Sánchez Chóliz, J. The water footprint of tourism in Spain. Tour. Manag. 2014, 40, 90–101. [Google Scholar] [CrossRef]
- Nishant, R.; Kennedy, M.; Corbett, J. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. Int. J. Inf. Manag. 2020, 53, 102104. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Deng, J.; Wang, K.; Hong, Y. Crop water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt. Agric. Water Manag. 2020, 235, 106080. [Google Scholar] [CrossRef]
- Xiang, X.; Li, Q.; Khan, S.; Khalaf, O.I. Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environ. Impact Assess. Rev. 2021, 86, 106515. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Varbanov, P.S.; Lam, H.L. Water Footprint, Water Recycling and Food-Industry Supply Chains; Woodhead Publishing Limited: Sawston, UK, 2009. [Google Scholar]
- Khan, S.A.R.; Ponce, P.; Yu, Z.; Golpira, H.; Mathew, M. Environmental technology and wastewater treatment: Strategies to achieve environmental sustainability eris. Chemosphere 2022, 286, 131532. [Google Scholar] [CrossRef] [PubMed]
- Negreiros, F.; Oliveira, D.; Leiras, A.; Ceryno, P. Environmental risk management in supply chains: A taxonomy, a framework and future research avenues. J. Clean. Prod. 2019, 232, 1257–1271. [Google Scholar] [CrossRef]
- Barbosa, M.W. Uncovering research streams on Agri-Food Supply Chain Management: A bibliometric study. Glob. Food Sec. 2021, 28, 100517. [Google Scholar] [CrossRef]
- Román, R.; Cansino, J.M.; Rueda-Cantuche, J.M. A multi-regional input-output analysis of ozone precursor emissions embodied in Spanish international trade. J. Clean. Prod. 2016, 137, 1382–1392. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Cao, X. Water use efficiency and sensitivity assessment for agricultural production system from the water footprint perspective. Sustainability 2020, 12, 9665. [Google Scholar] [CrossRef]
- Barbosa, M.W.; Ladeira, M.B.; de Oliveira, M.P.V.; de Oliveira, V.M.; de Sousa, P.R. The effects of internationalization orientation in the sustainable performance of the agri-food industry through environmental collaboration: An emerging economy perspective. Sustain. Prod. Consum. 2022, 31, 407–418. [Google Scholar] [CrossRef]
- Aivazidou, E.; Tsolakis, N. Water Footprint Management in the Fashion Supply Chain: A Review of Emerging Trends and Research Challenges; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780081026335. [Google Scholar]
Stages of the Content Validity Process | Details |
---|---|
Item identification |
|
Expert selection |
|
Items’ assessment |
|
ID | Candidate Measurement Item | Reference |
---|---|---|
WF1 | Our company promotes and adopts global standards for water footprint accounting and assessment | [3] |
WF2 | Our company promotes water accounting over the whole supply chain, cooperating with others along the supply chain to be able to produce full accounts for final products | |
WF3 | Our company reports water-related efforts, targets and progress made in annual sustainability report, also covering the supply chain. | |
WF4 | Our company reduces the risk of pollution, avoiding or minimizing the use of substances in products that may be harmful when reaching the water | |
WF5 | Our company compensates downstream users that are affected by intensive upstream water use in the catchment where the company’s (residual) water footprint is located. | |
WF6 | Our company establishes agreements on reduction targets for water use with suppliers. | |
WF7 | Our company shifts to other supplier when they do not agree to water footprint standards. | |
WF8 | Our company would be willing to change its business model in order to incorporate or get better control over the supply chain in terms of water footprint reduction. | |
WF9 | Our company prioritizes the cultivation of crops requiring less water | [30] |
WF10 | Our company has converted conventional crops into organic crops | |
WF11 | Our company selects and collaborates with water-friendly partners | |
WF12 | Our company establishes water auditing and control systems | |
WF13 | Our company invests in water-efficient technologies | |
WF14 | Our company carries out campaigns for raising consumer awareness about water consumption reduction. | |
WF15 | Our company develops water stewardship programs | [39] |
WF16 | Our company sets targets to manage freshwater resources efficiently | |
