Digital Transformation, Green Technology Innovation and Enterprise Financial Performance: Empirical Evidence from the Textual Analysis of the Annual Reports of Listed Renewable Energy Enterprises in China
Abstract
:1. Introduction
2. Literature Review and Hypotheses Development
2.1. Literature Review
2.2. Hypotheses Development
3. Data, Variables and Methods
3.1. Data
3.2. Variables
3.2.1. Explained Variables
3.2.2. Explanatory Variable
3.2.3. Mediating Variable
3.2.4. Control Variables
3.3. Econometric Methods
4. Results Analysis and Discussion
4.1. Baseline Findings and Robustness Tests
4.2. Heterogeneous Effects
4.2.1. Ownership Heterogeneity
4.2.2. Scale Heterogeneity
4.2.3. Regional Heterogeneity
4.3. Mediating Effects
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhai, H.Y.; Yang, M.; Chan, K.C. Does digital transformation enhance a firm’s performance? Evidence from China. Technol. Soc. 2022, 68, 101841. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economics: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Dey, K.; Saha, S. Influence of procurement decisions in two-period green supply chain. J. Clean. Prod. 2018, 190, 388–402. [Google Scholar] [CrossRef]
- Adner, R.; Puranam, P.; Zhu, F. What is different about digital strategy? From quantitative to qualitative change. Strat. Sci. 2019, 4, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Moriarty, P.; Honnery, D. Can renewable energy power the future? Energy Pol. 2016, 93, 3–7. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, X. Determinants and policy implications of residents’ new energy vehicle purchases: The evidence from China. Nat. Hazards 2016, 82, 155–173. [Google Scholar] [CrossRef]
- Akintande, O.J.; Olubusoye, O.E.; Adenikinju, A.F.; Olanrewaju, B.T. Modeling the determinants of renewable energy consumption: Evidence from the five most populous nations in Africa. Energy 2020, 206, 117992. [Google Scholar] [CrossRef]
- Sheikh, M.A. Energy and renewable energy scenario of Pakistan. Renew. Sust. Energ. Rev. 2010, 14, 354–363. [Google Scholar] [CrossRef]
- Ostergaard, P.A.; Duic, N.; Noorollahi, Y.; Kalogirou, S. Renewable energy for sustainable development. Renew. Energ. 2022, 199, 1145–1152. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, X.; Zuo, J. The development of new energy vehicles for a sustainable future: A review. Renew. Sustain. Energy Rev. 2015, 42, 298–305. [Google Scholar] [CrossRef]
- Hao, H.; Ou, X.; Du, J.; Wang, H.; Ouyang, M. China’s electric vehicle subsidy scheme: Rationale and impacts. Energy Pol. 2014, 73, 722–732. [Google Scholar] [CrossRef]
- Fitzgerald, M.; Kruschwitz, N.; Bonnet, D.; Welch, M. Embracing digital technology: A new strategic imperative. MIT Sloan Manag. Rev. 2014, 55, 1–12. [Google Scholar]
- Jaffe, A.B.; Stavins, R.N. The energy-efficiency gap: What does it mean? Energy Pol. 1994, 22, 804–810. [Google Scholar] [CrossRef]
- Roper, S.; Tapinos, E. Taking risks in the face of uncertainty: An exploratory analysis of green innovation. Technol. Forecast. Soc. Chang. 2016, 112, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.Y.; Cheng, Z.X.; Li, Y.M.; Li, J.Q.; Guan, K.X. Impact of market regulation on economic and environmental performance: A game model of endogenous green technological innovation. J. Clean. Prod. 2022, 277, 123969. [Google Scholar] [CrossRef]
