A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market
Abstract
:1. Introduction
- The importance of imbalance cost has been studied, which is arisen due to the disparity between actual wind speed (AWS) and predicted wind speed (PWS). When actual wind power (AWP) is more than the predicted wind power (PWP), then ISO rewards the wind farm for their surplus power supply, and on the other hand, ISO imposes a penalty if PWP is more than AWP.
- The adverse effect of imbalance cost directly disturbs the economic advancement of the market players. This work exhibits the effect of solar PV in the system economy of a hybrid wind farm-solar PV deregulated power system.
- The investigation is carried out by several optimization techniques (i.e., SQP, SFOA, HBA). The SFOA and HBA have been used first time in this type of economic problem, which is the novelty of this paper.
2. System Modeling
2.1. Solar PV System
2.2. Wind Power
2.3. Bus Loading Factor (BLF)
3. Optimization Techniques
3.1. Sequential Quadratic Programming (SQP)
- Step-by-step process of SQP:
- Step 1: Initializing variables.
- Step 2: Define the search direction of the variables for the taken objectives.
- Step 3: Define and solve quadratic programming sub-problems.
- Step 4: Check the optimum result: If yes, then go to the next step. Otherwise, change the search size and repeat from step-2.
- Step 5: Finally, get the solution.
3.2. Smart Flower Optimization Algorithm (SFOA)
- Step-by-step process of SFOA:
- Step 1: Define algorithm parameters.
- Step 2: Initialize the set of population.
- Step 3: Derive the objective function for the random solutions.
- Step 4: Update and select the best solution for the current population.
- Step 5: Check cloudy or sunny conditions. Based on the environment, update the algorithm parameters.
- Step 6: Check the termination criteria. If satisfied, go to the end. If not satisfied, repeat from Step-5.
- Step 7: Finally, get the solution.
3.3. Honey Badger Algorithm (HBA)
- Step-by-step process of HBA:
- Step 1: Phase initialization of honey badger.
- Step 2: Initialize the strength of the honey badger.
- Step 3: Updating the density factor.
- Step 4: Interruption from local optima.
- Step 5: Updating the positions of agents.
- Step 6: Check the termination criteria. If satisfied, go to the end. If not satisfied, repeat from Step-3.
- Step 7: Finally, get the solution.
4. Objective Function
- Constraints:
5. Results and Discussions
- Step 1: Real-time data collection of solar & wind and calculation of power & cost.
- Step 2: Finding out the optimal location for solar PV and wind farm placement.
- Step 3: Placement of wind farm and calculate system economic parameters using SQP.
- Step 4: Installation of Solar PV and determining the system economic parameters for hybrid solar PV-Wind plant using SQP.
- Step 5: Comparison of system profit with different optimization techniques.
- Step 1: Real-time data collection of solar & wind and calculation of power & cost
- Step 2: Finding out the optimal location for solar PV and wind farm placement
- Step 3: Placement of wind farm and calculate system economic parameters using SQP
- Step 4: Installation of Solar PV and determining the system economic parameters for hybrid solar PV-Wind plant using SQP
- Step 5: Comparison of system profit with different optimization techniques
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hubble, A.H.; Ustun, T.S. Scaling renewable energy based microgrids in underserved communities: Latin America, South Asia, and Sub-Saharan Africa. In Proceedings of the 2016 IEEE PES PowerAfrica, Livingstone, Zambia, 28 June–2 July 2016; pp. 134–138. [Google Scholar]
- Ustun, S.T.; Nakamura, Y.; Hashimoto, J.; Otani, K. Performance analysis of PV panels based on different technologies after two years of outdoor exposure in Fukushima, Japan. Renew. Energy 2019, 136, 159–178. [Google Scholar] [CrossRef]
- 2nd Global RE-Invest 2018. A Resounding Success; Ministry of New and Renewable Energy, Government of India: New Delhi, India, 2021; Volume 12. Available online: https://www.mnre.gov.in/img/documents/uploads/58f4da0f67ad455a89b5ab8e4db14174.pdf (accessed on 20 March 2021).
