Design of a Sustainable Last Mile in Urban Logistics—A Systematic Literature Review
Abstract
:1. Introduction
2. Cornerstones of the Sustainable Last Mile
3. Systematic Literature Review
3.1. Definition of Search Criteria
3.2. Destination of the Sample and Selection of Literature
3.3. Sustainable Dimensions and Literature Landscape
3.4. Mobility Models from a Theoretical Perspective
3.4.1. Theoretical Framework
3.4.2. Surveys on the Design of The Last Mile
3.4.3. Design of the Business Cases
3.4.4. Last-Mile Model and Simulation
3.4.5. Last Mile in Existing Literature Reviews
4. Discussion
4.1. Conclusions
4.2. Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ketchen, D.J.; Crook, T.R.; Craighead, C.W. From Supply Chains to Supply Ecosystems: Implications for Strategic Sourcing Research and Practice. J. Bus. Logist. 2014, 35, 165–171. [Google Scholar] [CrossRef]
- Buldeo Rai, H.; Verlinde, S.; Macharis, C. The “next day, free delivery” myth unravelled. Int. J. Retail Distrib. Manag. 2019, 47, 39–54. [Google Scholar] [CrossRef]
- Kalevi Dieke, A.; Arnold, R.; Wielgosch, J.; Niederprüm, A.; Hillebrand, A.; Thiele, S.; Taş, S.; Bender, C. Development of Cross-Border E-Commerce through Parcel Delivery: Study for the European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Olsson, J.; Hellström, D.; Pålsson, H. Framework of Last Mile Logistics Research: A Systematic Review of the Literature. Sustainability 2019, 11, 7131. [Google Scholar] [CrossRef] [Green Version]
- Premkumar, P.; Gopinath, S.; Mateen, A. Trends in third party logistics—The past, the present & the future. Int. J. Logist. Res. Appl. 2020, 24, 551–580. [Google Scholar] [CrossRef]
- Lavie, D. Alliance portfolios and firm performance: A study of value creation and appropriation in the U.S. software industry. Strat. Mgmt. J. 2007, 28, 1187–1212. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Freeman, R.E.E.; McVea, J. A Stakeholder Approach to Strategic Management. SSRN J. 2001, 183–201. [Google Scholar] [CrossRef]
- Gevaers, R.; van de Voorde, E.; Vanelslander, T. Cost Modelling and Simulation of Last-mile Characteristics in an Innovative B2C Supply Chain Environment with Implications on Urban Areas and Cities. Procedia Soc. Behav. Sci. 2014, 125, 398–411. [Google Scholar] [CrossRef] [Green Version]
- Boyer, K.K.; Prud’homme, A.M.; Chung, W. The last mile challenge: Evaluating the effects of customer density and delivery window patterns. J. Bus. Logist. 2009, 30, 185–201. [Google Scholar] [CrossRef]
- Montecinos, J.; Ouhimmou, M.; Chauhan, S.; Paquet, M.; Gharbi, A. Transport carriers’ cooperation on the last-mile delivery in urban areas. Transportation 2020, 48, 2401–2431. [Google Scholar] [CrossRef]
- Muñuzuri, J.; Cortés, P.; Grosso, R.; Guadix, J. Selecting the location of minihubs for freight delivery in congested downtown areas. J. Comput. Sci. 2012, 3, 228–237. [Google Scholar] [CrossRef]
- van Loon, P.; Deketele, L.; Dewaele, J.; McKinnon, A.; Rutherford, C. A comparative analysis of carbon emissions from online retailing of fast moving consumer goods. J. Clean. Prod. 2015, 106, 478–486. [Google Scholar] [CrossRef]
- Aljohani, K.; Thompson, R. A Stakeholder-Based Evaluation of the Most Suitable and Sustainable Delivery Fleet for Freight Consolidation Policies in the Inner-City Area. Sustainability 2019, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Boysen, N.; Fedtke, S.; Schwerdfeger, S. Last-mile delivery concepts: A survey from an operational research perspective. OR Spektrum 2021, 43, 1–58. [Google Scholar] [CrossRef]
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Williams, A.; Polychronakis, Y.E. A comparison of e-business models from a value chain perspective. EuroMed J. Bus. 2012, 7, 83–101. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency Population Trends 1950–2100: Globally and within Europe. Available online: https://www.eea.europa.eu/data-and-maps/indicators/total-population-outlook-from-unstat-3/assessment-1 (accessed on 4 October 2020).
