A Systematic Review of Real-Time Monitoring Technologies and Its Potential Application to Reduce Food Loss and Waste: Key Elements of Food Supply Chains and IoT Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methodology
2.2. Data Synthesis
2.3. IoT Architecture
- (1)
- Sensing layer: encompasses all devices implemented in the environment, such as sensors (e.g., temperature, light, motion and location, etc.), energy supply devices (e.g., batteries, solar panels) and other devices that can manage functionalities.
- (2)
- Communication layer: includes devices that transmit and receive data over the communication system directly or via gateways (e.g., receptors and transmitters). It also encompasses all necessary communication technologies, wired and wireless, such as Wi-Fi, Zigbee, Bluetooth, 3G/4G, LoRaWAN, etc. It provides functionality for the network, i.e., connectivity, mobility, authentication, authorisation, and accounting.
- (3)
- Storage layer: includes data processing and storage, as well as dedicated functionality for each application and service, since emerging services have diverse requirements.
- (4)
- Application and control layer: this layer deals with the analysis of the data retrieved from the storage layer allowing the end user to make informed decisions based on computational intelligence methods applied to the data. Additionally, it provides applications and services that farmers, retailers, analysts, and consumers can employ. Consumers can look for product expiration dates, test reports, quality guarantee periods, product photos, and customer evaluations in this layer. It refers to the typical management and performance visualisation (i.e., software app, etc.).
3. Results and Discussion
3.1. Analysis of Selected Papers
3.2. Supply Chain Characteristics
3.2.1. Product Type
3.2.2. Supply Chain Stage
3.2.3. Countries of System Deployment
3.3. Real-Time Sensors in Food Supply Chains
3.3.1. Sensing Technologies—The Sensing Layer
3.3.2. Sensing Parameters
3.3.3. Data Communication—The Communication Layer
3.3.4. Data Storage—The Storage Layer
3.3.5. Applications and Software—The Application and Control Layer
4. Conclusions and an Agenda for Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Chauhan, C.; Dhir, A.; Akram, M.U.; Salo, J. Food Loss and Waste in Food Supply Chains. A Systematic Literature Review and Framework Development Approach. J. Clean. Prod. 2021, 295, 126438. [Google Scholar] [CrossRef]
- Roe, B.E.; Qi, D.; Bender, K.E. Some Issues in the Ethics of Food Waste. Physiol. Behav. 2020, 219, 112860. [Google Scholar] [CrossRef]
- Cristóbal, J.; Castellani, V.; Manfredi, S.; Sala, S. Prioritizing and Optimizing Sustainable Measures for Food Waste Prevention and Management. Waste Manag. 2018, 72, 3–16. [Google Scholar] [CrossRef]
- Amicarelli, V.; Lagioia, G.; Bux, C. Global Warming Potential of Food Waste through the Life Cycle Assessment: An Analytical Review. Environ. Impact Assess. Rev. 2021, 91, 106677. [Google Scholar] [CrossRef]
- Ishangulyyev, R.; Kim, S.; Lee, S. Understanding Food Loss and Waste—Why Are We Losing and Wasting Food? Foods 2019, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- UN. The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- EC Cutting Food Waste with Technology That Keeps Produce Fresh. European Commission. Available online: https://ec.europa.eu/research-and-innovation/en/projects/success-stories/all/cutting-food-waste-technology-keeps-produce-fresh (accessed on 28 June 2021).
- Mustafa, F.; Andreescu, S. Chemical and Biological Sensors for Food-Quality Monitoring and Smart Packaging. Foods 2018, 7, 168. [Google Scholar] [CrossRef] [Green Version]
- Astill, J.; Dara, R.A.; Campbell, M.; Farber, J.M.; Fraser, E.D.G.; Sharif, S.; Yada, R.Y. Transparency in Food Supply Chains: A Review of Enabling Technology Solutions. Trends Food Sci. Technol. 2019, 91, 240–247. [Google Scholar] [CrossRef]
- Jagtap, S.; Rahimifard, S. The Digitisation of Food Manufacturing to Reduce Waste–Case Study of a Ready Meal Factory. Waste Manag. 2019, 87, 387–397. [Google Scholar] [CrossRef]
- Bux, C.; Varese, E.; Amicarelli, V.; Lombardi, M. Halal Food Sustainability between Certification and Blockchain: A Review. Sustainability 2022, 14, 2152. [Google Scholar] [CrossRef]
- Rana, R.L.; Tricase, C.; de Cesare, L. Blockchain Technology for a Sustainable Agri-Food Supply Chain. Br. Food J. 2021, 123, 3471–3485. [Google Scholar] [CrossRef]
- Majrouhi Sardroud, J. Influence of RFID Technology on Automated Management of Construction Materials and Components. Sci. Iran. 2012, 19, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Irani, Z.; Sharif, A.M.; Lee, H.; Aktas, E.; Topaloğlu, Z.; van’t Wout, T.; Huda, S. Managing Food Security through Food Waste and Loss: Small Data to Big Data. Comput. Oper. Res. 2018, 98, 367–383. [Google Scholar] [CrossRef]
- Harvey, J.; Smith, A.; Goulding, J.; Branco Illodo, I. Food Sharing, Redistribution, and Waste Reduction via Mobile Applications: A Social Network Analysis. Ind. Mark. Manag. 2020, 88, 437–448. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Parekh, H.; Joshi, S. Modeling the Internet of Things Adoption Barriers in Food Retail Supply Chains. J. Retail. Consum. Serv. 2019, 48, 154–168. [Google Scholar] [CrossRef]
- Pavelková, A. Time Temperature Indicators as Devices Intelligent Packaging. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Syahputri, B.E.; Sucipto, S. Monitoring of Beef Cold Chain to Ensure Quality, Safety, and Halal Using RFID: A Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 924, 012001. [Google Scholar] [CrossRef]
- Cetateanu, A.; Jones, A. How Can GPS Technology Help Us Better Understand Exposure to the Food Environment? A Systematic Review. SSM Popul. Health 2016, 2, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Nižetić, S.; Šolić, P.; López-de-Ipiña González-de-Artaza, D.; Patrono, L. Internet of Things (IoT): Opportunities, Issues and Challenges towards a Smart and Sustainable Future. J. Clean. Prod. 2020, 274, 122877. [Google Scholar] [CrossRef]
- Angarita-Zapata, J.S.; Alonso-Vicario, A.; Masegosa, A.D.; Legarda, J. A Taxonomy of Food Supply Chain Problems from a Computational Intelligence Perspective. Sensors 2021, 21, 6910. [Google Scholar] [CrossRef]
- FAO. The State of Food Security and Nutrition in the World: Building Resilience for Peace and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Tran, B.X.; McIntyre, R.S.; Latkin, C.A.; Phan, H.T.; Vu, G.T.; Nguyen, H.L.T.; Gwee, K.K.; Ho, C.S.H.; Ho, R.C.M. The Current Research Landscape on the Artificial Intelligence Application in the Management of Depressive Disorders: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2150. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ENISA Internet of Things Is Transforming the Boundaries between the Digital and Physical World. European Union Agency for Cybersecurity. Available online: https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/iot (accessed on 1 October 2022).