- Xiao, X.; Wang, J.; Lin, R.; Hill, D.; Kang, C. Large-scale aggregation of prosumers toward strategic bidding in joint energy and regulation markets. Appl. Energy 2020, 271, 115159. [Google Scholar] [CrossRef]
- Jannesar, M.R.; Sedighi, A.; Savaghebi, M.; Guerrero, J.M. Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration. Appl. Energy 2018, 226, 957–966. [Google Scholar] [CrossRef] [Green Version]
- Çiçek, A.; Güzel, S.; Erdinç, O.; Catalão, J.P. Comprehensive survey on support policies and optimal market participation of renewable energy. Electr. Power Syst. Res. 2021, 201, 107522. [Google Scholar] [CrossRef]
- Gomes, I.L.R.; Pousinho, H.M.I.; Melício, R.; Mendes, V.M.F. Stochastic Coordination of Joint Wind and Photovoltaic Systems with Energy Storage in Day-Ahead Market. Energy 2017, 124, 310–320. [Google Scholar] [CrossRef]
- Zhang, Y.; Lundblad, A.; Campana, P.E.; Benavente, F.; Yan, J. Battery sizing and rule-based operation of grid-connected photovoltaic-battery system: A case study in Sweden. Energy Convers. Manag. 2017, 133, 249–263. [Google Scholar] [CrossRef]
- Dhundhara, S.; Verma, Y.P. Capacitive Energy Storage with Optimized Controller for Frequency Regulation in Realistic Multisource Deregulated Power System. Energy 2018, 147, 1108–1128. [Google Scholar] [CrossRef]
- Hasankhani, A.; Hakimi, S.M. Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market. Energy 2020, 219, 119668. [Google Scholar] [CrossRef]
- Dhillon, J.; Kumar, A.; Singal, S. Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review. Renew. Sustain. Energy Rev. 2014, 30, 682–700. [Google Scholar] [CrossRef]
- Bashir, N.; Irwin, D.; Shenoy, P. A Probabilistic Approach to Committing Solar Energy in Day-ahead Electricity Markets. Sustain. Comput. Inform. Syst. 2020, 29, 100477. [Google Scholar] [CrossRef]
- Zhang, C.; Qiu, J.; Yang, Y.; Zhao, J. Trading-oriented battery energy storage planning for distribution market. Int. J. Electr. Power Energy Syst. 2021, 129, 106848. [Google Scholar] [CrossRef]
- Sanni, S.O.; Oricha, J.Y.; Oyewole, T.O.; Bawonda, F.I. Analysis of backup power supply for unreliable grid using hybrid solar PV/diesel/biogas system. Energy 2021, 227, 120506. [Google Scholar] [CrossRef]
- Sahoo, A.; Hota, P.K. Impact of energy storage system and distributed energy resources on bidding strategy of micro-grid in deregulated environment. J. Energy Storage 2021, 43, 103230. [Google Scholar] [CrossRef]
- Cheng, Q.; Luo, P.; Liu, P.; Li, X.; Ming, B.; Huang, K.; Xu, W.; Gong, Y. Stochastic short-term scheduling of a wind-solar-hydro complementary system considering both the day-ahead market bidding and bilateral contracts decomposition. Int. J. Electr. Power Energy Syst. 2021, 138, 107904. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, W.; Yang, Q. Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets. Appl. Energy 2022, 310, 118528. [Google Scholar] [CrossRef]
- Lakiotis, V.G.; Simoglou, C.K.; Bakirtzis, A.G. A methodological approach for assessing the value of energy storage in the power system operation by mid-term simulation. J. Energy Storage 2022, 49, 104066. [Google Scholar] [CrossRef]
- Latif, A.; Hussain, S.M.S.; Das, D.C.; Ustun, T.S. Optimum Synthesis of a BOA Optimized Novel Dual-Stage PI-(1+ID) Controller for Frequency Response of a Microgrid. Energies 2020, 13, 3446. [Google Scholar] [CrossRef]