- European Comission Developments and Forecasts on Continuing Urbanisation: Urban Population. Available online: https://ec.europa.eu/knowledge4policy/foresight/topic/continuing-urbanisation/developments-and-forecasts-on-continuing-urbanisation_en (accessed on 26 July 2020).
- Browne, M.; Gonzalez-Feliu, J. Editorial: Sustainable efficiency and management issues in urban goods transport: New trends and applications. Res. Transp. Bus. Manag. 2017, 24, 1–3. [Google Scholar] [CrossRef]
- Hanss, D.; Böhm, G. Sustainability seen from the perspective of consumers. Int. J. Consum. Stud. 2012, 36, 678–687. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Liu, Q.; Shen, F.; Lee, L.H. Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions. Transp. Res. Part E Logist. Transp. Rev. 2016, 93, 279–293. [Google Scholar] [CrossRef]
- Morganti, E.; Dablanc, L.; Fortin, F. Final deliveries for online shopping: The deployment of pickup point networks in urban and suburban areas. Res. Transp. Bus. Manag. 2014, 11, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Woidasky, J.; Iden, J.-M.; Karos, A.; Hirth, T. Ressourceneffiziente Trenntechnologien für eine Green Economy. Chem. Ing. Tech. 2016, 88, 403–408. [Google Scholar] [CrossRef]
- Lee, H.; Padmanabhan, V.; Whang, S. The Bullwhip Effect in Supply Chains. MIT Sloan Manag. Rev. 1997, 38, 93–102. [Google Scholar] [CrossRef]
- Allen, J.; Piecyk, M.; Piotrowska, M.; McLeod, F.; Cherrett, T.; Ghali, K.; Nguyen, T.; Bektas, T.; Bates, O.; Friday, A.; et al. Understanding the impact of e-commerce on last-mile light goods vehicle activity in urban areas: The case of London. Transp. Res. Part D: Transp. Environ. 2018, 61, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Beske, P.; Seuring, S. Putting sustainability into supply chain management. Supply Chain Manag. Int. J. 2014, 19, 322–331. [Google Scholar] [CrossRef]
- Grant, D.B.; Wong, C.Y.; Trautrims, A. Sustainable Logistics and Supply Chain Management: Principles and Practices for Sustainable Operations and Management; Kogan Page: London, UK, 2017. [Google Scholar]
- Crainic, T.G.; Errico, F.; Rei, W.; Ricciardi, N. Integrating c2e and c2c Traffic into City Logistics Planning. Procedia Soc. Behav. Sci. 2012, 39, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Lim, S.F.W.T.; Jin, X.; Srai, J.S. Consumer-driven e-commerce. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 308–332. [Google Scholar] [CrossRef] [Green Version]
- Das, C.; Jharkharia, S. Low carbon supply chain: A state-of-the-art literature review. J. Manuf. Technol. Manag. 2018, 29, 398–428. [Google Scholar] [CrossRef]
- He, Z.; Haasis, H.-D. A Theoretical Research Framework of Future Sustainable Urban Freight Transport for Smart Cities. Sustainability 2020, 12, 1975. [Google Scholar] [CrossRef] [Green Version]
- Lagorio, A.; Pinto, R.; Golini, R. Research in urban logistics: A systematic literature review. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 908–931. [Google Scholar] [CrossRef]
- Nenni, M.E.; Sforza, A.; Sterle, C. Sustainability-based review of urban freight models. Soft Comput. 2019, 23, 2899–2909. [Google Scholar] [CrossRef]
- Viu-Roig, M.; Alvarez-Palau, E.J. The Impact of E-Commerce-Related Last-Mile Logistics on Cities: A Systematic Literature Review. Sustainability 2020, 12, 6492. [Google Scholar] [CrossRef]
- DHL 2-Mann-Handling GmbH DHL 2-Mann-Handling. Available online: https://www.dhl.de/de/geschaeftskunden/paket/leistungen-und-services/2-mann-handling.html (accessed on 22 February 2022).
