Changes of Water Vapor Budget over East Asia in Response to 4xCO2 Concentration Forcing
Abstract
:1. Introduction
2. Data and Methodology
2.1. CMIP6 Simulation Data
2.2. Methodology
3. Results
3.1. Changes of Precipitation, Evaporation and Water Vapor
3.2. Diagnosis of Water Vapor Budget
3.3. Changes of Atmospheric Circulations
3.4. Interdecadal Change of Water Vapor Budget
3.5. Comparison with Multi-Model Results
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller, C.J.; Back, L.E.; O’Gorman, P.A.; Emanuel, K.A. A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett. 2009, 36, L16804. [Google Scholar] [CrossRef]
- Betts, A.K. Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J. Geophys. Res. Atmos. 2007, 112, D10108. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhou, T.; Zhang, L.; Chen, X.; Zhang, W.; Jiang, J. Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett. 2020, 47, e2019GL086902. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Li, T.; Ding, Y.; Hu, T. Future changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5 °C of warming. Earths Future 2019, 7, 1391–1406. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Huang, G.; Huang, P. Changes in the East Asian summer monsoon rainfall under global warming: Moisture budget decompositions and the sources of uncertainty. Climate Dyn. 2018, 51, 1363–1373. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, G.; Huang, P. Inter-model spread of the changes in the East Asian summer monsoon system in CMIP5/6 models. J. Geophys. Res. Atmos. 2020, 12, 2020JD033016. [Google Scholar] [CrossRef]
- Chou, C.; Neelin, J.D.; Chen, C.A.; Tu, J.Y. Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming. J. Clim. 2009, 22, 1982–2005. [Google Scholar] [CrossRef]
- Huang, R.H.; Zhang, Z.Z.; Huang, G.; Ren, B.H. Characteristics of the Water Vapor Transport in East Asian Monsoon Region and Its Difference from that in South Asian Monsoon Region in Summer. Chin. J. Atmos. Sci. 1998, 22, 460–469. [Google Scholar]
- Hori, M.E.; Nohara, D.; Tanaka, H.L. Influence of Arctic Oscillation towards the Northern Hemisphere surface temperature variability under the global warming scenario. J. Meteor. Soc. Japan 2007, 85, 847–859. [Google Scholar] [CrossRef] [Green Version]
- Li, H.M.; Dai, A.G.; Zhou, T.J.; Lu, J. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Clim. Dyn. 2010, 34, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.W.; Wang, B.; Qian, W.H.; Zhang, B. Recent weakening of northern East Asian summer monsoon: A possible response to global warming. Geophys. Res. Lett. 2012, 39, L09701. [Google Scholar] [CrossRef]
- Gong, D.Y.; Ho, C.H. The Siberian High and climate change over middle to high latitude Asia. Theor. Appl. Climatol. 2002, 72, 1–9. [Google Scholar] [CrossRef]
- Hu, Z.Z. Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. J. Geophys. Res. Atmos. 1997, 102, 19403–19412. [Google Scholar] [CrossRef]
- Wang, J.; Gaffen, D.J. Trends in extremes of surface humidity, temperature, and summertime heat stress in China. Adv. Atmos. Sci. 2001, 18, 742–751. [Google Scholar] [CrossRef]
- Yu, R.C.; Wang, B.; Zhou, T.J. Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys. Res. Lett. 2004, 31, L22212. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Yang, X. Relationships between pacific decadal oscillation (PDO) and climate variabilities in China. J. Meteor. Res. 2003, 61, 641–654. [Google Scholar]
- Dore, M.H.I. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef]
- Zhang, L.X.; Zhou, T.J. Drought over East Asia: A Review. J. Clim. 2015, 2, 3375–3399. [Google Scholar] [CrossRef]
- Jiang, T.; Shi, Y. Global climatic warming, the Yangtze floods and potential loss. Adv. Earth Sci. 2003, 18, 277–284. [Google Scholar]
- Guo, D.; Gao, Y.Q.; Bethke, I.; Gong, D.Y.; Johannessen, O.M.; Wang, H.J. Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon. Theor. Appl. Climatol. 2014, 115, 107–119. [Google Scholar] [CrossRef]
- Wu, B.Y.; Zhang, R.H.; Wang, B.; D’Arrigo, R. On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys. Res. Lett. 2009, 36, L09501. [Google Scholar] [CrossRef]
- Wu, B.Y.; Li, Z.K. Possible impacts of anomalous Arctic sea ice melting on summer atmosphere. Int. J. Climatol. 2022, 42, 1818–1827. [Google Scholar] [CrossRef]
- IPCC. IPCC Sixth Assessment Report. Working Group 1: The Physical Science Basis. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 15 December 2022).
