Study on Properties of Copper-Contaminated Soil Solidified by Solid Waste System Combined with Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Scheme Design
2.3. Specimen Praparation
2.4. Test Contents and Methods
3. Results
3.1. Basic Engineering Indexes
3.1.1. Unconfined Compressive Strength
3.1.2. Permeability Coefficient
3.1.3. Electrical Resistivity
3.2. Environmental Safety Evaluation Index
3.2.1. PH of Solidified Soil
3.2.2. Leaching Toxicity
3.2.3. Heavy Metal Speciation
3.3. Material Characterization
3.3.1. XRD
3.3.2. FTIR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, S.; Wei, C.; Fan, X.; Liu, J.; Wu, L. Review and Prospects of Bioleaching in the Chinese Mining Industry. Int. J. Miner. Metall. Mater. 2021, 28, 1397–1412. [Google Scholar] [CrossRef]
- Yu, L.; Fang, L.; Zhang, P.; Zhao, S.; Jiao, B.; Li, D. The Utilization of Alkali-Activated Lead–Zinc Smelting Slag for Chromite Ore Processing Residue Solidification/Stabilization. Int. J. Environ. Res. Public Health 2021, 18, 9960. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wu, X.; Cai, Y.; Ding, Y.; Wang, Z. Strength and Leaching Characteristics of Magnesium Phosphate Cement-Solidified Zinc- Contaminated Soil under the Effect of Acid Rain. Soil Sediment Contam. 2018, 27, 161–174. [Google Scholar] [CrossRef]
- Piri, M.; Sepehr, E.; Samadi, A.; Farhadi, K.H.; Alizadeh, M. Contaminated Soil Amendment by Diatomite: Chemical Fractions of Zinc, Lead, Copper and Cadmium. Int. J. Environ. Sci. Technol. 2021, 18, 1191–1200. [Google Scholar] [CrossRef]
- Choi, B.; Lee, S.; Jho, E.H. Removal of TPH, UCM, PAHs, and Alk-PAHs in Oil-Contaminated Soil by Thermal Desorption. Appl. Biol. Chem. 2020, 63, 83. [Google Scholar] [CrossRef]
- Tang, H.; Shu, X.; Huang, W.; Miao, Y.; Shi, M.; Chen, S.; Li, B.; Luo, F.; Xie, Y.; Shao, D.; et al. Rapid Solidification of Sr-Contaminated Soil by Consecutive Microwave Sintering: Mechanism and Stability Evaluation. J. Hazard. Mater. 2021, 407, 124761. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, S.; Chen, M.; Lu, H.; Chen, Y.; Shi, L. Recycling of Chemical Eluent and Soil Improvement after Leaching. Bull. Environ. Contam. Toxicol. 2020, 104, 128–133. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, L.; Guo, K.; Xie, J.; Shu, Y.; He, S.; Xiao, F. Progress of Uranium-Contaminated Soil Bioremediation Technology. J. Environ. Radioact. 2022, 241, 106773. [Google Scholar] [CrossRef]
- Ghazaryan, K.A.; Movsesyan, H.S.; Minkina, T.M.; Nevidomskaya, D.G.; Rajput, V.D. Phytoremediation of Copper-Contaminated Soil by Artemisia Absinthium: Comparative Effect of Chelating Agents. Environ. Geochem. Health 2022, 44, 1203–1215. [Google Scholar] [CrossRef]
- Contessi, S.; Dalconi, M.C.; Pollastri, S.; Calgaro, L.; Meneghini, C.; Ferrari, G.; Marcomini, A.; Artioli, G. Cement-Stabilized Contaminated Soil: Understanding Pb Retention with XANES and Raman Spectroscopy. Sci. Total Environ. 2021, 752, 141826. [Google Scholar] [CrossRef]
- Zhu, Z.; Pu, S.; Zhang, J.; Wan, Y.; Song, W.; Wang, H. Water Resistance and Compressibility of Silt Solidified with Lime and Fly-Ash Mixtures. Environ. Earth Sci. 2021, 80, 1–14. [Google Scholar] [CrossRef]
- Contessi, S.; Calgaro, L.; Dalconi, M.C.; Bonetto, A.; Bellotto, M.P.; Ferrari, G.; Marcomini, A.; Artioli, G. Stabilization of Lead Contaminated Soil with Traditional and Alternative Binders. J. Hazard. Mater. 2020, 382, 120990. [Google Scholar] [CrossRef] [PubMed]
- Verma, Y.; Mazumdar, B.; Ghosh, P. Dataset on the Electrical Energy Consumption and Its Conservation in the Cement Manufacturing Industry. Data Br. 2020, 28, 104967. [Google Scholar] [CrossRef] [PubMed]
- Swain, B.; Akcil, A.; Lee, J.-c. Red Mud Valorization an Industrial Waste Circular Economy Challenge; Review over Processes and Their Chemistry. Crit. Rev. Environ. Sci. Technol. 2022, 52, 520–570. [Google Scholar] [CrossRef]