- Dey, P.P.; Das, D.C.; Latif, A.; Hussain, S.M.; Ustun, T.S. Active Power Management of Virtual Power Plant under Penetration of Central Receiver Solar Thermal-Wind Using Butterfly Optimization Technique. Sustainability 2020, 12, 6979. [Google Scholar] [CrossRef]
- Hussain, I.; Das, D.; Sinha, N.; Latif, A.; Hussain, S.; Ustun, T. Performance Assessment of an Islanded Hybrid Power System with Different Storage Combinations Using an FPA-Tuned Two-Degree-of-Freedom (2DOF) Controller. Energies 2020, 13, 5610. [Google Scholar] [CrossRef]
- Kumar, K.K.P.; Soren, N.; Latif, A.; Das, D.C.; Hussain, S.M.; Al-Durra, A.; Ustun, T.S. Day-Ahead DSM-Integrated Hybrid-Power-Management-Incorporated CEED of Solar Thermal/Wind/Wave/BESS System Using HFPSO. Sustainability 2022, 14, 1169. [Google Scholar] [CrossRef]
- Latif, A.; Paul, M.; Das, D.C.; Hussain, S.M.S.; Ustun, T.S. Price Based Demand Response for Optimal Frequency Stabilization in ORC Solar Thermal Based Isolated Hybrid Microgrid under Salp Swarm Technique. Electronics 2020, 9, 2209. [Google Scholar] [CrossRef]
- Habib, H.U.R.; Subramaniam, U.; Waqar, A.; Farhan, B.S.; Kotb, K.M.; Wang, S. Energy Cost Optimization of Hybrid Renewables Based V2G Microgrid Considering Multi-Objective Function by Using Artificial Bee Colony Optimization. IEEE Access 2020, 8, 62076–62093. [Google Scholar] [CrossRef]
- Gao, Y.; Ai, Q. Demand-side response strategy of multi-microgrids based on an improved co-evolution algorithm. CSEE J. Power Energy Syst. 2021, 7, 903–910. [Google Scholar]
- Pierro, M.; Perez, R.; Perez, M.; Moser, D.; Cornaro, C. Imbalance mitigation strategy via flexible PV ancillary services: The Italian case study. Renew. Energy 2021, 179, 1694–1705. [Google Scholar] [CrossRef]
- Bhandari, B.; Poudel, S.R.; Lee, K.-T.; Ahn, S.-H. Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 157–173. [Google Scholar] [CrossRef]
- Dawn, S.; Tiwari, P.K.; Goswami, A.K. An approach for efficient assessment of the performance of double auction competitive power market under variable imbalance cost due to high uncertain wind penetration. Renew. Energy 2017, 108, 230–243. [Google Scholar] [CrossRef]
- Sattar, D.; Salim, R. A smart metaheuristic algorithm for solving engineering problems. Eng. Comput. 2021, 37, 2389–2417. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2021, 192, 84–110. [Google Scholar] [CrossRef]
- Raghuwanshi, S.S.; Arya, R. Economic and Reliability Evaluation of Hybrid Photovoltaic Energy Systems for Rural Electrification. Int. J. Renew. Energy Res. 2019, 9, 515–524. [Google Scholar]
- Dawn, S.; Tiwari, P.K.; Goswami, A.K. A Joint Scheduling Optimization Strategy for Wind and Pumped Storage Systems Considering Imbalance Cost & Grid Frequency in Real-Time Competitive Power Market. Int. J. Renew. Energy Res. 2016, 6, 1248–1259. [Google Scholar]
- Chandel, S.S.; Aggarwal, R.K. Estimation of Hourly Solar Radiation on Horizontal and Inclined Surfaces in Western Himalayas. Smart Grid Renew. Energy 2011, 2, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Database: World Temperatures-Weather around the World. Available online: www.timeanddate.com/weather/ (accessed on 10 November 2021).