- Rhenus SE &, Co. KG Mehr Service: Mit Home Delivery im 2-Mann-Handling. Available online: https://www.rhenus.group/de/supply-chain-loesungen/home-delivery (accessed on 22 February 2022).
- Kitchenham, B.; Brereton, P. A systematic review of systematic review process research in software engineering. Inf. Softw. Technol. 2013, 55, 2049–2075. [Google Scholar] [CrossRef]
- Amad Saeed, M.; Kersten, W. Supply chain sustainability performance indicators—A systematic literature review. Logist. Res. 2020, 13. [Google Scholar] [CrossRef]
- He, Z. The challenges in sustainability of urban freight network design and distribution innovations: A systematic literature review. Int. J. Phys. Distrib. Logist. Manag. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Mangiaracina, R.; Perego, A.; Seghezzi, A.; Tumino, A. Innovative solutions to increase last-mile delivery efficiency in B2C e-commerce: A literature review. Int. J. Phys. Distrib. Logist. Manag. 2019, 49, 901–920. [Google Scholar] [CrossRef]
- Graneheim, U.H.; Lundman, B. Qualitative content analysis in nursing research: Concepts, procedures and measures to achieve trustworthiness. Nurse Educ. Today 2004, 24, 105–112. [Google Scholar] [CrossRef]
- Elkington, J. Accounting for the triple bottom line. Meas. Bus. Excell. 1998, 2, 18–22. [Google Scholar] [CrossRef]
- Dietz, S.; Neumayer, E. Weak and strong sustainability in the SEEA: Concepts and measurement. Ecol. Econ. 2007, 61, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Buchholtz, G. Social and Labour Standards in the OECD Guidelines. Int. Organ. Law Rev. 2020, 17, 133–152. [Google Scholar] [CrossRef]
- Mueller, M.; dos Santos, V.G.; Seuring, S. The Contribution of Environmental and Social Standards Towards Ensuring Legitimacy in Supply Chain Governance. J. Bus. Ethics 2009, 89, 509–523. [Google Scholar] [CrossRef]
- Fraser, I.J.; Schwarzkopf, J.; Müller, M. Exploring Supplier Sustainability Audit Standards: Potential for and Barriers to Standardization. Sustainability 2020, 12, 8223. [Google Scholar] [CrossRef]
- Papoutsis, K.; Dewulf, W.; Vanelslander, T.; Nathanail, E. Sustainability assessment of retail logistics solutions using external costs analysis: A case-study for the city of Antwerp. Eur. Transp. Res. Rev. 2018, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Goeke, D.; Schneider, M. Routing a mixed fleet of electric and conventional vehicles. Eur. J. Oper. Res. 2015, 245, 81–99. [Google Scholar] [CrossRef]
- Mehmood, R.; Meriton, R.; Graham, G.; Hennelly, P.; Kumar, M. Exploring the influence of big data on city transport operations: A Markovian approach. Int. J. Oper. Prod. Manag. 2017, 37, 75–104. [Google Scholar] [CrossRef]
- Harrington, T.S.; Singh Srai, J.; Kumar, M.; Wohlrab, J. Identifying design criteria for urban system ‘last-mile’ solutions—A multi-stakeholder perspective. Prod. Plan. Control 2016, 27, 456–476. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Mehmood, R. Enterprise systems and performance of future city logistics. Prod. Plan. Control 2016, 27, 500–513. [Google Scholar] [CrossRef]
- Trott, M.; Baur, N.-F.; der Landwehr, M.A.; Rieck, J.; von Viebahn, C. Evaluating the role of commercial parking bays for urban stakeholders on last-mile deliveries—A consideration of various sustainability aspects. J. Clean. Prod. 2021, 312, 127462. [Google Scholar] [CrossRef]
- Gutierrez-Franco, E.; Mejia-Argueta, C.; Rabelo, L. Data-Driven Methodology to Support Long-Lasting Logistics and Decision Making for Urban Last-Mile Operations. Sustainability 2021, 13, 6230. [Google Scholar] [CrossRef]
