An Intelligent Recommendation for Intelligently Accessible Charging Stations: Electronic Vehicle Charging to Support a Sustainable Smart Tourism City
Abstract
:1. Introduction
2. Literature Review
2.1. Electric Vehicles (EVs)
2.2. Trend of Using EVs
2.3. Elctric Vehicle Charging Station Recommendation Systems
2.4. Development of Electric Vehicles in Smart Tourism Cities
2.5. Spatio-Temporal Multi-Agent Reinforcement Learning (STMARL) (Master)
2.6. Smart Tourism City
3. Methodology
3.1. Electric Vehicles (EVs) in Thailand
3.2. Research Framework
4. Results
4.1. Overall Performance
4.2. Implication of EVCs
4.3. User’s Evalutuion of EVCs
5. Conclusions & Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sedano, J.; Chira, C.; Villar, J.R.; Ambel, E.M. An intelligent route management system for electric vehicle charging. Integr. Comput.-Aided Eng. 2013, 20, 321–333. [Google Scholar] [CrossRef]
- Kim, N.; Kim, J.C.D.; Lee, B. Adaptive loss reduction charging strategy considering variation of internal impedance of lithium-ion polymer batteries in electric vehicle charging systems. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 1273–1279. [Google Scholar] [CrossRef]
- Brenna, M.; Foiadelli, F.; Leone, C.; Longo, M. Electric Vehicles Charging Technology Review and Optimal Size Estimation. J. Electr. Eng. Technol. 2020, 15, 2539–2552. [Google Scholar] [CrossRef]
- Rizvi, S.A.A.; Xin, A.; Masood, A.; Iqbal, S.; Jan, M.U.; Rehman, H. Electric vehicles and their impacts on integration into power grid: A review. In Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018. [Google Scholar]
- Papadopoulos, P.; Cipcigan, L.M.; Jenkins, N. Distribution networks with electric vehicles. In Proceedings of the 44th International Universities Power Engineering Conference (UPEC), Glasgow, UK, 1–4 September 2009. [Google Scholar]
- Longo, M.; Foiadelli, F.; Yaïci, W. Electric vehicles integrated with renewable energy sources for sustainable mobility. In New Trends in Electrical Vehicle Powertrains; Martinez, L.R., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Ces, T. Transportation options in a carbon constrained world: Hybrids, plug-in hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles. Int. J. Hydrog. Energy 2009, 34, 9279–9296. [Google Scholar] [CrossRef]
- Liu, L.; Kong, F.; Liu, X.; Peng, Y.; Wang, Q. A review on electric vehicles interacting with renewable energy in smart grid. Renew. Sustain. Energy Rev. 2015, 51, 648–661. [Google Scholar] [CrossRef]
- Xiong, Y.; An, B.; Kraus, S. Electric vehicle charging strategy study and the application on charging station placement. Auton. Agents Multi-Agent Syst. 2021, 35, 3. [Google Scholar] [CrossRef]
- Hess, A.; Malandrino, F.; Reinhardt, M.B.; Casetti, C.; Hummel, K.A.; Barceló-Ordinas, J.M. Optimal deployment of charging stations for electric vehicular networks. In Proceedings of the 1st Workshop on Urban Networking (UrbaNe), Nice, France, 10 December 2012; pp. 1–6. [Google Scholar]
- Suanpang, P.; Pothipassa, P.; Netwong, T.; Kaewyong, P.; Niamsorn, C.; Chunhaparagu, T.; Donggitt, J.; Webb, P.; Rotprasoet, P.; Songma, S.; et al. Innovation of Smart Tourism to Promote Tourism in Suphan Buri Province; Suan Dusit University: Bangkok, Thailand, 2022. [Google Scholar]
- Nikiforiadis, A.; Ayfantopoulou, G.; Basbas, S.; Stefanidou, M. Examining tourists’ intention to use electric vehicle-sharing services, Transportation Research Interdisciplinary Perspectives. Transp. Res. Interdiscip. Perspect. 2022, 14, 100610. [Google Scholar] [CrossRef]
- Peeters, P.; Szimba, E.; Duijnisveld, M. Major environmental impacts of European tourist transport. J. Transp. 2007, 15, 83–93. [Google Scholar] [CrossRef]
- Maltese, I.; Zamparini, L.; Amico, C. Tourists, Residents and Sustainable Mobility in Islands: The Case of Ischia (Italy). In Sustainable Transport and Tourism Destinations; Zamparini, L., Ed.; Emerald Publishing Limited: Bingley, UK, 2021; pp. 97–115. [Google Scholar]
- National Statistical Office of Thailand: Chiang Mai Office. 2021. Available online: http://chiangmai.nso.go.th (accessed on 19 February 2022).