- Archambo, M.; Kawatra, S.K. Red Mud: Fundamentals and New Avenues for Utilization. Miner. Process. Extr. Metall. Rev. 2021, 42, 427–450. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Zhang, Y.; Zhao, Q.; Li, W.; Zhu, Y. Steel Slag–Red Mud-Based Multi-Solid Waste Pavement Base Material: Preparation, Properties and Microstructure Study. JOM 2022, 74, 429–438. [Google Scholar] [CrossRef]
- Qaidi, S.M.A.; Tayeh, B.A.; Isleem, H.F.; de Azevedo, A.R.G.; Ahmed, H.U.; Emad, W. Sustainable Utilization of Red Mud Waste (Bauxite Residue) and Slag for the Production of Geopolymer Composites: A Review. Case Stud. Constr. Mater. 2022, 16, e00994. [Google Scholar] [CrossRef]
- Mukiza, E.; Liu, X.; Zhang, L.; Zhang, N. Preparation and Characterization of a Red Mud-Based Road Base Material: Strength Formation Mechanism and Leaching Characteristics. Constr. Build. Mater. 2019, 220, 297–307. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xu, Y.; Tang, B.; Wang, Y.; Mukiza, E. Synergic Effects of Electrolytic Manganese Residue-Red Mud-Carbide Slag on the Road Base Strength and Durability Properties. Constr. Build. Mater. 2019, 220, 364–374. [Google Scholar] [CrossRef]
- Suo, C.; Yao, X.; Song, Z.; Dong, X. Mechanical and Leaching Characteristics of Red Mud Residue Solidified/Stabilized High Cu(II)-Contaminated Soil. Environ. Earth Sci. 2022, 81, 1–11. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, K.; He, X. Characteristics and Mechanism of Adsorption of Tartaric Acid by Carbide Slag Ascertained and Applied to Prepare a Binder. J. Clean. Prod. 2022, 337, 130477. [Google Scholar] [CrossRef]
- Kou, R.; Guo, M.Z.; Han, L.; Li, J.S.; Li, B.; Chu, H.; Jiang, L.; Wang, L.; Jin, W.; Sun Poon, C. Recycling Sediment, Calcium Carbide Slag and Ground Granulated Blast-Furnace Slag into Novel and Sustainable Cementitious Binder for Production of Eco-Friendly Mortar. Constr. Build. Mater. 2021, 305, 124772. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, H.; He, X.; Yang, W.; Deng, X. Utilization of Carbide Slag-Granulated Blast Furnace Slag System by Wet Grinding as Low Carbon Cementitious Materials. Constr. Build. Mater. 2020, 249, 118763. [Google Scholar] [CrossRef]
- Suo, C.; Fang, P.; Cao, H.; Cao, J.; Liu, K.; Dong, X. Influence and Microscopic Mechanism of the Solid Waste-Mixture on Solidification of Cu2+-Contaminated Soil. Constr. Build. Mater. 2021, 305, 124651. [Google Scholar] [CrossRef]
- Sun, Y.J.; Ma, J.; Chen, Y.G.; Tan, B.H.; Cheng, W.J. Mechanical Behavior of Copper-Contaminated Soil Solidified/Stabilized with Carbide Slag and Metakaolin. Environ. Earth Sci. 2020, 79, 1–13. [Google Scholar] [CrossRef]
- Wang, F.; Pan, H.; Xu, J. Evaluation of red mud based binder for the immobilization of copper, lead and zinc. Environ. Pollut. 2020, 263, 114416. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zeng, J.; He, X.; Zhang, Y.; Su, Y.; Tan, H. Sustainable Clinker-Free Solid Waste Binder Produced from Wet-Ground Granulated Blast-Furnace Slag, Phosphogypsum and Carbide Slag. Constr. Build. Mater. 2022, 330, 127218. [Google Scholar] [CrossRef]
- Wang, M.; Li, S.; Li, X.; Zhao, Z.; Chen, S. An overview of current status of copper pollution in soil and remediation efforts in China. Earth Sci. Front. 2018, 25, 305–313. [Google Scholar]
- Duan, W.; Congress, S.S.C.; Cai, G.; Liu, S.; Dong, X.; Chen, R.; Liu, X. A Hybrid GMDH Neural Network and Logistic Regression Framework for State Parameter–Based Liquefaction Evaluation. Can. Geotech. J. 2021, 58, 1801–1811. [Google Scholar] [CrossRef]
- JTG E51-2009; Test Methods of Materials Stabilized with Inorganic Binders of Highway Engineering. China Communications Press: Beijing, China, 2009.