- Venus Lun, Y.H.; Lai, K.-h.; Wong, C.W.Y.; Cheng, T.C.E. Greening propensity and performance implications for logistics service providers. Transp. Res. Part E: Logist. Transp. Rev. 2015, 74, 50–62. [Google Scholar] [CrossRef]
- Buldeo Rai, H.; Verlinde, S.; Merckx, J.; Macharis, C. Crowd logistics: An opportunity for more sustainable urban freight transport? Eur. Transp. Res. Rev. 2017, 9, 39. [Google Scholar] [CrossRef]
- Juan, A.; Mendez, C.; Faulin, J.; Armas, J.; de Grasman, S. Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges. Energies 2016, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Mangano, G.; Zenezini, G.; Cagliano, A.C.; de Marco, A. The dynamics of diffusion of an electronic platform supporting City Logistics services. Oper. Manag. Res. 2019, 12, 182–198. [Google Scholar] [CrossRef]
- Sanchez-Diaz, I.; Browne, M. Accommodating urban freight in city planning. Eur. Transp. Res. Rev. 2018, 10, 55. [Google Scholar] [CrossRef]
- Gatta, V.; Marcucci, E.; Nigro, M.; Serafini, S. Sustainable urban freight transport adopting public transport-based crowdshipping for B2C deliveries. Eur. Transp. Res. Rev. 2019, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Sureeyatanapas, P.; Poophiukhok, P.; Pathumnakul, S. Green initiatives for logistics service providers: An investigation of antecedent factors and the contributions to corporate goals. J. Clean. Prod. 2018, 191, 1–14. [Google Scholar] [CrossRef]
- Sallnäs, U.; Björklund, M. Consumers’ influence on the greening of distribution—Exploring the communication between logistics service providers, e-tailers and consumers. Int. J. Retail Distrib. Manag. 2020, 48, 1177–1193. [Google Scholar] [CrossRef]
- Ignat, B.; Chankov, S. Do e-commerce customers change their preferred last-mile delivery based on its sustainability impact? Int. J. Logist. Manag. 2020, 31, 521–548. [Google Scholar] [CrossRef]
- Lin, C.; Choy, K.L.; Ho, G.T.S.; Chung, S.H.; Lam, H.Y. Survey of Green Vehicle Routing Problem: Past and future trends. Expert Syst. Appl. 2014, 41, 1118–1138. [Google Scholar] [CrossRef]
- Celliers, L.; Costa, M.M.; Williams, D.S.; Rosendo, S. The ‘last mile’ for climate data supporting local adaptation. Glob. Sustain. 2021, 4, 1–8. [Google Scholar] [CrossRef]
- Paskannaya, T.; Shaban, G. Innovations in Green Logistics in Smart Cities: USA and EU Experience. Mark. Manag. Innov. 2019, 173–181. [Google Scholar] [CrossRef]
- Xiao, F.; Hu, Z.-H.; Wang, K.-X.; Fu, P.-H. Spatial Distribution of Energy Consumption and Carbon Emission of Regional Logistics. Sustainability 2015, 7, 9140–9159. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Gajpal, Y.; Appadoo, S.S. A meta-heuristic for capacitated green vehicle routing problem. Ann. Oper. Res. 2018, 269, 753–771. [Google Scholar] [CrossRef]
- Roberti, R.; Wen, M. The Electric Traveling Salesman Problem with Time Windows. Transp. Res. Part E Logist. Transp. Rev. 2016, 89, 32–52. [Google Scholar] [CrossRef]
- Ehmke, J.F.; Campbell, A.M.; Thomas, B.W. Vehicle routing to minimize time-dependent emissions in urban areas. Eur. J. Oper. Res. 2016, 251, 478–494. [Google Scholar] [CrossRef]
- Janjevic, M.; Winkenbach, M. Characterizing urban last-mile distribution strategies in mature and emerging e-commerce markets. Transp. Res. Part A Policy Pract. 2020, 133, 164–196. [Google Scholar] [CrossRef]
- Shen, J.-j.; Wang, W. Effects of flashing green on driver’s stop/go decision at signalized intersection. J. Cent. South Univ. 2015, 22, 771–778. [Google Scholar] [CrossRef]
- Klimecka-Tatar, D.; Ingaldi, M.; Obrecht, M. Sustainable Developement in Logistic—A Strategy for Management in Terms of Green Transport. Manag. Syst. Prod. Eng. 2021, 29, 91–96. [Google Scholar] [CrossRef]