- Zhu, Z.; Ma, R.; Draganic, A.; Orovic, I.; Zhang, X.; Wang, X.; Wang, J. Postharvest Quality Monitoring and Cold Chain Management of Fresh Garlic Scapes Based on a Wireless Multi-sensors System. J. Food Process Eng. 2021, 45, e13918. [Google Scholar] [CrossRef]
- Afreen, H.; Bajwa, I.S. An IoT-Based Real-Time Intelligent Monitoring and Notification System of Cold Storage. IEEE Access 2021, 9, 38236–38253. [Google Scholar] [CrossRef]
- Torres-Sanchez, R.; Zafra, M.T.M.; Soto-Valles, F.; Jiménez-Buendía, M.; Toledo-Moreo, A.; Artés-Hernández, F. Design of a Distributed Wireless Sensor Platform for Monitoring and Real-Time Communication of the Environmental Variables during the Supply Chain of Perishable Commodities. Appl. Sci. 2021, 11, 6183. [Google Scholar] [CrossRef]
- Siddiqui, M.; Akther, F.; Rahman, G.M.E.; Elahi, M.M.; Mostafa, R.; Wahid, K.A. Dimensioning of Wide-Area Alternate Wetting and Drying (AWD) System for IoT-Based Automation. Sensors 2021, 21, 6040. [Google Scholar] [CrossRef]
- Aytaç, K.; Korçak, Ö. IoT Based Intelligence for Proactive Waste Management in Quick Service Restaurants. J. Clean. Prod. 2021, 284, 125401. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, S.; Zhang, Y.; Hu, B. Optimization of Water Microbial Concentration Monitoring System Based on Internet of Things. Complexity 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Li, G. Development of Cold Chain Logistics Transportation System Based on 5G Network and Internet of Things System. Microprocess. Microsyst. 2021, 80, 103565. [Google Scholar] [CrossRef]
- Nair, K.; Sekhani, B.; Shah, K.; Karamchandani, S. Expiry Prediction and Reducing Food Wastage Using IoT and ML. Int. J. Electr. Comput. Eng. Syst. 2021, 12, 155–162. [Google Scholar] [CrossRef]
- Sharif, A.; Abbasi, Q.H.; Arshad, K.; Ansari, S.; Ali, M.Z.; Kaur, J.; Abbas, H.T.; Imran, M.A. Machine Learning Enabled Food Contamination Detection Using RFID and Internet of Things System. J. Sens. Actuator Netw. 2021, 10, 63. [Google Scholar] [CrossRef]
- Ibba, P.; Falco, A.; Abera, B.D.; Cantarella, G.; Petti, L.; Lugli, P. Bio-Impedance and Circuit Parameters: An Analysis for Tracking Fruit Ripening. Postharvest Biol. Technol. 2020, 159, 110978. [Google Scholar] [CrossRef]
- Catania, P.; Gaglio, R.; Orlando, S.; Settanni, L.; Vallone, M. Design and Implementation of a Smart System to Control Aromatic Herb Dehydration Process. Agriculture 2020, 10, 332. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Chen, F.-H.; Hsu, W.-C.; Lee, L.-W.; Su, T.-J. Development of Smart Refrigerator Based on Message Queuing Telemetry Transport. Sens. Mater. 2020, 32, 1899. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Fu, D.; Vidrih, R.; Zhang, X. Ethylene Sensor-Enabled Dynamic Monitoring and Multi-Strategies Control for Quality Management of Fruit Cold Chain Logistics. Sensors 2020, 20, 5830. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wang, W.; Chen, B.; Zhang, X. Evaluation on Frozen Shellfish Quality by Blockchain Based Multi-Sensors Monitoring and SVM Algorithm During Cold Storage. IEEE Access 2020, 8, 54361–54370. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Xing, S.; Ma, Y.; Wang, X. Multi-Sensors Enabled Dynamic Monitoring and Quality Assessment System (DMQAS) of Sweet Cherry in Express Logistics. Foods 2020, 9, 602. [Google Scholar] [CrossRef]
- Torres-Sánchez, R.; Martínez-Zafra, M.T.; Castillejo, N.; Guillamón-Frutos, A.; Artés-Hernández, F. Real-Time Monitoring System for Shelf Life Estimation of Fruit and Vegetables. Sensors 2020, 20, 1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbano, O.; Perles, A.; Pedraza, C.; Rubio-Arraez, S.; Castelló, M.L.; Ortola, M.D.; Mercado, R. Cost-Effective Implementation of a Temperature Traceability System Based on Smart RFID Tags and IoT Services. Sensors 2020, 20, 1163. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Zhang, M.; Liu, P.; Liu, Y.; Zhang, X. Evaluation of IoT-Enabled Monitoring and Electronic Nose Spoilage Detection for Salmon Freshness During Cold Storage. Foods 2020, 9, 1579. [Google Scholar] [CrossRef]
- Markovic, M.; Jacobs, N.; Dryja, K.; Edwards, P.; Strachan, N.J.C. Integrating Internet of Things, Provenance, and Blockchain to Enhance Trust in Last Mile Food Deliveries. Front. Sustain. Food Syst. 2020, 4, 563424. [Google Scholar] [CrossRef]
- Ramírez-Faz, J.; Fernández-Ahumada, L.M.; Fernández-Ahumada, E.; López-Luque, R. Monitoring of Temperature in Retail Refrigerated Cabinets Applying IoT Over Open-Source Hardware and Software. Sensors 2020, 20, 846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seman, M.T.A.; Abdullah, M.N.; Ishak, M.K. Monitoring Temperature, Humidity and Controlling System in Industrial Fixed Room Storage Based on IoT. J. Eng. Sci. Technol. 2020, 15, 3588–3600. [Google Scholar]
- Alfian, G.; Syafrudin, M.; Farooq, U.; Ma’arif, M.R.; Syaekhoni, M.A.; Fitriyani, N.L.; Lee, J.; Rhee, J. Improving Efficiency of RFID-Based Traceability System for Perishable Food by Utilizing IoT Sensors and Machine Learning Model. Food Control 2020, 110, 107016. [Google Scholar] [CrossRef]