- Liu, H.W.; Zhou, T.J.; Zhu, Y.X.; Lin, Y.H. The strengthening East Asia summer monsoon since the early 1990s. Chin. Sci. Bull. 2012, 57, 1553–1558. [Google Scholar] [CrossRef]
- Wang, T.; Miao, J.P.; Sun, J.Q.; Fu, Y.H. Intensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 degrees C global warming target. Adv. Clim. Chang. Res. 2018, 9, 102–111. [Google Scholar] [CrossRef]
- Zhou, T.J.; Yu, R.C.; Zhang, X.H.; Yu, Y.Q.; Li, W.; Liu, H.L.; Liu, X.Y. Features of Atmospheric Moisture Transport, Convergence and Air-Sea Freshwater Flux Simulated by the Coupled Climate Models. Chin. J. Atmos. Sci. 2001, 25, 596–608. [Google Scholar]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Dai, A.G.; Fyfe, J.C.; Xie, S.P.; Dai, X.G. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 2015, 5, 555–559. [Google Scholar] [CrossRef]
- Liu, W.; Xie, S.P. An Ocean View of the Global Surface Warming Hiatus. Oceanography 2018, 31, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Q.; Sun, X.G.; Yang, X.Q. Understanding the Interdecadal Variability of East Asian Summer Monsoon Precipitation: Joint Influence of Three Oceanic Signals. J. Clim. 2018, 31, 5485–5506. [Google Scholar] [CrossRef]
- Danabasoglu, G.; Lamarque, J.F.; Bacmeister, J.; Bailey, D.A.; DuVivier, A.K.; Edwards, J.; Emmons, L.K.; Fasullo, J.; Garcia, R.; Gettelman, A.; et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 2020, 12, MS001916. [Google Scholar] [CrossRef] [Green Version]
- Ge, F.; Zhu, S.P.; Luo, H.L.; Zhi, X.F.; Wang, H. Future changes in precipitation extremes over Southeast Asia: Insights from CMIP6 multi-model ensemble. Environ. Res. Lett. 2021, 16, 024013. [Google Scholar] [CrossRef]
- Ma, Y.L.; Yuan, N.M.; Dong, T.Y.; Dong, W.J. On the Pacific Decadal Oscillation Simulations in CMIP6 Models: A New Test-Bed from Climate Network Analysis. Asia-Pac. J. Atmos. Sci. 2022. Available online: https://link.springer.com/articledoi.org/10.1007/s13143-022-00286-1 (accessed on 18 August 2022).
- Coburn, J.; Pryor, S.C. Differential credibility of climate modes in CMIP6. J. Clim. 2021, 34, 8145–8164. [Google Scholar] [CrossRef]
- Ha, K.J.; Moon, S.; Timmermann, A.; Kim, D. Future Changes of Summer Monsoon Characteristics and Evaporative Demand Over Asia in CMIP6 Simulations. Geophys. Res. Lett. 2020, 47, GL087492. [Google Scholar] [CrossRef]
- Jiang, D.B.; Hu, D.; Tian, Z.P.; Lang, X.M. Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Xin, X.G.; Wu, T.W.; Zhang, J.; Yao, J.C.; Fang, Y.J. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Cox, P.M.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P.; Collins, W.D.; Gier, B.K.; Hall, A.D.; Hoffman, F.M.; et al. Taking climate model evaluation to the next level. Nat. Clim. Change 2019, 9, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Seager, R.; Naik, N.; Vecchi, G.A. Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming. J. Clim. 2010, 23, 4651–4668. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Mingkui, C.A.O.; Bo, T.A.O.; Kerang, L.I. The characteristics of spatio-temporal patterns in precipitation in China under the background of global climate change. Geogr. Res. 2006, 25, 1031–1040. [Google Scholar]
- Ding, Y.H.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Zhou, T.J.; Yu, R.C. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. 2005, 110, D08104. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Volume 15, pp. 1217–1308. [Google Scholar]
- Yang, J.; Ding, Y.; Chen, R.; Liu, L. Variations of Precipitation and Evaporation in North China in Recent 40Years. J. Arid Land Res. Environ. 2003, 17, 6–11. [Google Scholar]
- Comiso, J.C.; Hall, D.K. Climate trends in the Arctic as observed from space. WIREs Clim. Chang. 2014, 5, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Li, W.; Li, W. Causes of Arctic Amplification: A Review. Adv. Earth Sci. 2019, 34, 232–242. [Google Scholar] [CrossRef]
- Ma, S.M.; Zhu, C.W. Extreme Cold Wave over East Asia in January 2016: A Possible Response to the Larger Internal Atmospheric Variability Induced by Arctic Warming. J. Clim. 2019, 32, 1203–1216. [Google Scholar] [CrossRef]