- Tiwari, P.K.; Mishra, M.K.; Dawn, S. A two step approach for improvement of economic profit and emission with congestion management in hybrid competitive power market. Int. J. Electr. Power Energy Syst. 2019, 110, 548–564. [Google Scholar] [CrossRef]
Hour | Solar Radiation (W/m2) | Temperature (k) | Hour | Solar Radiation (W/m2) | Temperature (k) | Hour | Solar Radiation (W/m2) | Temperature (k) |
---|---|---|---|---|---|---|---|---|
1 | 0 | 295.5 | 9 | 583 | 299.9 | 17 | 389 | 295.4 |
2 | 0 | 295.5 | 10 | 759 | 295.7 | 18 | 202 | 295.4 |
3 | 0 | 296.5 | 11 | 893 | 296.9 | 19 | 0 | 295.7 |
4 | 0 | 297.6 | 12 | 966 | 298.2 | 20 | 0 | 295.9 |
5 | 0 | 298.6 | 13 | 966 | 297.8 | 21 | 0 | 295.9 |
6 | 39 | 298.6 | 14 | 893 | 297.5 | 22 | 0 | 296 |
7 | 202 | 299.1 | 15 | 759 | 297 | 23 | 0 | 296 |
8 | 389 | 299.5 | 16 | 583 | 297.1 | 24 | 0 | 296.2 |
Sl. No. | Wind Speed at the Height of 10 m (km/h) | Wind Speed at the Height of 10 m (m/s) | Wind Speed at the Height of 120 m (m/s) | Wind Power with 50 Turbines (MW) | Wind Generation Cost with 50 Turbines ($/h) |
---|---|---|---|---|---|
1 | 8 | 2.222 | 3.1703 | 2.4 | 9 |
2 | 9 | 2.5 | 3.5666 | 3.42 | 12.825 |
3 | 10 | 2.778 | 3.9629 | 4.69 | 17.587 |
4 | 11 | 3.056 | 4.3592 | 6.245 | 23.418 |
5 | 12 | 3.333 | 4.7555 | 8.11 | 30.412 |
6 | 13 | 3.611 | 5.1518 | 10.31 | 38.662 |
7 | 14 | 3.889 | 5.5481 | 12.875 | 48.281 |
8 | 15 | 4.167 | 5.9444 | 15.835 | 59.381 |
9 | 16 | 4.444 | 6.3407 | 19.22 | 72.075 |
10 | 17 | 4.722 | 6.7370 | 23.055 | 86.456 |
11 | 19 | 5.278 | 7.5296 | 32.185 | 120.693 |
12 | 20 | 5.556 | 7.9259 | 37.54 | 140.775 |
Load Bus No. | Thermal Generation Cost ($/h) | Solar Cost ($/h) | Total Generation Cost ($/h) | Load Bus No. | Thermal Generation Cost ($/h) | Solar Cost ($/h) | Total Generation Cost ($/h) |
---|---|---|---|---|---|---|---|
4 | 7532.91 | 78 | 7610.91 | 11 | 7536.64 | 78 | 7614.64 |
5 | 7552.48 | 78 | 7630.48 | 12 | 7544.85 | 78 | 7622.85 |
7 | 7543.02 | 78 | 7621.02 | 13 | 7536.19 | 78 | 7614.19 |
9 | 7530.24 | 78 | 7608.24 | 14 | 7525.12 | 78 | 7603.12 |
10 | 7530.51 | 78 | 7608.51 |
Load Bus No. | Thermal Generation Cost ($/h) | Solar Cost ($/h) | Total Generation Cost ($/h) | Load Bus No. | Thermal Generation Cost ($/h) | Solar Cost ($/h) | Total Generation Cost ($/h) |
---|---|---|---|---|---|---|---|
3 | 10,456.2 | 78 | 10,534.2 | 19 | 10,441.1 | 78 | 10,519.1 |