- Banga, K.S.; Kotwaliwale, N.; Mohapatra, D.; Giri, S.K.; Babu, V.B. Bioacoustic Detection of Callosobruchus chinensis and Callosobruchus maculatus in Bulk Stored Chickpea (Cicer arietinum) and Green Gram (Vigna radiata). Food Control 2019, 104, 278–287. [Google Scholar] [CrossRef]
- Feng, H.; Chen, J.; Zhou, W.; Rungsardthong, V.; Zhang, X. Modeling and Evaluation on WSN-Enabled and Knowledge-Based HACCP Quality Control for Frozen Shellfish Cold Chain. Food Control 2019, 98, 348–358. [Google Scholar] [CrossRef]
- Jara, P.B.T.; Rivera, J.J.A.; Merino, C.E.B.; Silva, E.V.; Farfán, G.A. Thermal Behavior of a Refrigerated Vehicle: Process Simulation. Int. J. Refrig. 2019, 100, 124–130. [Google Scholar] [CrossRef]
- Baire, M.; Melis, A.; Lodi, M.B.; Tuveri, P.; Dachena, C.; Simone, M.; Fanti, A.; Fumera, G.; Pisanu, T.; Mazzarella, G. A Wireless Sensors Network for Monitoring the Carasau Bread Manufacturing Process. Electronics 2019, 8, 1541. [Google Scholar] [CrossRef] [Green Version]
- Jilani, M.T.; Rehman, M.Z.U.; Khan, A.M.; Chughtai, O.; Abbas, M.A.; Khan, M.T. An Implementation of IoT-Based Microwave Sensing System for the Evaluation of Tissues Moisture. Microelectron. J. 2019, 88, 117–127. [Google Scholar] [CrossRef]
- Mondal, S.; Wijewardena, K.P.; Karuppuswami, S.; Kriti, N.; Kumar, D.; Chahal, P. Blockchain Inspired RFID-Based Information Architecture for Food Supply Chain. IEEE Internet Things J. 2019, 6, 5803–5813. [Google Scholar] [CrossRef]
- Lazaro, A.; Boada, M.; Villarino, R.; Girbau, D. Color Measurement and Analysis of Fruit with a Battery-Less NFC Sensor. Sensors 2019, 19, 1741. [Google Scholar] [CrossRef] [Green Version]
- Tsang, Y.P.; Choy, K.L.; Wu, C.H.; Ho, G.T.S.; Lam, H.Y. Blockchain-Driven IoT for Food Traceability with an Integrated Consensus Mechanism. IEEE Access 2019, 7, 129000–129017. [Google Scholar] [CrossRef]
- Popa, A.; Hnatiuc, M.; Paun, M.; Geman, O.; Hemanth, D.; Dorcea, D.; Son, L.; Ghita, S. An Intelligent IoT-Based Food Quality Monitoring Approach Using Low-Cost Sensors. Symmetry 2019, 11, 374. [Google Scholar] [CrossRef] [Green Version]
- Tsang, Y.P.; Choy, K.L.; Wu, C.H.; Ho, G.T.S.; Lam, C.H.Y.; Koo, P.S. An Internet of Things (IoT)-Based Risk Monitoring System for Managing Cold Supply Chain Risks. Ind. Manag. Data Syst. 2018, 118, 1432–1462. [Google Scholar] [CrossRef]
- Tsang, Y.P.; Choy, K.L.; Wu, C.H.; Ho, G.T.S.; Lam, H.Y.; Tang, V. An Intelligent Model for Assuring Food Quality in Managing a Multi-Temperature Food Distribution Centre. Food Control 2018, 90, 81–97. [Google Scholar] [CrossRef]
- Wen, Z.; Hu, S.; de Clercq, D.; Beck, M.B.; Zhang, H.; Zhang, H.; Fei, F.; Liu, J. Design, Implementation, and Evaluation of an Internet of Things (IoT) Network System for Restaurant Food Waste Management. Waste Manag. 2018, 73, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, L.; Moga, L.M.; Zhang, X.; Zhang, Y. Development and Evaluation on a Wireless Multi-Sensors System for Fresh-Cut Branches of the North American Holly Cold Chain. Comput. Electron. Agric. 2018, 148, 132–141. [Google Scholar] [CrossRef]
- Wang, X.; Fu, D.; Fruk, G.; Chen, E.; Zhang, X. Improving Quality Control and Transparency in Honey Peach Export Chain by a Multi-Sensors-Managed Traceability System. Food Control 2018, 88, 169–180. [Google Scholar] [CrossRef]
- De Venuto, D.; Mezzina, G. Spatio-Temporal Optimization of Perishable Goods’ Shelf Life by a Pro-Active WSN-Based Architecture. Sensors 2018, 18, 2126. [Google Scholar] [CrossRef] [Green Version]
- Morillo, P.; Orduña, J.M.; Fernández, M.; García-Pereira, I. Comparison of WSN and IoT Approaches for a Real-Time Monitoring System of Meal Distribution Trolleys: A Case Study. Future Gener. Comput. Syst. 2018, 87, 242–250. [Google Scholar] [CrossRef]
- Chaudhari, M.P. Predictive Analytics for Anomaly Detection in Internet of Things Enabled Smart Cold Storage Warehousing. HELIX 2018, 8, 3941–3945. [Google Scholar] [CrossRef]
- Tervonen, J. Experiment of the Quality Control of Vegetable Storage Based on the Internet-of-Things. Procedia Comput. Sci. 2018, 130, 440–447. [Google Scholar] [CrossRef]
- Jedermann, R.; Praeger, U.; Lang, W. Challenges and Opportunities in Remote Monitoring of Perishable Products. Food Packag. Shelf Life 2017, 14, 18–25. [Google Scholar] [CrossRef]
- Xiao, X.; He, Q.; Li, Z.; Antoce, A.O.; Zhang, X. Improving Traceability and Transparency of Table Grapes Cold Chain Logistics by Integrating WSN and Correlation Analysis. Food Control 2017, 73, 1556–1563. [Google Scholar] [CrossRef]
- Tsang, Y.; Choy, K.; Wu, C.; Ho, G.; Lam, H.; Koo, P. An IoT-Based Cargo Monitoring System for Enhancing Operational Effectiveness under a Cold Chain Environment. Int. J. Eng. Bus. Manag. 2017, 9, 184797901774906. [Google Scholar] [CrossRef] [Green Version]
- Alfian, G.; Syafrudin, M.; Rhee, J. Real-Time Monitoring System Using Smartphone-Based Sensors and NoSQL Database for Perishable Supply Chain. Sustainability 2017, 9, 2073. [Google Scholar] [CrossRef] [Green Version]