- Abbasi, M.; Nilsson, F. Developing environmentally sustainable logistics. Transp. Res. Part D Transp. Environ. 2016, 46, 273–283. [Google Scholar] [CrossRef]
- Dündar, H.; Ömürgönülşen, M.; Soysal, M. A review on sustainable urban vehicle routing. J. Clean. Prod. 2021, 285, 125444. [Google Scholar] [CrossRef]
- Bruzzone, F.; Cavallaro, F.; Nocera, S. The integration of passenger and freight transport for first-last mile operations. Transp. Policy 2021, 100, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Simoni, M.D.; Marcucci, E.; Gatta, V.; Claudel, C.G. Potential last-mile impacts of crowdshipping services: A simulation-based evaluation. Transportation 2020, 47, 1933–1954. [Google Scholar] [CrossRef]
- Jiang, X.; Tang, T.; Sun, L.; Lin, T.; Duan, X.; Guo, X. Research on Consumers’ Preferences for the Self-Service Mode of Express Cabinets in Stations Based on the Subway Distribution to Promote Sustainability. Sustainability 2020, 12, 7212. [Google Scholar] [CrossRef]
- Resat, H.G. Design and Analysis of Novel Hybrid Multi-Objective Optimization Approach for Data-Driven Sustainable Delivery Systems. IEEE Access 2020, 8, 90280–90293. [Google Scholar] [CrossRef]
- Li, H.-C. Optimal delivery strategies considering carbon emissions, time-dependent demands and demand–supply interactions. Eur. J. Oper. Res. 2015, 241, 739–748. [Google Scholar] [CrossRef]
- Lin, J.; Chen, Q.; Kawamura, K. Sustainability SI: Logistics Cost and Environmental Impact Analyses of Urban Delivery Consolidation Strategies. Netw. Spat. Econ. 2016, 16, 227–253. [Google Scholar] [CrossRef]
- Lazarević, D.; Švadlenka, L.; Radojičić, V.; Dobrodolac, M. New Express Delivery Service and Its Impact on CO2 Emissions. Sustainability 2020, 12, 456. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, S.; Jabali, O.; Laporte, G. Charge scheduling for electric freight vehicles. Transp. Res. Part B Methodol. 2018, 115, 246–269. [Google Scholar] [CrossRef]
- Subramaniam, Y. Logistic and environmental quality. Present Environ. Sustain. Dev. 2021, 15, 35–48. [Google Scholar] [CrossRef]
- Martins, L.d.C.; Tordecilla, R.D.; Castaneda, J.; Juan, A.A.; Faulin, J. Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation. Energies 2021, 14, 5131. [Google Scholar] [CrossRef]
- Muñoz-Villamizar, A.; Montoya-Torres, J.R.; Faulin, J. Impact of the use of electric vehicles in collaborative urban transport networks: A case study. Transp. Res. Part D Transp. Environ. 2017, 50, 40–54. [Google Scholar] [CrossRef]
- Pamučar, D.; Gigović, L.; Ćirović, G.; Regodić, M. Transport spatial model for the definition of green routes for city logistics centers. Environ. Impact Assess. Rev. 2016, 56, 72–87. [Google Scholar] [CrossRef]
- Küçükoğlu, İ.; Ene, S.; Aksoy, A.; Öztürk, N. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem. Environ. Sci. Pollut. Res. Int. 2015, 22, 3279–3297. [Google Scholar] [CrossRef] [PubMed]
- Ćirović, G.; Pamučar, D.; Božanić, D. Green logistic vehicle routing problem: Routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert Syst. Appl. 2014, 41, 4245–4258. [Google Scholar] [CrossRef]
- Homayouni, Z.; Pishvaee, M.S.; Jahani, H.; Ivanov, D. A robust-heuristic optimization approach to a green supply chain design with consideration of assorted vehicle types and carbon policies under uncertainty. Ann. Oper. Res. 2021, 1–41. [Google Scholar] [CrossRef]
- Cassiano, D.R.; Bertoncini, B.V.; de Oliveira, L.K. A Conceptual Model Based on the Activity System and Transportation System for Sustainable Urban Freight Transport. Sustainability 2021, 13, 5642. [Google Scholar] [CrossRef]