4 | 10,452.7 | 78 | 10,530.7 | 20 | 10,443.1 | 78 | 10,521.1 |
6 | 10,449.9 | 78 | 10,527.9 | 21 | 10,444.3 | 78 | 10,522.3 |
7 | 10,442.9 | 78 | 10,520.9 | 22 | 10,444.6 | 78 | 10,522.6 |
9 | 10,449.1 | 78 | 10,527.1 | 23 | 10,443.9 | 78 | 10,521.9 |
10 | 10,448.9 | 78 | 10,526.9 | 24 | 10,439.8 | 78 | 10,517.8 |
12 | 10,458.2 | 78 | 10,536.2 | 25 | 10,443.1 | 78 | 10,521.1 |
14 | 10,453.8 | 78 | 10,531.8 | 26 | 10,447.2 | 78 | 10,525.2 |
15 | 10,447.4 | 78 | 10,525.3 | 27 | 10,445.6 | 78 | 10,523.6 |
16 | 10,452.8 | 78 | 10,530.8 | 28 | 10,448.4 | 78 | 10,526.4 |
17 | 10,448.3 | 78 | 10,526.3 | 29 | 10,439.7 | 78 | 10,517.7 |
18 | 10,443.1 | 78 | 10,521.1 | 30 | 10,431.89 | 78 | 10,509.89 |
Bus No. | No. of the Connected Bus | Bus Loading Factor (BLF) | Bus No. | No. of the Connected Bus | Bus Loading Factor (BLF) |
---|---|---|---|---|---|
1 | 2 | 0.1 | 8 | 1 | 0.05 |
2 | 4 | 0.2 | 9 | 4 | 0.2 |
3 | 1 | 0.05 | 10 | 2 | 0.1 |
4 | 5 | 0.25 | 11 | 2 | 0.1 |
5 | 4 | 0.2 | 12 | 2 | 0.1 |
6 | 4 | 0.2 | 13 | 3 | 0.15 |
7 | 3 | 0.15 | 14 | 2 | 0.1 |
Bus No. | No. of the Connected Bus | Bus Loading Factor (BLF) | Bus No. | No. of the Connected Bus | Bus Loading Factor (BLF) |
---|---|---|---|---|---|
1 | 2 | 0.049 | 16 | 2 | 0.049 |
2 | 4 | 0.098 | 17 | 2 | 0.049 |
3 | 1 | 0.024 | 18 | 2 | 0.049 |
4 | 4 | 0.098 | 19 | 2 | 0.049 |
5 | 2 | 0.049 | 20 | 2 | 0.049 |
6 | 7 | 0.171 | 21 | 2 | 0.049 |
7 | 2 | 0.049 | 22 | 3 | 0.073 |
8 | 2 | 0.049 | 23 | 2 | 0.049 |
9 | 3 | 0.073 | 24 | 3 | 0.073 |
10 | 6 | 0.146 | 25 | 3 | 0.073 |
11 | 1 | 0.024 | 26 | 1 | 0.024 |
12 | 5 | 0.122 | 27 | 4 | 0.098 |
13 | 1 | 0.024 | 28 | 3 | 0.073 |
14 | 2 | 0.049 | 29 | 2 | 0.049 |
15 | 4 | 0.098 | 30 | 2 | 0.049 |
Hour | AWS, FWS (km/h) | Thermal Generation Cost ($/h) | Wind Generation Cost ($/h) | Imbalance Cost ($/h) | Revenue from Thermal ($/h) | Revenue from Wind ($/h) |
---|---|---|---|---|---|---|
1 | 12, 15 | 7620.35 | 30.412 | −605.9453 | 8442.049 | 334.602 |
2 | 14, 17 | 7423.91 | 48.281 | −797.0401 | 8240.135 | 530.308 |
3 | 12, 9 | 7620.35 | 30.412 | 15.0201 | 8442.049 | 334.602 |
4 | 13, 14 | 7529.61 | 38.662 | −199.6651 | 8348.545 | 425.04 |
5 | 13, 11 | 7529.61 | 38.662 | 12.0424 | 8348.545 | 425.04 |
6 | 13, 17 | 7529.61 | 38.662 | −997.1932 | 8348.545 | 425.04 |
7 | 10, 8 | 7761.53 | 17.587 | 8.4219 | 8587.692 | 193.729 |
8 | 13, 11 | 7529.61 | 38.662 | 12.0424 | 8348.545 | 425.04 |