- EVAT Current Status. Available online: http://www.evat.or.th/15708256/current (accessed on 19 February 2022).
- Du, B.; Tong, Y.; Zhou, Z.; Tao, Q.; Zhou, W. Demand-aware charger planning for electric vehicle sharing. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 19–23 August 2018; pp. 1330–1338. [Google Scholar]
- Guo, Q.; Zhuang, F.; Qin, C.; Zhu, H.; Xie, X.; Xiong, H.; He, Q. A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. 2020, 34, 3549–3568. [Google Scholar] [CrossRef]
- Xin, H.; Lu, X.; Xu, T.; Liu, H.; Gu, J.; Dou, D.; Xiong, H. Out-of-Town Recommendation with Travel Intention Modeling. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 22 February–1 March 2021; Volume 35, pp. 4529–4536. [Google Scholar]
- Thananusak, T.; Punnakitikashem, P.; Tanthasith, S.; Kongarchapatara, B. The development of electric vehicle charging stations in Thailand: Policies, players and key issues (2015–2020). World Electr. Veh. J. 2020, 12, 2–30. [Google Scholar] [CrossRef]
- Shi, L.; Hao, Y.; Lv, S.; Cipcigan, L.; Liang, J. A comprehensive charging network planning scheme for promoting EV charging infrastructure considering the Chicken-Eggs dilemma. Res. Transp. Econ. 2020, 8, 100837. [Google Scholar] [CrossRef]
- Johansson, B.; Ahman, M.A. Comparison of Technologies for Carbon-neutral Passenger Transport. Transp. Res. Part D Transp. Environ. 2002, 7, 175–196. [Google Scholar] [CrossRef]
- Samaras, C.; Meisterling, K. Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy. Environ. Sci. Technol. 2008, 42, 3170–3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husain, I. Electric and Hybrid Vehicles: Design Fundamentals, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- CEM Electric Vehicle Initiative (EVI). 2019. Available online: http://www.cleanenergyministerial.org/sites/default/files/2019-06/EVI%20fact%20sheet%20%28June%202019%29.pdf (accessed on 9 April 2022).
- IEA. Global EV Outlook 2020; IEA: Paris, France, 2020; p. 276. [Google Scholar]
- Broadbent, G.H.; Metternicht, G.; Drozdzewski, D. An analysis of consumer incentives in support of electric vehicle uptake: An Australian case study. World Electr. Veh. J. 2019, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Figenbaum, E. Battery electric vehicle fast charging—Evidence from the Norwegian market. World Electr. Veh. J. 2020, 11, 38. [Google Scholar] [CrossRef]
- Figenbaum, E.; Assum, T.; Kolbenstvedt, M. Electromobility in Norway: Experiences and opportunities. Res. Transp. Econ. 2015, 50, 29–38. [Google Scholar] [CrossRef]
- Lim, M.K.; Mak, H.Y.; Rong, Y. Toward Mass Adoption of Electric Vehicles: Impact of the Range and Resale Anxieties. Manuf. Serv. Oper. Manag. 2014, 17, 101–119. [Google Scholar] [CrossRef]
- Melliger, M.A.; Vliet, O.P.R.; Liimatainen, H. Anxiety vs reality-Sufficiency of battery electric vehicle range in Switzerland and Finland. Transp. Res. Part D Transp. Environ. 2018, 65, 101–115. [Google Scholar] [CrossRef]
- Research and Markets China EV Charging Station and Charging Pile Market 2019–2025: 15 Global and Chinese Charging Operators & Operation and Development Strategies of 8 Chinese Suppliers. Available online: https://www.prnewswire.com/news-releases/china-ev-charging-station-and-charging-pile-market-2018-2025-15-global-and-chinese-charging-operators-operation-and-development-strategies-of-8-chinese-ssuppliers-300701521.html (accessed on 9 April 2022).