- Zhang, S.; LI, Y.; Kou, X.; Dong, X. Study of electrical resistivity and strength characteristics of zinc contaminated soil solidified by cement. Rock Soil Mech. 2015, 36, 2899–2906. [Google Scholar] [CrossRef]
- HJ/T299-2007; Solid Waste-Extraction Procedure for Leaching Toxicity-Sulphuric Acid & Nitric Acid Method. China Environmental Science Press: Beijing, China, 2007.
- GB5085.1-2007; Identification Standards for Hazardous Wastes-Identification for Corrosivity. China Environmental Science Press: Beijing, China, 2007.
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Sun, H.; Li, Z.; Bai, J.; Memon, S.; Dong, B.; Fang, Y.; Xu, W.; Xing, F. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties. Materials 2015, 8, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-Blasco, I.; Duran, A.; Sirera, R.; Fernández, J.M.; Alvarez, J.I. Solidification/stabilization of toxic metals in calcium aluminate cement matrices. J. Hazard. Mater. 2013, 260, 89–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duran, A.; Sirera, R.; Pérez-Nicolás, M.; Navarro-Blasco, I.; Fernández, J.M.; Alvarez, J.I. Study of the early hydration of calcium aluminates in the presence of different metallic salts. Cem. Concr. Res. 2016, 81, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Du, Y.; Reddy, K.R.; Wu, H. Effects of Freeze-Thaw on Characteristics of New KMP Binder Stabilized Zn- and Pb-Contaminated Soils. Environ. Sci. Pollut. Res. 2015, 22, 19473–19484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, M.; Yang, J.; Cui, J.; Zhou, W.; Guo, X. Study on mechanical and permeability characteristics of nickel-copper-contaminated soil solidified by CFG. Environ. Sci. Pollut. Res. 2020, 27, 18577–18591. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Li, D.; Li, X.; Liu, X. Influence of Freeze–Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils. Int. J. Environ. Res. Public Health 2020, 17, 1077. [Google Scholar] [CrossRef] [Green Version]
- Zha, F.; Liu, J.; Xu, L.; Deng, Y.; Yang, C.; Chu, C. Electrical resistivity of heavy metal contaminated soils solidified/stabilized with cement-fly ash. Rock Soil Mech. 2019, 40, 4573–4580. [Google Scholar] [CrossRef]
- Liu, J.; Zha, F.; Deng, Y.; Cui, K.; Zhang, X. Effect of an alkaline environment on the engineering behavior of cement-stabilized/solidified Zn-contaminated soils. Environ. Sci. Pollut. Res. 2017, 24, 28248–28257. [Google Scholar] [CrossRef]
- Chu, Y.; Liu, S.; Wang, F.; Cai, G.; Bian, H. Estimation of heavy metal-contaminated soils’ mechanical characteristics using electrical resistivity. Environ. Sci. Pollut. Res. 2017, 24, 13561–13575. [Google Scholar] [CrossRef]
- Jiang, N.; Du, Y.; Liu, S.; Wei, M.; Horpibulsuk, S.; Arulrajah, A. Multi-scale laboratory evaluation of the physical, mechanical, and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue. Can. Geotech. J. 2016, 53, 373–383. [Google Scholar] [CrossRef] [Green Version]
- GB5085.3-2007; Identification Standards for Hazardous Wastes-Identification for Extraction Toxicity. China Environmental Science Press: Beijing, China, 2007.