- Zhang, X.D.; Lu, C.H.; Guan, Z.Y. Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia. Environ. Res. Lett. 2012, 7, 044044. [Google Scholar] [CrossRef]
- Cane, M.A.; Clement, A.C.; Kaplan, A.; Kushnir, Y.; Pozdnyakov, D.; Seager, R.; Zebiak, S.E.; Murtugudde, R. Twentieth-Century Sea Surface Temperature Trends. Science 1997, 275, 957–960. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Sun, X.; Yan, Y.; Feng, W.; Huang, F.; Yang, X.Q. Change of ENSO characteristics in response to global warming. Chin. Sci. Bull. 2017, 62, 1738–1751. [Google Scholar] [CrossRef]
- Gill, A.E. Some simple solutions for heat-induced tropical circulation. Quart. J. R. Met. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Kosaka, Y. Slow warming and the ocean see-saw. Nat. Geosci. 2018, 11, 12–13. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: The Scientific Basis. In Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; Volume 12, pp. 697–738. [Google Scholar]
- Fang, C.; Wu, L.; Zhang, X. The impact of global warming on the pacific decadal oscillation and the possible mechanism. Adv. Atmos. Sci. 2013, 31, 118–130. [Google Scholar] [CrossRef]
- Kattel, G.R.; Shang, W.X.; Wang, Z.J.; Langford, J. China’s South-to-North Water Diversion Project Empowers Sustainable Water Resources System in the North. Sustainability 2019, 11, 3735. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, M.; Webber, M.; Zhou, C.T.; Zhang, W.J. Alternative water supply solutions: China’s South-to-North-water-diversion in Jinan. J. Environ. Manag. 2020, 276, 111337. [Google Scholar] [CrossRef]
Model Name | Institute | Atmospheric Resolution lon × lat | △T/°C | |
---|---|---|---|---|
MME | \ | \ | 5.4129 | |
CESM2 | NCAR (USA) | 288 | 192 | 7.1264 |
CESM2-WACCM | NCAR (USA) | 288 | 192 | 6.2819 |
MPI-ESM1-2-LR | MPI (Germany) | 192 | 96 | 4.3695 |
CESM2-FV2 | NCAR (USA) | 144 | 96 | 5.3989 |
CESM2-WACCM-FV2 | NCAR (USA) | 144 | 96 | 5.1820 |
GISS-E2-1-G | NASA(USA) | 144 | 90 | 3.9463 |
HadGEM3-GC31-MM | MOHC (UK) | 432 | 325 | 7.4596 |
MRI-ESM2-0 | MIROC (Japan) | 320 | 160 | 4.5636 |
ACCESS-CM2 | CSIRO (Australia) | 192 | 145 | 6.4127 |
CIESM | THU(China) | 288 | 192 | 7.7117 |
CanESM5 | CCCMA(Canada) | 128 | 64 | 7.4240 |
KIOST-ESM | KIOST(Korea) | 192 | 96 | 4.2120 |
HadGEM3-GC31-LL | MOHC (UK) | 192 | 145 | 7.5954 |
NESM3 | NUIST(China) | 192 | 96 | 6.4709 |
CMCC-ESM2 | CMCC(Italy) | 288 | 192 | 5.7749 |
UKESM1-0-LL | MOHC (UK) | 192 | 145 | 7.3271 |
SAM0-UNICON | SNU(Korea) | 288 | 192 | 4.0375 |
MPI-ESM-1-2-HAM | MPI-M(Germany) | 192 | 96 | 3.6496 |
INM-CM4-8 | INM(Russia) | 180 | 120 | 3.3066 |
IPSL-CM6A-LR | IPSL(France) | 144 | 143 | 6.9031 |
MCM-UA-1-0 | UA(USA) | 96 | 80 | 5.0268 |
BCC-ESM1 | BCC(China) | 128 | 64 | 4.6847 |
CAMS-CSM1-0 | CAMS(China) | 320 | 160 | 3.8605 |
CNRM-ESM2-1 | CNRM(France) | 256 | 128 | 5.9369 |
CAS-ESM2-0 | CAS(China) | 256 | 128 | 5.2790 |
CNRM-CERFACS | CNRM(France) | 256 | 128 | 6.3996 |
MIROC6 | MIROC (Japan) | 256 | 128 | 3.6391 |
FGOALS-g3 | CAS(China) | 180 | 80 | 3.1859 |
MIROC-ES2L | MIROC (Japan) | 128 | 64 | 3.8070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Xu, T.; Liu, G.; Sun, X.; Yang, X.-Q. Changes of Water Vapor Budget over East Asia in Response to 4xCO2 Concentration Forcing. Sustainability 2023, 15, 313. https://doi.org/10.3390/su15010313
Shen Z, Xu T, Liu G, Sun X, Yang X-Q. Changes of Water Vapor Budget over East Asia in Response to 4xCO2 Concentration Forcing. Sustainability. 2023; 15(1):313. https://doi.org/10.3390/su15010313
Chicago/Turabian StyleShen, Zhengqin, Tao Xu, Guanyu Liu, Xuguang Sun, and Xiu-Qun Yang. 2023. "Changes of Water Vapor Budget over East Asia in Response to 4xCO2 Concentration Forcing" Sustainability 15, no. 1: 313. https://doi.org/10.3390/su15010313
APA StyleShen, Z., Xu, T., Liu, G., Sun, X., & Yang, X. -Q. (2023). Changes of Water Vapor Budget over East Asia in Response to 4xCO2 Concentration Forcing. Sustainability, 15(1), 313. https://doi.org/10.3390/su15010313