- Musa, Z.; Vidyasankar, K. A Fog Computing Framework for Blackberry Supply Chain Management. Procedia Comput. Sci. 2017, 113, 178–185. [Google Scholar] [CrossRef]
- Seo, S.-M.; Kim, S.-W.; Jeon, J.-W.; Kim, J.-H.; Kim, H.-S.; Cho, J.-H.; Lee, W.-H.; Paek, S.-H. Food Contamination Monitoring via Internet of Things, Exemplified by Using Pocket-Sized Immunosensor as Terminal Unit. Sens. Actuators B Chem. 2016, 233, 148–156. [Google Scholar] [CrossRef]
- Xiao, X.; He, Q.; Fu, Z.; Xu, M.; Zhang, X. Applying CS and WSN Methods for Improving Efficiency of Frozen and Chilled Aquatic Products Monitoring System in Cold Chain Logistics. Food Control 2016, 60, 656–666. [Google Scholar] [CrossRef] [Green Version]
- Shih, C.-W.; Wang, C.-H. Integrating Wireless Sensor Networks with Statistical Quality Control to Develop a Cold Chain System in Food Industries. Comput. Stand. Interfaces 2016, 45, 62–78. [Google Scholar] [CrossRef]
- Thakur, M.; Forås, E. EPCIS Based Online Temperature Monitoring and Traceability in a Cold Meat Chain. Comput. Electron. Agric. 2015, 117, 22–30. [Google Scholar] [CrossRef]
- Badia-Melis, R.; Ruiz-Garcia, L.; Garcia-Hierro, J.; Villalba, J. Refrigerated Fruit Storage Monitoring Combining Two Different Wireless Sensing Technologies: RFID and WSN. Sensors 2015, 15, 4781–4795. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Wang, Y.-J.; Jan, J.-K. A Novel Deployment of Smart Cold Chain System Using 2G-RFID-Sys. J. Food Eng. 2014, 141, 113–121. [Google Scholar] [CrossRef]
- Aung, M.M.; Chang, Y.S. Temperature Management for the Quality Assurance of a Perishable Food Supply Chain. Food Control 2014, 40, 198–207. [Google Scholar] [CrossRef]
- Eom, K.-H.; Hyun, K.-H.; Lin, S.; Kim, J.-W. The Meat Freshness Monitoring System Using the Smart RFID Tag. Int. J. Distrib. Sens. Netw. 2014, 10, 591812. [Google Scholar] [CrossRef] [Green Version]
- Smiljkovikj, K.; Gavrilovska, L. SmartWine: Intelligent End-to-End Cloud-Based Monitoring System. Wirel. Pers. Commun. 2014, 78, 1777–1788. [Google Scholar] [CrossRef]
- Hafliðason, T.; Ólafsdóttir, G.; Bogason, S.; Stefánsson, G. Criteria for Temperature Alerts in Cod Supply Chains. Int. J. Phys. Distrib. Logist. Manag. 2012, 42, 355–371. [Google Scholar] [CrossRef]
- Bustamante, E.; Guijarro, E.; García-Diego, F.-J.; Balasch, S.; Hospitaler, A.; Torres, A.G. Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms. Sensors 2012, 12, 5752–5774. [Google Scholar] [CrossRef]
- Faccio, M.; Persona, A.; Zanin, G. Waste Collection Multi Objective Model with Real Time Traceability Data. Waste Manag. 2011, 31, 2391–2405. [Google Scholar] [CrossRef]
- Wang, L.; Kwok, S.K.; Ip, W.H. A Radio Frequency Identification and Sensor-Based System for the Transportation of Food. J. Food Eng. 2010, 101, 120–129. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Barreiro, P.; Robla, J.I. Performance of ZigBee-Based Wireless Sensor Nodes for Real-Time Monitoring of Fruit Logistics. J. Food Eng. 2008, 87, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Dilucia, F.; Lacivita, V.; Conte, A.; del Nobile, M.A. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods 2020, 9, 857. [Google Scholar] [CrossRef] [PubMed]
- Iulietto, M.F.; Sechi, P.; Borgogni, E.; Cenci-Goga, B.T. Meat Spoilage: A Critical Review of a Neglected Alteration Due to Ropy Slime Producing Bacteria. Ital. J. Anim. Sci. 2015, 14, 4011. [Google Scholar] [CrossRef]
- Chaillou, S.; Chaulot-Talmon, A.; Caekebeke, H.; Cardinal, M.; Christieans, S.; Denis, C.; Hélène Desmonts, M.; Dousset, X.; Feurer, C.; Hamon, E.; et al. Origin and Ecological Selection of Core and Food-Specific Bacterial Communities Associated with Meat and Seafood Spoilage. ISME J. 2015, 9, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Martínez, Z.N.; Menacho, P.Z.; Pachón-Ariza, F. Food Loss in a Hungry World, a Problem? Agron. Colomb. 2014, 32, 283–293. [Google Scholar] [CrossRef]
- McKellar, R.C.; LeBlanc, D.I.; Rodríguez, F.P.; Delaquis, P. Comparative Simulation of Escherichia Coli O157:H7 Behaviour in Packaged Fresh-Cut Lettuce Distributed in a Typical Canadian Supply Chain in the Summer and Winter. Food Control 2014, 35, 192–199. [Google Scholar] [CrossRef]
- Skawińska, E.; Zalewski, R.I. Economic Impact of Temperature Control during Food Transportation—A COVID-19 Perspective. Foods 2022, 11, 467. [Google Scholar] [CrossRef]
- FAO. Fruit and Vegetables–Opportunities and Challenges for Small-Scale Sustainable Farming; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy; Agricultural Research Centre for International Development (CIRAD): Rome, Italy, 2021. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- GSMA. Mass Deployments of IoT Solutions Transforming China; Groupe Speciale Mobile Association: London, UK, 2019. [Google Scholar]
- Global Times. China Rolls out 1.6 Million 5G Base Stations, All Rural Villages Having Access to Broadband. Available online: https://www.globaltimes.cn/page/202205/1265842.shtml (accessed on 20 October 2022).