- Cagliano, A.C.; Carlin, A.; Mangano, G.; Rafele, C. Analyzing the diffusion of eco-friendly vans for urban freight distribution. Int. J. Logist. Manag. 2017, 28, 1218–1242. [Google Scholar] [CrossRef]
- Wüstenhagen, S.; Beckert, P.; Lange, O.; Franze, A. Light Electric Vehicles for Muscle–Battery Electric Mobility in Circular Economy: A Comprehensive Study. Sustainability 2021, 13, 13793. [Google Scholar] [CrossRef]
- Grabenschweiger, J.; Tricoire, F.; Doerner, K.F. Finding the trade-off between emissions and disturbance in an urban context. Flex Serv. Manuf. J. 2018, 30, 554–591. [Google Scholar] [CrossRef]
- Coelho, I.M.; Munhoz, P.L.A.; Ochi, L.S.; Souza, M.J.F.; Bentes, C.; Farias, R. An integrated CPU–GPU heuristic inspired on variable neighbourhood search for the single vehicle routing problem with deliveries and selective pickups. Int. J. Prod. Res. 2016, 54, 945–962. [Google Scholar] [CrossRef]
- Eydi, A.; Alavi, H. Vehicle Routing Problem in Reverse Logistics with Split Demands of Customers and Fuel Consumption Optimization. Arab. J. Sci. Eng. 2019, 44, 2641–2651. [Google Scholar] [CrossRef]
- Soysal, M.; Çimen, M.; Sel, Ç.; Belbağ, S. A heuristic approach for green vehicle routing. RAIRO-Oper. Res. 2021, 55, S2543–S2560. [Google Scholar] [CrossRef]
- Faugère, L.; White, C.; Montreuil, B. Mobile Access Hub Deployment for Urban Parcel Logistics. Sustainability 2020, 12, 7213. [Google Scholar] [CrossRef]
- Mommens, K.; Buldeo Rai, H.; van Lier, T.; Macharis, C. Delivery to homes or collection points? A sustainability analysis for urban, urbanised and rural areas in Belgium. J. Transp. Geogr. 2021, 94, 103095. [Google Scholar] [CrossRef]
- Schneider, M.; Stenger, A.; Goeke, D. The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations. Transp. Sci. 2014, 48, 500–520. [Google Scholar] [CrossRef] [Green Version]
- Moghdani, R.; Salimifard, K.; Demir, E.; Benyettou, A. The green vehicle routing problem: A systematic literature review. J. Clean. Prod. 2021, 279, 123691. [Google Scholar] [CrossRef]
- Wang, J.; Lim, M.K.; Tseng, M.-L.; Yang, Y. Promoting low carbon agenda in the urban logistics network distribution system. J. Clean. Prod. 2019, 211, 146–160. [Google Scholar] [CrossRef]
- Bamwesigye, D.; Hlavackova, P. Analysis of Sustainable Transport for Smart Cities. Sustainability 2019, 11, 2140. [Google Scholar] [CrossRef] [Green Version]
- Melo, S.; Baptista, P. Evaluating the impacts of using cargo cycles on urban logistics: Integrating traffic, environmental and operational boundaries. Eur. Transp. Res. Rev. 2017, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Assmann, T.; Lang, S.; Müller, F.; Schenk, M. Impact Assessment Model for the Implementation of Cargo Bike Transshipment Points in Urban Districts. Sustainability 2020, 12, 4082. [Google Scholar] [CrossRef]
- Sheth, M.; Butrina, P.; Goodchild, A.; McCormack, E. Measuring delivery route cost trade-offs between electric-assist cargo bicycles and delivery trucks in dense urban areas. Eur. Transp. Res. Rev. 2019, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Leyerer, M.; Sonneberg, M.-O.; Heumann, M.; Breitner, M.H. Decision support for sustainable and resilience-oriented urban parcel delivery. EURO J. Decis. Process. 2019, 7, 267–300. [Google Scholar] [CrossRef]
- Xiao, Y.; Konak, A. The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion. Transp. Res. Part E Logist. Transp. Rev. 2016, 88, 146–166. [Google Scholar] [CrossRef]