9 | 16, 19 | 7162.86 | 72.075 | −1011.5 | 7970.274 | 789.903 |
10 | 15, 20 | 7302.06 | 59.381 | −1693.4 | 8113.457 | 651.563 |
11 | 14, 13 | 7423.91 | 48.281 | 8.8430 | 8240.135 | 530.308 |
12 | 14, 16 | 7423.91 | 48.281 | −497.8491 | 8240.135 | 530.308 |
13 | 13, 11 | 7529.61 | 38.662 | 12.0424 | 8348.545 | 425.04 |
14 | 9, 17 | 7814.00 | 12.825 | −1539.7 | 8642.206 | 141.335 |
15 | 12, 16 | 7620.35 | 30.412 | −870.6483 | 8442.049 | 334.602 |
16 | 16, 16 | 7162.86 | 72.075 | 0 | 7970.274 | 789.903 |
17 | 16, 16 | 7162.86 | 72.075 | 0 | 7970.274 | 789.903 |
18 | 11, 17 | 7697.32 | 23.418 | −1294.1 | 8509.456 | 257.825 |
19 | 9, 8 | 7814.00 | 12.825 | 3.9932 | 8642.206 | 141.335 |
20 | 9, 12 | 7814.00 | 12.825 | −368.1811 | 8642.206 | 141.335 |
21 | 8, 10 | 7856.16 | 9 | −179.9842 | 8685.595 | 99.216 |
22 | 9, 10 | 7814.00 | 12.825 | −100.1222 | 8642.206 | 141.335 |
23 | 8, 9 | 7856.16 | 9 | −79.8374 | 8685.595 | 99.216 |
24 | 9, 9 | 7814.00 | 12.825 | 0 | 8642.206 | 141.335 |
Hour | AWS, FWS (km/h) | Thermal Generation Cost ($/h) | Wind Generation Cost ($/h) | Imbalance Cost ($/h) | Revenue from Thermal ($/h) | Revenue from Wind ($/h) |
---|---|---|---|---|---|---|
1 | 12, 15 | 10,559.76 | 30.412 | −768.2744 | 14,472.49 | 424.850 |
2 | 14, 17 | 10,316.17 | 48.281 | −962.9868 | 13,547.83 | 641.935 |
3 | 12, 9 | 10,559.76 | 30.412 | 17.0300 | 14,472.49 | 424.850 |
4 | 13, 14 | 10,445.8 | 38.662 | −249.3028 | 14,042.21 | 528.057 |
5 | 13, 11 | 10,445.8 | 38.662 | 14.6592 | 14,042.21 | 528.057 |
6 | 13, 17 | 10,445.8 | 38.662 | −1237.7 | 14,042.21 | 528.057 |
7 | 10, 8 | 10,742.04 | 17.587 | 10.5271 | 15,152.12 | 254.235 |
8 | 13, 11 | 10,445.8 | 38.662 | 14.6592 | 14,042.21 | 528.057 |
9 | 16, 19 | 10,009.76 | 72.075 | −1161.3 | 12,562.83 | 908.798 |
10 | 15, 20 | 10,170.90 | 59.381 | −1981.4 | 12,986.72 | 764.767 |
11 | 14, 13 | 10,316.17 | 48.281 | 9.8680 | 13,547.83 | 641.935 |
12 | 14, 16 | 10,316.17 | 48.281 | −600.3361 | 13,547.83 | 641.935 |
13 | 13, 11 | 10,445.8 | 38.662 | 14.6592 | 14,042.21 | 528.057 |
14 | 9, 17 | 10,811.31 | 12.825 | −2041.2 | 15,408.19 | 187.71 |
15 | 12, 16 | 10,559.76 | 30.412 | −1103.8 | 14,472.49 | 424.850 |
16 | 16, 16 | 10,009.76 | 72.075 | 0 | 12,562.83 | 908.798 |
17 | 16, 16 | 10,009.76 | 72.075 | 0 | 12,562.83 | 908.798 |
18 | 11, 17 | 10,658.39 | 23.418 | −1700.7 | 14,841.6 | 333.351 |
19 | 9, 8 | 10,811.31 | 12.825 | 5.1925 | 15,408.19 | 187.71 |