- ISC. China Internet Development Report; Internet Society of China: Beijing, China, 2021. [Google Scholar]
- Feng, Y.; Marek, C.; Tosun, J. Fighting Food Waste by Law: Making Sense of the Chinese Approach. J. Consum. Policy 2022, 45, 457–479. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Robertson, G.P.; Grandy, A.S. Soil System Management in Temperate Regions. In Biological Approaches to Sustainable Soil Systems; Uphoff, N., Ball, A.S., Fernandes, E., Herren, H., Husson, O., Laing, M., Palm, C., Pretty, J., Sanchez, P., Snanginga, N., et al., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 27–39. [Google Scholar]
- Rosenzweig, C.; Liverman, D. Predicted Effects of Climate Change on Agriculture: A Comparison of Temperate and Tropical Regions. In Global Climate Change: Implications, Challenges, and Mitigation Measures; Majumdar, S.K., Ed.; The Pennsylvania Academy of Sciences: Easton, PA, USA, 1992; pp. 61–342. [Google Scholar]
- Ferdaous, Z.; Stefan, H.; Sanchez, G.M. What Drives Firm Profitability? A Multilevel Approach to the Spanish Agri-Food Sector. In Proceedings of the 56th Annual Conference of the German Association of Agricultural Economists (GEWISOLA), Bonn, Germany, 28–30 September 2016. [Google Scholar]
- McGrath, M.J.; Scanaill, C.N. Sensing and Sensor Fundamentals. In Sensor Technologies; Apress: Berkeley, CA, USA, 2013; pp. 15–50. [Google Scholar]
- Salinas Alvarez, C.; Sierra–Sosa, D.; Garcia–Zapirain, B.; Yoder–Himes, D.; Elmaghraby, A. Detection of Volatile Compounds Emitted by Bacteria in Wounds Using Gas Sensors. Sensors 2019, 19, 1523. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.; Amin, K. Error Rate Control in Humidity and Temperature Sensors Using IoT and ThingSpeak. In Proceedings of the 2020 10th International Conference on Information Communication and Management, Edinburgh, UK, 12 August 2020; ACM: New York, NY, USA, 2020; pp. 71–75. [Google Scholar]
- Pandey, N.; Tiwari, A.; Sharma, S.; Teja, P.S.; Jaiswal, R.; Kumar, A. Sustainable Farming for Agronomy Upliment Using IoT. Int. J. Eng. Appl. Sci. Technol. 2019, 4, 138–143. [Google Scholar]
- MBED Grove Temperature Humidity Sensors. Available online: https://os.mbed.com/components/Grove-TempHumi-Sensor/ (accessed on 24 July 2022).
- Mahardika, P.S.; Gunawan, A.A.N. Modeling of Water Temperature in Evaporation Pot with 7 Ds18b20 Sensors Based on Atmega328 Microcontroller. Linguist. Cult. Rev. 2022, 6, 184–193. [Google Scholar] [CrossRef]
- Marszałek, K.; Woźniak, Ł.; Barba, F.J.; Skąpska, S.; Lorenzo, J.M.; Zambon, A.; Spilimbergo, S. Enzymatic, Physicochemical, Nutritional and Phytochemical Profile Changes of Apple (Golden Delicious L.) Juice under Supercritical Carbon Dioxide and Long-Term Cold Storage. Food Chem. 2018, 268, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Meng, Q.; Gao, J.; Tang, X.; Zhang, H. Effects of Relative Humidity on Animal Health and Welfare. J. Integr. Agric. 2017, 16, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S.; Duong, L.; Trollman, H.; Bader, F.; Garcia-Garcia, G.; Skouteris, G.; Li, J.; Pathare, P.; Martindale, W.; Swainson, M.; et al. IoT Technologies in the Food Supply Chain. In Food Technology Disruptions; Elsevier: Amsterdam, The Netherlands, 2021; pp. 175–211. [Google Scholar]
- Hodara, H.; Skaljo, E. From 1G to 5G. Fiber Integr. Opt. 2021, 40, 85–183. [Google Scholar] [CrossRef]
- Costa, C.; Antonucci, F.; Pallottino, F.; Aguzzi, J.; Sarriá, D.; Menesatti, P. A Review on Agri-Food Supply Chain Traceability by Means of RFID Technology. Food Bioprocess Technol. 2013, 6, 353–366. [Google Scholar] [CrossRef]
- Shorey, R.; Miller, B.A. The Bluetooth Technology: Merits and Limitations. In Proceedings of the IEEE International Conference on Personal Wireless Communications, IEEE, Hyderabad, India, 17–20 December 2000; pp. 80–84. [Google Scholar]
- Abd-El-Barr, M.I.; Youssef, M.A.M.; Al-Otaibi, M.M. Wireless Sensor Networks-Part I: Topology and Design Issues. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, IEEE, Saskatoon, Canada, 1–4 May 2005; pp. 1165–1168. [Google Scholar]
- Carrasco, A.; Alcaraz, F.; Barbancho, J.; Larios, D.F.; Luis Sevillano, J. Securing a Wireless Sensor Network for Human Tracking: A Review of Solutions. Int. J. Commun. Syst. 2014, 27, 4384–4406. [Google Scholar] [CrossRef]
- Kazeem, O.O.; Akintade, O.O.; Kehinde, L.O. Comparative Study of Communication Interfaces for Sensors and Actuators in the Cloud of Internet of Things. Int. J. Internet Things 2017, 6, 9–13. [Google Scholar]
- Singh, R.; Singh, P.; Yadav, K. Wireless Communications Enlargement: A Review of Advancement in Technologies. Int. J. Curr. Eng. Technol. 2014, 4, 2703–2710. [Google Scholar]
- Lee, J.-S.; Su, Y.-W.; Shen, C.-C. A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Proceedings of the IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, Taipei, Taiwan, 5–8 November 2007; pp. 46–51. [Google Scholar]