- IEA/IRENA Renewables Policies Database Law on Energy Transition for Green Growth (LTECV)—Policies. Available online: https://www.iea.org/policies/8737-law-on-energy-transition-for-green-growth-ltecv (accessed on 21 February 2022).
- EVAT. Available online: http://www.evat.or.th/17344576/ievtech-2022 (accessed on 24 February 2022).
- National Statistical Office of Thailand 2022. Available online: https://www.nso.go.th/sites/2014en (accessed on 11 March 2022).
- Teslabjorn, T. Driving MG ZS EV from Chiangmai to Bangkok. 2019. Available online: https://www.youtube.com/watch?v=-CWK1lykcUI (accessed on 21 February 2022).
- GridWhiz|Corporate. Available online: https://www.gridwhiz.io/corporate.html (accessed on 18 March 2022).
- Evolt-About Us. Available online: http://www.evolt.co.th/about (accessed on 8 April 2022).
- Cao, Y.; Jiang, T.; Kaiwartya, O.; Sun, H.; Zhou, H.; Wang, R. Toward Pre-Empted EV Charging Recommendation through V2V-Based Reservation System. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 3026–3039. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; You, P.; Yang, Z. Recommendation of geographic distributed charging stations for electric vehicles: A game theoretical approach. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Kong, F.; Xiang, Q.; Kong, L.; Liu, X. On-Line Event-Driven Scheduling for Electric Vehicle Charging via Park-and-Charge. In Proceedings of the 2016 IEEE Real-Time Systems Symposium (RTSS), Porto, Portugal, 29 November–2 December 2016; pp. 69–78. [Google Scholar] [CrossRef]
- Tian, Z.; Jung, T.; Wang, Y.; Zhang, F.; Tu, L.; Xu, C.; Tian, C.; Li, X.-Y. Real-Time Charging Station Recommendation System for Electric-Vehicle Taxis. Proc. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3098–3109. [Google Scholar] [CrossRef]
- Wang, E.; Ding, R.; Yang, Z.; Jin, H.; Miao, C.; Su, L.; Zhang, F.; Qiao, C.; Wang, X. Joint Charging and Relocation Recommendation for E-Taxi Drivers via Multi-Agent Mean Field Hierarchical Reinforcement Learning. IEEE Trans. Mob. Comput. 2022, 21, 1274–1290. [Google Scholar] [CrossRef]
- Cavalheiro, M.B.; Joia, L.A.; do Canto Cavalheiro, G.M.; Mayer, V.F. Smart tourism destinations: (Mis)aligning touristic destinations and smart city initiatives. Braz. Adm. Rev. 2021, 18, e190132. [Google Scholar] [CrossRef]
- Avci, B.; Girotra, K.; Netessine, S. Electric vehicles with a battery switching station: Adoption and environmental impact. Manag. Sci. 2014, 61, 772–794. [Google Scholar] [CrossRef] [Green Version]
- Suanpang, P.; Niamsorn, C.; Pothipassa, P.; Chunhapataragul, T.; Netwong, T.; Jermsittiparsert, K. Extensible Metaverse Implication for a Smart Tourism City. Sustainability 2022, 14, 14027. [Google Scholar] [CrossRef]
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Wang, G.; Xie, X.; Zhang, F.; Liu, Y.; Zhang, D. bCharge: Data-Driven Real-Time Charging Scheduling for Large-Scale Electric Bus Fleets. In Proceedings of the 2018 IEEE Real-Time Systems Symposium (RTSS), Nashville, TN, USA, 11–14 December 2018; pp. 45–55. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, F.; Zhang, D. tCharge-A fleet-oriented real-time charging scheduling system for electric taxi fleets. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems, New York, NY, USA, 10–13 November 2019; pp. 40–441. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Fang, Z.; Wang, S.; Zhang, F.; Zhang, D. FairCharge: A data-driven fairness-aware charging rec-ommendation system for large-scale electric taxi fleets. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–25. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, D.; Miao, F.; Chen, J.; He, T.; Lin, S. pˆ2Charging: Proactive Partial Charging for Electric Taxi Systems. In Proceedings of IEEE 39th International Conference on Distributed Computing Systems, Dallas, TX, USA, 7–10 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 688–699. [Google Scholar]