20 | 9, 12 | 10,811.31 | 12.825 | −488.6947 | 15,408.19 | 187.71 |
21 | 8, 10 | 10,867.57 | 9 | −240.9677 | 15,614.77 | 133.037 |
22 | 9, 10 | 10,811.31 | 12.825 | −132.7192 | 15,408.19 | 187.71 |
23 | 8, 9 | 10,867.57 | 9 | −106.9814 | 15,614.77 | 133.037 |
24 | 9, 9 | 10,811.31 | 12.825 | 0 | 15,408.19 | 187.71 |
Hour | System Profit before Solar PV Placement ($/h) | System Profit after Solar PV Placement ($/h) | Hour | System Profit before Solar PV Placement ($/h) | System Profit after Solar PV Placement ($/h) |
---|---|---|---|---|---|
1 | 519.9437 | 519.9437 | 13 | 1217.3554 | 1542.38486 |
2 | 501.2119 | 501.2119 | 14 | −582.984 | −277.08989 |
3 | 1140.9091 | 1140.9091 | 15 | 255.2407 | 515.85135 |
4 | 1005.6479 | 1005.6479 | 16 | 1525.242 | 1724.76841 |
5 | 1217.3554 | 1217.3554 | 17 | 1525.242 | 1658.32136 |
6 | 208.1198 | 219.70791 | 18 | −247.557 | −165.66496 |
7 | 1010.7259 | 1080.36683 | 19 | 960.7092 | 960.7092 |
8 | 1217.3554 | 1351.58732 | 20 | 588.5349 | 588.5349 |
9 | 513.742 | 712.97584 | 21 | 739.6668 | 739.6668 |
10 | −289.821 | −201.33585 | 22 | 856.5938 | 856.5938 |
11 | 1307.095 | 1605.13961 | 23 | 839.8136 | 839.8136 |
12 | 800.4029 | 1117.16402 | 24 | 956.716 | 956.716 |
Hour | System Profit before Solar PV Placement ($/h) | System Profit after Solar PV Placement ($/h) | Hour | System Profit before Solar PV Placement ($/h) | System Profit after Solar PV Placement ($/h) |
---|---|---|---|---|---|
1 | 3538.8936 | 3538.8936 | 13 | 4100.4642 | 4549.1922 |
2 | 2862.3272 | 2862.3272 | 14 | 2730.565 | 2997.04766 |
3 | 4324.198 | 4324.198 | 15 | 3203.368 | 3509.10746 |
4 | 3836.5022 | 3836.5022 | 16 | 3389.793 | 3691.26204 |
5 | 4100.4642 | 4100.4642 | 17 | 3389.793 | 3691.26204 |
6 | 2848.105 | 3050.7866 | 18 | 2792.443 | 3044.708 |
7 | 4657.2551 | 5233.6825 | 19 | 4776.9575 | 4776.9575 |
8 | 4100.4642 | 4549.1922 | 20 | 4283.0703 | 4283.0703 |
9 | 2228.493 | 2429.7666 | 21 | 4630.2693 | 4630.2693 |
10 | 1539.806 | 1771.63971 | 22 | 4639.0458 | 4639.0458 |
11 | 3835.182 | 4125.46425 | 23 | 4764.2556 | 4764.2556 |
12 | 3224.9779 | 3526.65859 | 24 | 4771.765 | 4771.765 |
Hour | System Profit before Solar PV Placement Using SQP ($/h) | System Profit after Solar PV Placement Using SQP ($/h) | System Profit after Solar PV Placement Using SFOA ($/h) | System Profit after Solar PV Placement Using HBA ($/h) |
---|---|---|---|---|
6 | 208.1198 | 219.70791 | 221.036 | 222.617 |