- Lee, J.-S.; Chuang, C.-C.; Shen, C.-C. Applications of Short-Range Wireless Technologies to Industrial Automation: A ZigBee Approach. In Proceedings of the 2009 Fifth Advanced International Conference on Telecommunications, IEEE, Venice, Italy, 24–28 May 2009; pp. 15–20. [Google Scholar]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet Things J. 2022, 9, 6305–6324. [Google Scholar] [CrossRef]
- Bjeladinovic, S.; Marjanovic, Z.; Babarogic, S. A Proposal of Architecture for Integration and Uniform Use of Hybrid SQL/NoSQL Database Components. J. Syst. Softw. 2020, 168, 110633. [Google Scholar] [CrossRef]
- Rai, R.; Chettri, P. NoSQL Hands On. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2018; pp. 157–277. [Google Scholar]
- Vaclavova, A.; Kebisek, M. Comparison of Various NoSQL Databases for Unstructured Industrial Data. In Proceedings of the Computational Methods in Systems and Software; Springer: Cham, Switzerland, 2020; pp. 921–930. [Google Scholar]
- Liu, W. Research on Cloud Computing Security Problem and Strategy. In Proceedings of the 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), IEEE, Yichang, China, 21–23 April 2012; pp. 1216–1219. [Google Scholar]
- Avram, M.G. Advantages and Challenges of Adopting Cloud Computing from an Enterprise Perspective. Procedia Technol. 2014, 12, 529–534. [Google Scholar] [CrossRef]
- Ghobadi, A.; Karimi, R.; Heidari, F.; Samadi, M. Cloud Computing, Reliability and Security Issue. In Proceedings of the 16th International Conference on Advanced Communication Technology, Global IT Research Institute (GIRI), PyeonhChang, Republic of Korea, 16–19 February 2014; pp. 504–511. [Google Scholar]
- Thingspeak. License Options. Available online: https://thingspeak.com/prices (accessed on 20 December 2020).
- Amazon Amazon Quantum Ledger Database (QLDB) Pricing. Available online: https://aws.amazon.com/es/qldb/pricing/ (accessed on 20 December 2020).
- Firebase. Pricing Plans. Available online: https://firebase.google.com/pricing (accessed on 20 December 2020).
Reference | Food Type | Supply Chain Stage | Country |
---|---|---|---|
Zhu et al. [26] | Garlic scape | Transportation | China |
Afreen and Bajwa [27] | Fruit and vegetables | Storage | Pakistan |
Torres-Sanchez et al. [28] | Lettuces | Transportation and storage | Spain |
Siddiqui et al. [29] | Rice | Manufacturing | Bangladesh |
Aytaç and Korçak [30] | Fast-food | Retail | Turkey |
Zheng et al. [31] | Water | Manufacturing | China |
Li [32] | Fruit and vegetables | Transportation | China |
Nair et al. [33] | Banana | Storage | India |
Sharif et al. [34] | Perishable products * | Storage | UK |
Ibba et al. [35] | Apple and bananas | Storage and transportation | Italy |
Catania et al. [36] | Aromatic herbs | Manufacturing | Italy |
Lu et al. [37] | Perishable products * | Transportation | Taiwan |
Wang et al. [38] | Blueberries, sweet cherries, apples | Transportation | China |
Feng et al. [39] | Shellfish | Storage | China |
Zhang et al. [40] | Sweet cherry | Transportation | China |
Torres-Sánchez et al. [41] | Lettuces | Transportation and storage | Spain |
Urbano et al. [42] | Pumpkin and oranges | Transportation and retail | Spain and Ireland |
Feng et al. [43] | Salmon | Storage | China |
Markovic et al. [44] | Meat | Transportation | UK |
Ramírez-Faz et al. [45] | Dairy products, charcuterie, meat, and frozen products | Storage and retail | Spain |
Seman et al. [46] | Perishable products * | Storage | Malaysia |
Alfian et al. [47] | Kimchi | Storage | South Korea |
Banga et al. [48] | Chickpea | Storage | India |
Feng et al. [49] | Shellfish | Transportation and storage | China |
Jara et al. [50] | Perishable products * | Transportation | Ecuador |
Baire et al. [51] | Bread | Manufacturing | Italy |
Jilani et al. [52] | Meat | Storage | Pakistan |
Mondal et al. [53] | Perishable products * | Manufacturing, transportation, storage and retail | USA |
Lazaro et al. [54] | Apple and banana | Retail | Spain |
Tsang et al. [55] | Meat and fruit | Storage | China |
Popa et al. [56] | Onion | Storage | Romania |
Tsang et al. [57] | Meat and seafood | Storage | China |
Tsang et al. [58] | Apple, Grapefruit, Mango, Melons, Tomatoes | Transportation | Hong Kong |
Wen et al. [59] | Food waste | Retail | China |
Wang et al. [60] | Holly | Transportation | China |
Wang et al. [61] | Peach | Manufacturing, storage, transportation, retail | China |
de Venuto and Mezzina [62] | Perishable products * | Storage | Italy |
Morillo et al. [63] | Hot and cold meals | Transportation | Spain |
Chaudhari [64] | Perishable products * | Storage | India |
Tervonen [65] | Seed potatoes | Storage | Finland |
Jedermann et al. [66] | Banana | Transportation | Germany |
Xiao et al. [67] | Grapes | Transportation | China |
Tsang et al. [68] | Meat, seafood, vegetables, fruits, wine and dairy products | Storage | China |