WF17 | Our company integrates responsible water use into their business strategy (excluded) | |
WF18 | Our company adopts techniques and processes to enhance water retention in the soil. | [44] |
WF19 | Our company reuses and recycles wastewater | |
WF20 | Our company conducts integrated water assurance assessment of the supply chain. | [7] |
WF21 | Our company identifies the local water risks | |
WF22 | Our company embeds water stewardship into the corporate strategy | |
WF23 | Our company engages with various stakeholders for water stewardship |
Categories | Number of Experts |
---|---|
Education | |
Bachelor’s degree | 1 |
Master’s degree | 6 |
Doctor’s degree | 1 |
Position | |
CEO/Director | 4 |
Manager/Coordinator | 4 |
WF familiarity/knowledge | |
High | 6 |
Average | 2 |
ID | Relevance | Clarity | Essentiality | |||||||
---|---|---|---|---|---|---|---|---|---|---|
I-CVI | Kappa | Aiken’s V | I-CVI | Kappa | Aiken’s V | I-CVI | Kappa | Aiken’s V | CVR | |
WF1 | 1.00 | 1.00 | 0.88 | 0.75 | 0.72 | 0.88 | 0.88 | 0.87 | 0.94 | 0.75 |
WF2 | 1.00 | 1.00 | 0.79 | 0.25 | 0.16 | 0.63 | 0.88 | 0.87 | 0.88 | 0.75 |
WF3 | 1.00 | 1.00 | 0.75 | 0.88 | 0.87 | 0.94 | 0.38 | 0.20 | 0.69 | −0.25 |
WF4 | 0.88 | 0.87 | 0.92 | 0.75 | 0.72 | 0.88 | 0.88 | 0.87 | 0.94 | 0.75 |
WF5 | 0.88 | 0.87 | 0.79 | 0.50 | 0.31 | 0.63 | 0.38 | 0.20 | 0.56 | −0.25 |
WF6 | 1.00 | 1.00 | 0.92 | 0.88 | 0.87 | 0.94 | 0.75 | 0.72 | 0.88 | 0.50 |
WF7 | 0.88 | 0.87 | 0.83 | 0.88 | 0.87 | 0.88 | 0.50 | 0.31 | 0.69 | 0.00 |
WF8 | 0.88 | 0.87 | 0.88 | 1.00 | 1.00 | 1.00 | 0.75 | 0.72 | 0.75 | 0.50 |
WF9 | 0.63 | 0.52 | 0.58 | 0.88 | 0.87 | 0.94 | 0.50 | 0.31 | 0.69 | 0.00 |
WF10 | 0.63 | 0.52 | 0.50 | 0.88 | 0.87 | 0.94 | 0.13 | 0.10 | 0.25 | −0.75 |
WF11 | 0.75 | 0.72 | 0.67 | 0.88 | 0.87 | 0.94 | 0.38 | 0.20 | 0.63 | −0.25 |
WF12 | 1.00 | 1.00 | 0.96 | 0.88 | 0.87 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 |
WF13 | 1.00 | 1.00 | 0.96 | 0.88 | 0.87 | 0.94 | 1.00 | 1.00 | 1.00 | 1.00 |
WF14 | 0.75 | 0.72 | 0.71 | 0.88 | 0.87 | 0.94 | 0.38 | 0.20 | 0.69 | −0.25 |
WF15 | 1.00 | 1.00 | 0.96 | 0.75 | 0.72 | 0.88 | 0.75 | 0.72 | 0.81 | 0.50 |
WF16 | 0.75 | 0.72 | 0.79 | 0.63 | 0.52 | 0.69 | 0.50 | 0.31 | 0.69 | 0.00 |
WF18 | 1.00 | 1.00 | 0.92 | 1.00 | 1.00 | 1.00 | 0.75 | 0.72 | 0.88 | 0.50 |
WF19 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.88 | 0.87 | 0.94 | 0.75 |
WF20 | 0.75 | 0.72 | 0.63 | 0.13 | 0.10 | 0.38 | 0.38 | 0.20 | 0.69 | −0.25 |
WF21 | 0.88 | 0.87 | 0.92 | 0.75 | 0.72 | 0.88 | 0.88 | 0.87 | 0.94 | 0.75 |
WF22 | 1.00 | 1.00 | 0.96 | 0.88 | 0.87 | 0.94 | 0.75 | 0.72 | 0.88 | 0.50 |
WF23 | 1.00 | 1.00 | 0.92 | 0.38 | 0.20 | 0.63 | 0.75 | 0.72 | 0.88 | 0.50 |
ID | Measurement Item Description |
---|---|
WF1 | Our company promotes and adopts national and global standards for water footprint accounting, traceability, and assessment. |
WF2 | Our company promotes the measurement of the water footprint throughout the supply chain, cooperating with partners to be able to generate records of the volume of water used in manufactured products. |
WF4 | Our company implements processes that mitigate the risk of contamination, avoiding or minimizing the use of substances (metals, pesticides, fertilizers, etc.) in products that may be polluting for water. |
WF12 | Our company establishes water auditing and control systems |
WF13 | Our company invests in water-efficient technologies. |
WF19 | Our company reuses and recycles wastewater. |
WF21 | Our company identifies the local risks of its impact on the water supply. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, M.W.; Cansino, J.M. A Water Footprint Management Construct in Agri-Food Supply Chains: A Content Validity Analysis. Sustainability 2022, 14, 4928. https://doi.org/10.3390/su14094928
Barbosa MW, Cansino JM. A Water Footprint Management Construct in Agri-Food Supply Chains: A Content Validity Analysis. Sustainability. 2022; 14(9):4928. https://doi.org/10.3390/su14094928
Chicago/Turabian StyleBarbosa, Marcelo Werneck, and José M. Cansino. 2022. "A Water Footprint Management Construct in Agri-Food Supply Chains: A Content Validity Analysis" Sustainability 14, no. 9: 4928. https://doi.org/10.3390/su14094928
APA StyleBarbosa, M. W., & Cansino, J. M. (2022). A Water Footprint Management Construct in Agri-Food Supply Chains: A Content Validity Analysis. Sustainability, 14(9), 4928. https://doi.org/10.3390/su14094928