- Andriushchenko, K.; Buriachenko, A.; Rozhko, O.; Lavruk, O.; Skok, P.; Hlushchenko, Y.; Muzychka, Y.; Slavina, N.; Buchynska, O.; Kondarevych, V. Peculiarities of sustainable development of enterprises in the context of digital transformation. Entrep. Sustain. Iss. 2020, 7, 2255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taques, F.H.; Lopez, M.G.; Basso, L.F.; Areal, N. Indicators used to measure service innovation and manufacturing innovation. J. Innov. Knowl. 2021, 6, 11–26. [Google Scholar] [CrossRef]
- Nwankpa, J.K.; Datta, P. Balancing exploration and exploitation of IT resources: The influence of digital business intensity on perceived organizational performance. J. Inf. Syst. 2017, 26, 469–488. [Google Scholar] [CrossRef] [Green Version]
- Buttice, V.; Caviggioli, F.; Franzoni, C.; Scellato, G.; Stryszowski, P.; Thumm, N. Counterfeiting in digital technologies: An empirical analysis of the economic performance and innovative activities of affected companies. Res. Policy 2020, 49, 103959. [Google Scholar] [CrossRef]
- Shah, S.H.H.; Noor, S.; Shen, L.; Butt, A.S.; Ali, M. Role of privacy/safety risk and trust on the development of presumption and value co-creation under the sharing economy: A moderated mediation model. Inform. Technol. Dev. 2021, 27, 718–735. [Google Scholar] [CrossRef]
- Yoo, Y.; Boland, R.J.; Lyytinen, K.; Majchrzak, A. Organizing for innovation in the digitized world. Organ. Sci. 2012, 23, 1398–1408. [Google Scholar] [CrossRef]
- Galindo-Martín, M.A.; Casta no-Martínez, M.S.; Mendez-Picazo, M.T. Digital transformation, digital dividends and entrepreneurship: A quantitative analysis. J. Bus. Res. 2019, 101, 522–527. [Google Scholar] [CrossRef]
- Ode, E.; Ayavoo, R. The mediating role of knowledge application in the relationship between knowledge management practices and firm innovation. J. Innov. Knowl. 2020, 5, 210–218. [Google Scholar] [CrossRef]
- Horvath, K.; Rabetino, R. Knowledge-intensive territorial servitization: Regional driving forces and the role of the entrepreneurial ecosystem. Reg. Stud. 2019, 53, 330–340. [Google Scholar] [CrossRef]
- Haider, Z.A.; Liu, M.; Wang, Y.F.; Zhang, Y. Government ownership, financial constraint, corruption, and corporate performance: International evidence. J. Int. Financ. Mark. Inst. Money 2018, 53, 76–93. [Google Scholar] [CrossRef]
- Child, J.; Tse, D.K. China’s transition and its implications for international business. Int. Bus. Stud. 2001, 32, 5–21. [Google Scholar] [CrossRef]
- Liu, C.; Fang, J.; Xie, R. Energy policy and corporate financial performance: Evidence from China’s 11th five-year plan. Energy Econ. 2021, 93, 105030. [Google Scholar] [CrossRef]
- Moretti, F.; Biancardi, D. Inbound open innovation and firm performance. J. Innov. Knowl. 2020, 5, 1–19. [Google Scholar] [CrossRef]
- Kaur, N.; Sood, S.K. An energy-efficient architecture for the internet of things (IoT). Ieee Syst. J. 2017, 11, 796–805. [Google Scholar] [CrossRef]
- Nambisan, S. Digital entrepreneurship: Toward a digital technology perspective of entrepreneurship. Enterpren. Theor. Pract. 2017, 41, 2017. [Google Scholar] [CrossRef]
- Lin, W.L.; Chean, J.H.; Azali, M. Does firm size matter? Evidence on the impact of the green innovation strategy on corporate financial performance in the automotive sector. J. Clean. Prod. 2019, 229, 974–988. [Google Scholar] [CrossRef]
- Li, F.S.; Xu, X.L.; Li, Z.W.; Du, P.C.; Ye, J.F. Can low-carbon technological innovation truly improve enterprise performance? The case of Chinese manufacturing companies. J. Clean. Prod. 2021, 293, 125949. [Google Scholar] [CrossRef]