- Furquim, T.S.G.; de Oliveira, R.L.M.; Vieira, J.G.V. Retailers and carriers’ viewpoint on Sorocaba’s city logistics: A spatial analysis. Urbe Rev. Bras. Gest. Urbana 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.; Holguín-Veras, J.; Ramirez-Rios, D.G.; González-Calderón, C.; Kalahasthi, L.; Wojtowicz, J. Freight and service parking needs and the role of demand management. Eur. Transp. Res. Rev. 2018, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Patella, S.M.; Grazieschi, G.; Gatta, V.; Marcucci, E.; Carrese, S. The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review. Sustainability 2021, 13, 6. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, J.X.; Farooque, M.; Wang, Y.; Choi, T.-M. Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research. Transp. Res. Part E Logist. Transp. Rev. 2021, 155, 102509. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Yu, Z.; Golpira, H.; Sharif, A.; Mardani, A. A state-of-the-art review and meta-analysis on sustainable supply chain management: Future research directions. J. Clean. Prod. 2021, 278, 123357. [Google Scholar] [CrossRef]
- Mustafee, N.; Katsaliaki, K.; Taylor, S.J.E. Distributed Approaches to Supply Chain Simulation. ACM Trans. Model. Comput. Simul. 2021, 31, 1–31. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, M.; Wu, W. Visualizing Sustainable Supply Chain Management: A Systematic Scientometric Review. Sustainability 2021, 13, 4409. [Google Scholar] [CrossRef]
Type | Criteria | Rationale |
---|---|---|
Inclusion | Title, abstract and keywords serve as indices for a paper with a research focus on last-mile logistics in urban areas. | There is no limitation to certain journals. Due to the interdisciplinary topic, journals from other Subject area may also be important. However, it must be evident that the paper clearly focuses on the last mile in urban areas with goods transport. |
Focusing on the transport of goods. | The digital trade has greatly increased the movement of goods in urban areas. At the same time climate change makes it necessary to call for sustainable supply systems. | |
Articles must be written in English. | English is the main language in the academic world, also in logistics research. | |
Articles are published in peer-reviewed journals. | These papers are subject to an audited quality level. | |
Exclusion | Studies focusing on humanitarian logistics, tourism, shipping, feeder services, public transport, passenger transport, hospital, crisis management, agriculture, food, telecommunications network, and pure engineering for efficiency of the drive types | This review is focused on the design and the transport of goods in urban areas. |
Web of Science | TOPIC: (Last Mile) AND TOPIC: (Sustainability Last Mile) OR TOPIC: (Green Vehicle) OR TOPIC: (Green Logistic) OR TOPIC: (Urban fright Transport) OR TOPIC: (Smart Cities) AND NOT TOPIC: (Public) NOT TOPIC: (Passenger) YEAR PUBLISHED: (2014–2021) AND LANGUAGE: (English) |
Sustainable Dimension | Number of Papers (N = 87) |
---|---|
Environmental | 53 |
Social | 5 |
Mixed variant | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauenstein, S.; Schank, C. Design of a Sustainable Last Mile in Urban Logistics—A Systematic Literature Review. Sustainability 2022, 14, 5501. https://doi.org/10.3390/su14095501
Lauenstein S, Schank C. Design of a Sustainable Last Mile in Urban Logistics—A Systematic Literature Review. Sustainability. 2022; 14(9):5501. https://doi.org/10.3390/su14095501
Chicago/Turabian StyleLauenstein, Sören, and Christoph Schank. 2022. "Design of a Sustainable Last Mile in Urban Logistics—A Systematic Literature Review" Sustainability 14, no. 9: 5501. https://doi.org/10.3390/su14095501
APA StyleLauenstein, S., & Schank, C. (2022). Design of a Sustainable Last Mile in Urban Logistics—A Systematic Literature Review. Sustainability, 14(9), 5501. https://doi.org/10.3390/su14095501