Alfian et al. [69] | Kimchi | Transportation and storage | South Korea |
Musa and Vidyasankar [70] | Blackberry | Transportation and storage | Mexico and USA |
Seo et al. [71] | Seafood | Retail | South Korea |
Xiao et al. [72] | Seafood (tilapia) | Transportation and storage | China |
Shih et al. [73] | Braised pork rice | Production, storage, transportation, and retail | Taiwan |
Thakur and Forås [74] | Chilled lamb products | Transportation | Norway |
Badia-Melis et al. [75] | Citric fruits and different varieties of nuts | Storage | Spain |
Chen et al. [76] | Perishable products * | Transportation | Taiwan |
Aung and Chang [77] | Banana | Transportation | South Korea |
Eom et al. [78] | Pork meat | Transportation and storage | South Korea |
Smiljkovikj et al. [79] | Grapes | Production | Macedonia |
Hafliðason et al. [80] | Seafood (cod) | Transportation | Iceland |
Bustamante et al. [81] | Poultry | Production | Spain |
Faccio et al. [82] | Food waste | Waste collection | Italy |
Wang et al. [83] | Perishable products * | Transportation | Hong Kong |
Ruiz-Garcia et al. [84] | Fruit | Transportation and storage | Spain |
Ref. | Sensing Technologies | Data Communication | Data Storage and Control | Applications and Software |
---|---|---|---|---|
[26] | AM2322, CO2 ATI, O2 ATI and ethylene ATI | WSN, 4G DTU | Database server ** | Keil5 and language of C |
[27] | DHT-22, MQ-135 and LDR | ESP-WROOM-32 | Firebase database | RTIMNS android app |
[28] | LDR NSL06S53 and DHT-22 | Wi-Fi | Database server ** and gateway (MicroSD) | Programmed in MicroPython based on Pycom libraries |
[29] | ADC, RTC, LCD, temp and humidity sensors | LoRa, GPRS, 3G | Cloud server | Mobile app based on rESTful API |
[30] | - | Zigbee, Wi-Fi | Cloud server | Naïve Bayes, ID3 algorithm, k-means |
[31] | High-precision microbial sensor | Zigbee, Wi-Fi, Serial communication * | Local HDD | NUC120 and CC2530 softwares |
[32] | - | 5G | - | Xilinx software |
[33] | MQ2 | Wi-Fi | Arduino Uno | Blynk application |
[34] | RFID reader | RFID | - | XGBoost algorithm |
[35] | EIS using AD5933 microcontroller | Serial communication * | Local HDD | LabVIEW; Matlab; Matlab Zfit |
[36] | 7MH5102-1PD00 load cells, DHT-22 temp/RH | Wi-Fi | ThingSpeak (IoT cloud) | ThingSpeak online platform |
[37] | Temp/RH sensor | MQTT | MS SQL DB | Mobile phone app, bespoke computer program (developed in VB) |
[38] | ADC ethylene sensor; STC12C5A60S2 control chip | 4G | Cloud server | Keil UVision4 (C language); web application and android app |
[39] | Temperature, relative humidity, O2, CO2 sensor node using Zigbee CC2530 | Zigbee, GPRS | MS SQL DB | PC and Mobile Phone user application |
[40] | - | Serial communication * | Local HDD | Keil UVision4 (C language); Matlab |
[41] | LMT86 | Wi-Fi, GPRS | Cloud server | Multiple Linear Regression/Nonlinear Regression |
[42] | SHT1x sensor | RFID, 3G, 4G, Wi-Fi, LoRa, NB-IoT | Cloud server | Orbis Traceability System |
[43] | MQ136, MQ 137, MQ 138, TGS2612, TGS822, and TGS2600 | Zigbee, Serial communication * | Local HDD | CNN-SVM algorithm |
[44] | TGU-4017 and DS18B20 | Bluetooth | Ledger | PROoFD-IT app |
[45] | DS18B20 | Wi-Fi | - | ThingSpeak/ThingChart (app) |
[46] | DHT-11 | Wi-Fi | - | Blynk platform based on NodeMCU |
[47] | Sense-HAT | RFID, Wi-Fi | MongoDB | Android app developed using Python |
[48] | CZN-15E Condenser, DHT-22 | Serial communication * | - | Audacity; Praat; Linear predictive coding |
[49] | - | WSN | WSN Database | - |
[50] | DS18B20 | WSN | Arduino Uno | - |
[51] | DS18B20, SHT10, MQ-7 and MHZ19 | Wi-Fi | Elasticsearch | Kibana tool |
[52] | Microwave sensor | Bluetooth, Wi-Fi | Local HDD | Application developed in LabView |
[53] | Thermistor-based temperature sensor | RFID | Local HDD | Spyder IDE |
[54] | TCS34725 | NFC | Cloud server | An android application was developed |
[55] | CC2650 | Bluetooth, Wi-Fi | IBM cloud server | Food traceability system (BIFTS) |
[56] | BME680, DHT-22 and MQ5gas | ZigBee | Excel spreadsheet | LabVIEW interface |
[57] | CC2650 | Bluetooth, Wi-Fi, 3G, 4G | Cloud server | IoTRMS |
[58] | SensorTag CC3200 | GPRS (3G, 4G, LTE) | My SQL | Web application, IBM IoT Watson |
[59] | - | GPRS (4G) | - | - |
[60] | AM2322, CO2 ATI, ethylene ATI | GPRS (4G) | T-LINK database | Keil5, T-link |
[61] | - | GPRS (4G) | Cloud server | - |
[62] | L/H/T sensors | ZigBee | System’s central control unit (Raspberry Pi 2 B+) | Python 2.7 |
[63] | ADC 2KSPS, Carel NTC015HP0 and SensorTag CC2650 | WSN, Bluetooth, 3G, 4G | IBM cloud server | Foodmote, IBM IoT Watson |
[64] | Simulation of sensor nodes | - | IBM cloud server | IBM IoT Watson and Apache Spark |
[65] | - | Serial communication *, Wi-Fi | Remote server located in the company | Java-based application |
[66] | Sensor node TelosB 2.4 GHz | GSM | Cloud server | - |
[67] | SHT11 | GPRS, WSN | - | |