- Gupta, J.K.; Egorov, M.; Kochenderfer, M. Cooperative multi-agent control using deep reinforcement learning. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, Sao Paulo, Brazil, 8–12 May 2017; pp. 66–83. [Google Scholar]
- Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Kor-jus, K.; Aru, J.; Vicente, R. Multiagent cooperation and competition with deep reinforcement learning. PLoS ONE 2017, 12, e0172395. [Google Scholar] [CrossRef] [Green Version]
- Tan, M. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the 10th International Conference on Machine Learning, Amherst, MA, USA, 27–29 June 1993; pp. 330–337. [Google Scholar]
- Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Abbeel, O.P.; Mordatch, I. Multiagent actor-critic for mixed cooperative-competitive environments. Adv. Neural Inf. Process. Syst. 2017, 6379–6390. [Google Scholar] [CrossRef]
- Matignon, L.; Laurent, G.J.; Fort-Piat, N.L. Independent reinforcement learners in cooperative Markov games: A survey regarding coordination problems. Knowl. Eng. Rev. 2012, 27, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Sukhbaatar, S.; Szlam, A.; Fergus, R. Learning multiagent communication with backpropagation. arXiv 2016, arXiv:1605.07736. [Google Scholar] [CrossRef]
- Foerster, J.; Assael, I.A.; Freitas, N.D.; White-son, S. Learning to communicate with deep multi-agent reinforcement learning. arXiv 2016, arXiv:1605.06676. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Z. Learning attentional communication for multi-agent cooperation. arXiv 2018, arXiv:1805.07733. [Google Scholar] [CrossRef]
- Peng, P.; Yuan, Q.; Wen, Y.; Yang, Y.; Tang, Z.; Long, H.; Wang, J. Multiagent bidirectionally-coordinated nets for learning to play starcraft combat games. arXiv 2017, arXiv:1703.10069. [Google Scholar]
- Foerster, J.N.; Farquhar, G.; Afouras, T.; Nardelli, N.; Whiteson, S. Counterfactual Multi-Agent Policy Gradients. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 2974–2982. [Google Scholar]
- Iqbal, S.; Sha, F. Actor-attention-critic for multi-agent reinforcement learning. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 2961–2970. [Google Scholar]
- Suanpang, P.; Jamjuntr, P.; Kaewyong, P. Sentiment Analysis with a Textblob Package Implications for Tourism. J. Manag. Inf. Decis. Sci. 2021, 24, 1–9. [Google Scholar]
- Wang, Y.; Xu, T.; Niu, X.; Tan, C.; Chen, E.; Xiong, H. STMARL: A Spatio-Temporal Multi-Agent Reinforcement Learning Approach for Cooperative Traffic Light Control. IEEE Trans. Mob. Comput. 2020, 21, 2228–2242. [Google Scholar] [CrossRef]
- Wei, H.; Xu, N.; Zhang, H.; Zheng, G.; Zang, X.; Chen, C.; Zhang, W.; Zhu, Y.; Xu, K.; Li, Z. Colight: Learning network-level cooperation for traffic signal control. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 1913–1922. [Google Scholar]
- Jin, J.; Zhou, M.; Zhang, W.; Li, M.; Guo, Z.; Qin, Z.; Jiao, Y.; Tang, X.; Wang, C.; Wang, J. Coride: Joint order dispatching and fleet management for multi-scale ride-hailing platforms. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 1983–1992. [Google Scholar]
- Li, M.; Qin, Z.; Jiao, Y.; Yang, Y.; Wang, J.; Wang, C.; Wu, G.; Ye, J. Efficient ridesharing order dispatching with mean field multi-agent reinforcement learning. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 983–994. [Google Scholar]
- Lin, K.; Zhao, R.; Xu, Z.; Zhou, J. Efficient large-scale fleet management via multi-agent deep reinforcement learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1774–1783. [Google Scholar]
- Zhou, M.; Jin, J.; Zhang, W.; Qin, Z.; Jiao, Y.; Wang, C.; Wu, G.; Yu, Y.; Ye, J. Multi-agent reinforcement learning for orderdis patching via order-vehicle distribution matching. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 2645–2653. [Google Scholar]