7 | 1010.7259 | 1080.36683 | 1085.234 | 1087.222 |
8 | 1217.3554 | 1351.58732 | 1357.231 | 1359.723 |
9 | 513.742 | 712.97584 | 716.954 | 717.632 |
10 | −289.821 | −201.33585 | −199.032 | −197.689 |
11 | 1307.095 | 1605.13961 | 1612.234 | 1615.015 |
12 | 800.4029 | 1117.16402 | 1122.564 | 1124.917 |
13 | 1217.3554 | 1542.38486 | 1548.985 | 1551.67 |
14 | −582.984 | −277.08989 | −275.365 | −273.258 |
15 | 255.2407 | 515.85135 | 517.234 | 518.202 |
16 | 1525.242 | 1724.76841 | 1730.385 | 1733.408 |
17 | 1525.242 | 1658.32136 | 1664.478 | 1667.987 |
18 | −247.557 | −165.66496 | −163.984 | −162.001 |
Hour | System Profit before Solar PV Placement Using SQP ($/h) | System Profit after Solar PV Placement Using SQP ($/h) | System Profit after Solar PV Placement Using SFOA ($/h) | System Profit after Solar PV Placement Using HBA ($/h) |
---|---|---|---|---|
6 | 2848.105 | 3050.7866 | 3060.795 | 3062.054 |
7 | 4657.2551 | 5233.6825 | 5246.246 | 5249.978 |
8 | 4100.4642 | 4549.1922 | 4560.9641 | 4563.175 |
9 | 2228.493 | 2429.7666 | 2438.258 | 2439.133 |
10 | 1539.806 | 1771.63971 | 1779.010 | 1779.359 |
11 | 3835.182 | 4125.46425 | 4134.987 | 4136.101 |
12 | 3224.9779 | 3526.65859 | 3536.2545 | 3538.987 |
13 | 4100.4642 | 4549.1922 | 4560.9641 | 4563.175 |
14 | 2730.565 | 2997.04766 | 3005.745 | 3006.999 |
15 | 3203.368 | 3509.10746 | 3517.4551 | 3518.657 |
16 | 3389.793 | 3691.26204 | 3698.463 | 3699.824 |
17 | 3389.793 | 3691.26204 | 3698.463 | 3699.824 |
18 | 2792.443 | 3044.708 | 3049.843 | 3051.189 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.S.; Das, A.; Dawn, S.; Gope, S.; Ustun, T.S. A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market. Sustainability 2022, 14, 5005. https://doi.org/10.3390/su14095005
Das SS, Das A, Dawn S, Gope S, Ustun TS. A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market. Sustainability. 2022; 14(9):5005. https://doi.org/10.3390/su14095005
Chicago/Turabian StyleDas, Shreya Shree, Arup Das, Subhojit Dawn, Sadhan Gope, and Taha Selim Ustun. 2022. "A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market" Sustainability 14, no. 9: 5005. https://doi.org/10.3390/su14095005
APA StyleDas, S. S., Das, A., Dawn, S., Gope, S., & Ustun, T. S. (2022). A Joint Scheduling Strategy for Wind and Solar Photovoltaic Systems to Grasp Imbalance Cost in Competitive Market. Sustainability, 14(9), 5005. https://doi.org/10.3390/su14095005