[68] | CC2650 | Bluetooth, Wi-Fi | Cloud server | Matlab |
[69] | FTC-001 | Wi-Fi | MongoDB, NoSQL and SQL DBs | Express—Node.js based on Socket.IO |
[70] | Intelleflex XC3 | RFID, Wi-Fi | Cloud servers | - |
[71] | EOC biosensor | Wi-Fi | FIFO and flash EEPROM memory | Flask Station mobile app |
[72] | DS18B20 | ZigBee | MS SQL DB | C# in Microsoft Visual Studio 2008 |
[73] | - | ZigBee | ERP server | - |
[74] | EPCglobal UHF Class 1 | GSM, GPRS | EPCIS based system | EPCIS system available through web interface. |
[75] | Sensor MTS400 and MS5534B | ZigBee, IEEE | Local HDD | Matlab |
[76] | - | RFID | Database server ** | Mobile app |
[77] | MSP430 | ZigBee, IEEE | Terminal PC’s API | TinyOS platform |
[78] | MSP430, MM1001, MICS-5914 | RFID | Local HDD | Smart Monitoring System |
[79] | Waspmote sensor | XBee 868 radio | Cloud servers | SmartWine |
[80] | iButton DS1922L and CMS sensor | WSN, RFID | WSN | - |
[81] | Platinum resistance temperature detector (RTD) | Serial communication * | Local HDD | LabVIEW 8.2 |
[82] | Volumetric sensor | RFID, GPRS, GPS | Database server ** | Operations center traceability software |
[83] | - | RFID, GPRS | Backend system | - |
[84] | MTS420 board—Sensirion SHT | ZigBee | Local HDD | - |
Reference | Temperature | Relative Humidity | Gas Composition | Location | Light Intensity | Pressure | Weight | Microbial Concentration | Vibration | Air Velocity | Other |
---|---|---|---|---|---|---|---|---|---|---|---|
[26] | X | X | X | X | |||||||
[27] | X | X | X | X | |||||||
[28] | X | X | X | ||||||||
[29] | X | X | X | X | |||||||
[30] | X | X | X | ||||||||
[31] | X | ||||||||||
[32] | X | X | |||||||||
[33] | X | ||||||||||
[34] | X | ||||||||||
[35] | X | ||||||||||
[36] | X | X | X | ||||||||
[37] | X | X | |||||||||
[38] | X | ||||||||||
[39] | X | X | X | ||||||||
[40] | X | X | X | ||||||||
[41] | X | ||||||||||
[42] | X | X | |||||||||
[43] | X | X | X | ||||||||
[44] | X | ||||||||||
[45] | X | ||||||||||
[46] | X | X | |||||||||
[47] | X | X | |||||||||
[48] | X | X | X | ||||||||
[49] | |||||||||||
[50] | X | ||||||||||
[51] | X | X | X | ||||||||
[52] | X | ||||||||||
[53] | X | ||||||||||
[54] | X | ||||||||||
[55] | X | X | |||||||||
[56] | X | X | X | X | |||||||
[57] | X | X | X | ||||||||
[58] | X | X | |||||||||
[59] | X | X | |||||||||
[60] | X | X | X | ||||||||
[61] | X | X | X | ||||||||
[62] | X | X | X | ||||||||
[63] | X | ||||||||||
[64] | X | ||||||||||
[65] | X | X | |||||||||
[66] | X | X | X | ||||||||
[67] | X | X | X | ||||||||
[68] | X | X | X | X | |||||||
[69] | X | X | X | ||||||||
[70] | X | X | X | X | |||||||
[71] | X | ||||||||||
[72] | X | ||||||||||
[73] | X | ||||||||||
[74] | X | X | X | ||||||||
[75] | X | X | X | X | |||||||
[76] | X | ||||||||||
[77] | X | X | X | ||||||||
[78] | X | X | X | ||||||||
[79] | X | X | X | X | X | ||||||
[80] | X | ||||||||||
[81] | X | X | X | ||||||||
[82] | X | ||||||||||
[83] | X | X | X | X | |||||||
[84] | X | X |
Technical Features | Wi-Fi | RFID | Zigbee | GPRS/GSM | Bluetooth |
---|---|---|---|---|---|
Standard | IEEE 802.11 | Several | IEEE 802.15.4 | - | IEEE 802.15.1 |
Frequency | 2.4 GHz | 13.56 MHz | 868/915 MHz, 2.4 GHz | 850–1900 MHz | 2.4 GHz |
Data rate | 2–54 Mbps | 423 kbps | 20–250 kbps | 20–85 kbps | 1–24 Mbps |
Transmission range | 20–100 m | 1 m | 10–20 m | 10 m | 8–10 m |
Energy consumption | High | Low | Low | Low | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, T.P.; Gillespie, J.; Cama-Moncunill, X.; Ward, S.; Condell, J.; Ramanathan, R.; Murphy, F. A Systematic Review of Real-Time Monitoring Technologies and Its Potential Application to Reduce Food Loss and Waste: Key Elements of Food Supply Chains and IoT Technologies. Sustainability 2023, 15, 614. https://doi.org/10.3390/su15010614
da Costa TP, Gillespie J, Cama-Moncunill X, Ward S, Condell J, Ramanathan R, Murphy F. A Systematic Review of Real-Time Monitoring Technologies and Its Potential Application to Reduce Food Loss and Waste: Key Elements of Food Supply Chains and IoT Technologies. Sustainability. 2023; 15(1):614. https://doi.org/10.3390/su15010614
Chicago/Turabian Styleda Costa, Tamíris Pacheco, James Gillespie, Xavier Cama-Moncunill, Shane Ward, Joan Condell, Ramakrishnan Ramanathan, and Fionnuala Murphy. 2023. "A Systematic Review of Real-Time Monitoring Technologies and Its Potential Application to Reduce Food Loss and Waste: Key Elements of Food Supply Chains and IoT Technologies" Sustainability 15, no. 1: 614. https://doi.org/10.3390/su15010614
APA Styleda Costa, T. P., Gillespie, J., Cama-Moncunill, X., Ward, S., Condell, J., Ramanathan, R., & Murphy, F. (2023). A Systematic Review of Real-Time Monitoring Technologies and Its Potential Application to Reduce Food Loss and Waste: Key Elements of Food Supply Chains and IoT Technologies. Sustainability, 15(1), 614. https://doi.org/10.3390/su15010614