- Bauer, T.V.; Pinskii, D.L.; Minkina, T.M.; Shuvaeva, V.A.; Soldatov, A.V.; Mandzhieva, S.S.; Tsitsuashvili, V.S.; Nevidomskaya, D.G.; Semenkov, I.N. Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils. Environ. Geochem. Health 2022, 44, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Muhammad, F.; Yu, L.; Xia, M.; Huang, X.; Jiao, B.; Shiau, Y.; Li, D. The solidification of lead-zinc smelting slag through bentonite supported alkali-activated slag cementitious material. Int. J. Environ. Res. Public Health 2019, 16, 1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, X.; Li, Z.; Ren, Y.; Wang, Y.; Zhang, W. Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials. J. Clean. Prod. 2021, 284, 124777. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xu, Y.; Tang, B.; Wang, Y.; Mukiza, E. Preparation and characterization of cement treated road base material utilizing electrolytic manganese residue. J. Clean. Prod. 2019, 232, 980–992. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, W.; Wang, X.; Pan, H.; Zhao, Q.; Wang, D. Utilization of Municipal Solid Waste Incineration Fly Ash with Red Mud-Carbide Slag for Eco-Friendly Geopolymer Preparation. J. Clean. Prod. 2022, 340, 130820. [Google Scholar] [CrossRef]
- Heah, C.Y.; Kamarudin, H.; Mustafa Al Bakri, A.M.; Bnhussain, M.; Luqman, M.; Khairul Nizar, I.; Ruzaidi, C.M.; Liew, Y.M. Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr. Build. Mater. 2012, 35, 912–922. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Sun, H.; Li, L. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: Properties and hydration characteristics. J. Hazard. Mater. 2011, 185, 329–335. [Google Scholar] [CrossRef]
- El-Eswed, B.I.; Aldagag, O.M.; Khalili, F.I. Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Appl. Clay Sci. 2017, 140, 148–156. [Google Scholar] [CrossRef]
- Wang, Y.; Han, F.; Mu, J. Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Constr. Build. Mater. 2018, 160, 818–827. [Google Scholar] [CrossRef]
- Xia, M.; Muhammad, F.; Zeng, L.; Li, S.; Huang, X.; Jiao, B.; Shiau, Y.C.; Li, D. Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. J. Clean. Prod. 2019, 209, 1206–1215. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan Nejad, Z.; Jung, M.C.; Kim, K.H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health 2018, 40, 927–953. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chang, C.W.; Namdar, A.; She, Y.; Lin, C.H.; Yuan, X.; Yang, Q. Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Constr. Build. Mater. 2019, 221, 1–11. [Google Scholar] [CrossRef]
157.57 | 95.74 | 0 | 219.60 | 168.25 | 177.25 |
Material | Al2O3 | CaO | Fe2O3 | K2O | MgO | Na2O | SO3 | SiO2 |
---|---|---|---|---|---|---|---|---|
Loess | 6.02 | 7.84 | 2.75 | 1.62 | 1.72 | 1.38 | 0.22 | 54.78 |
Cement | 5.01 | 44.63 | 2.43 | 0.66 | 1.65 | 0.11 | 2.94 | 37.06 |
Red mud | 24.34 | 18.26 | 9.40 | 0.64 | 1.26 | 9.61 | 0.19 | 20.17 |
Carbide slag | 1.15 | 64.52 | 0.21 | 0.25 | 3.05 | |||
Phosphogypsum | 0.06 | 14.48 | 0.27 | 0.19 | 0.13 | 0.08 | 46.25 | 19.62 |
Ratio | Curing Age/d | Scheme | |||||
---|---|---|---|---|---|---|---|
P4.5R3 | P5.5R2 | P6.5R1 | P9R6 | P11R4 | P13R2 | ||
7 | 0.17 | 0.26 | 0.17 | 0.33 | 0.25 | 0.52 | |
14 | 0.18 | 0.24 | 0.17 | 0.48 | 0.34 | 0.50 | |
28 | 0.20 | 0.26 | 0.24 | 0.48 | 0.39 | 0.64 |
Samples | Exchangeable Form | Carbonate Form | Fe–Mn Oxide Form | Organic Form | Residual Form | Sum |
---|---|---|---|---|---|---|
Unsolidified | 462.19 | 9407.39 | 771.634 | 107.34 | 53.45 | 10802 |
RCP1%7d | 32.17 | 6585.67 | 1383.30 | 8.27 | 165.62 | 8175 |
RCP1%28d | 23.99 | 6563.98 | 1612.72 | 12.10 | 370.19 | 8583 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, L.; Zhang, J.; Fang, P.; Suo, C. Study on Properties of Copper-Contaminated Soil Solidified by Solid Waste System Combined with Cement. Sustainability 2022, 14, 5604. https://doi.org/10.3390/su14095604
Liang L, Zhang J, Fang P, Suo C. Study on Properties of Copper-Contaminated Soil Solidified by Solid Waste System Combined with Cement. Sustainability. 2022; 14(9):5604. https://doi.org/10.3390/su14095604
Chicago/Turabian StyleLiang, Lisheng, Jieya Zhang, Peiying Fang, and Chongxian Suo. 2022. "Study on Properties of Copper-Contaminated Soil Solidified by Solid Waste System Combined with Cement" Sustainability 14, no. 9: 5604. https://doi.org/10.3390/su14095604
APA StyleLiang, L., Zhang, J., Fang, P., & Suo, C. (2022). Study on Properties of Copper-Contaminated Soil Solidified by Solid Waste System Combined with Cement. Sustainability, 14(9), 5604. https://doi.org/10.3390/su14095604