- Li, Y.; Zheng, Y.; Yang, Q. Dynamic bike reposition: A spatio-temporal reinforcement learning approach. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1724–1733. [Google Scholar]
- Li, Y.; Zheng, Y.; Yang, Q. Efficient and Effective Express via Contextual Cooperative Reinforcement Learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 510–519. [Google Scholar]
- Suanpang, P.; Pothipasa, P.; Netwong, T. Policies and platforms for fake news filtering in smart cities using artificial intelligence and blockchain technology. Int. J. Cyber Criminol. 2021, 15, 143–157. [Google Scholar]
- Tyan, I.; Yagüe, M.I.; Guevara-Plaza, A. Blockchain Technology for Smart Tourism Destinations. Sustainability 2021, 12, 9715. [Google Scholar] [CrossRef]
- Koo, C.; Park, J.; Lee, J.N. Smart tourism: Traveler, business, and organizational perspectives. Inf. Manag. 2017, 54, 683–686. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Wang, F.; Xu, T.; Xin, H.; Dou, D.; Xiong, H. Intelligent Electric Vehicle Charging Recommendation Based on Multi-Agent Reinforcement Learning. In Proceedings of the Web Conference, Ljubljana, Slovenia, 19–23 April 2021. [Google Scholar] [CrossRef]
- Suanpang, P.; Netwong, T.; Chunhapataragul, T. Smart tourism destinations influence a tourist’s satisfaction and intention to revisit. J. Manag. Inf. Decis. Sci. 2021, 24, 1–10. [Google Scholar]
- Suanpang, P.; Jamjuntr, P.; Jermsittiparsert, K.; Kaewyong, P. Tourism Service Scheduling in Smart City Based on Hybrid Genetic Algorithm Simulated Annealing Algorithm. Sustainability 2022, 14, 16293. [Google Scholar] [CrossRef]
- Suanpang, P.; Jamjuntr, P.; Jermsittiparsert, K.; Kaewyong, P. Autonomous Energy Management by Applying Deep Q-Learning to Enhance Sustainability in Smart Tourism Cities. Energies 2022, 15, 1906. [Google Scholar] [CrossRef]
Algorithm | MCWT | MCP | TSF | CFR |
---|---|---|---|---|
Random | 37.64 | 1.728 | −349 | 48.3% |
MASTER | 15.46 | 1.567 | 15761 | 2.2% |
Item | Thai Tourist (n = 100) | International Tourist (n = 100) | ||
---|---|---|---|---|
S.D. | S.D. | |||
The demand for the EVC system | 34.4 | 0.64 | 4.28 | 0.91 |
The utilization aspect of EVCs | 4.32 | 0.74 | 4.21 | 0.88 |
EVC system development to promote tourism | 4.18 | 0.65 | 4.18 | 0.75 |
Confidence in EVC to promote sustainable tourism | 4.21 | 0.75 | 4.04 | 0.86 |
Total average | 4.26 | 0.70 | 4.18 | 0.85 |
User | n | S.D. | t | p | |
---|---|---|---|---|---|
Thai tourist | 100 | 4.26 | 0.70 | −0.068 | 0.946 |
International tourist | 100 | 4.18 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suanpang, P.; Jamjuntr, P.; Kaewyong, P.; Niamsorn, C.; Jermsittiparsert, K. An Intelligent Recommendation for Intelligently Accessible Charging Stations: Electronic Vehicle Charging to Support a Sustainable Smart Tourism City. Sustainability 2023, 15, 455. https://doi.org/10.3390/su15010455
Suanpang P, Jamjuntr P, Kaewyong P, Niamsorn C, Jermsittiparsert K. An Intelligent Recommendation for Intelligently Accessible Charging Stations: Electronic Vehicle Charging to Support a Sustainable Smart Tourism City. Sustainability. 2023; 15(1):455. https://doi.org/10.3390/su15010455
Chicago/Turabian StyleSuanpang, Pannee, Pitchaya Jamjuntr, Phuripoj Kaewyong, Chawalin Niamsorn, and Kittisak Jermsittiparsert. 2023. "An Intelligent Recommendation for Intelligently Accessible Charging Stations: Electronic Vehicle Charging to Support a Sustainable Smart Tourism City" Sustainability 15, no. 1: 455. https://doi.org/10.3390/su15010455
APA StyleSuanpang, P., Jamjuntr, P., Kaewyong, P., Niamsorn, C., & Jermsittiparsert, K. (2023). An Intelligent Recommendation for Intelligently Accessible Charging Stations: Electronic Vehicle Charging to Support a Sustainable Smart Tourism City. Sustainability, 15(1), 455. https://doi.org/10.3390/su15010455