- Mergel, I.; Edelmann, N.; Haug, N. Defining digital transformation: Results from expert interviews. Gov. Inform. Q. 2019, 36, 101385. [Google Scholar] [CrossRef]
- Reis, J.; Amorim, M. Digital Transformation: A Literature Review and Guidelines for Future Research. World Conference on Information Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Dong, Q.; Fabian, N.; Haenlein, M. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Schallmo, D.; Williams, C.A.; Boardman, L. Digital transformation of business models—Best practice, enablers, and roadmap. Digit. Disruptive Innov. 2019, 5, 119–138. [Google Scholar]
- Curran, D. Risk, innovation, and democracy in the digital economy. Eur. J. Soc. Theory 2018, 21, 207–226. [Google Scholar] [CrossRef]
- Kraus, S.; Schiavone, F.; Pluzhnikova, A.; Invernizzi, A.C. Digital transformation in healthcare: Analyzing the current state-of-research. J. Bus. Res. 2021, 123, 557–567. [Google Scholar] [CrossRef]
- Lorenzo, A.; Simon, R.; Vito, A.; Bernardo, B. The duality of digital and environmental orientations in the context of SMEs: Implications for innovation performance. J. Bus. Res. 2021, 123, 44–56. [Google Scholar]
- Llopis-Albert, C.; Rubio, F.; Valero, F. Impact of digital transformation on the automotive industry. Technol. Forecast. Soc. Chang. 2021, 162, 120343. [Google Scholar] [CrossRef]
- Ribeiro-Navarrete, S.; Botella-Carrubi, D.; Palacios-Marqu’es, D.; Orero-Blat, M. The effect of digitalization on business performance: An applied study of KIBS. J. Bus. Res. 2021, 126, 319–326. [Google Scholar] [CrossRef]
- Hakala, H. Strategic orientations in management literature: Three approaches to understanding the interaction between market, technology, entrepreneurial and learning orientations. Int. J. Manag. Rev. 2011, 13, 199–217. [Google Scholar] [CrossRef]
- Gatignon, H.; Xuereb, J. Strategic orientation of the firm and new product performance. J. Market. Res. 1997, 34, 77–90. [Google Scholar] [CrossRef]
- Lorenzo, A.; Carrillo-Hermosilla, J.; Del Rio, P.; Pontrandolfo, P. Sustainable innovation: Processes, strategies, and outcomes. Corp. Soc. Responsib. Environ. Manag. 2019, 26, 106–109. [Google Scholar]
- Lin, C.; Kunnathur, A. Strategic orientations, developmental culture, and big data capability. J. Bus. Res. 2019, 105, 49–60. [Google Scholar] [CrossRef]
- Lyytinen, K.; Yoo, Y.; Boland, R.J.J. Digital product innovation within four classes of innovation networks. Y Inf. Syst. J. 2016, 26, 47–75. [Google Scholar] [CrossRef]
- Parida, V.; Westerberg, M.; Frishammar, J. Inbound open innovation activities in high-tech SMEs: The impact on innovation performance. J. Small Bus. Manag. 2012, 50, 283–309. [Google Scholar] [CrossRef] [Green Version]
- Bajari, P.; Chernozhukov, V.; Hortagcsu, A. The impact of big data on firm performance: An empirical investigation. AEA Pap. Proc. 2019, 109, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Olden, J.D.; Jackson, D.A. Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 2002, 154, 135–150. [Google Scholar] [CrossRef]
- Gilch, P.M.; Sieweke, J. Recruiting digital talent: The strategic role of recruitment in organizations’ digital transformation. Ger. J. Hum. Resour. Man. 2021, 35, 53–82. [Google Scholar] [CrossRef]
- Hart, S.L. A natural-resource-based view of the firm. Acad. Manag. Rev. 1995, 20, 986–1014. [Google Scholar] [CrossRef] [Green Version]
- Miroshnychenko, I.; Barontini, R.; Testa, F. Green practices and financial performance: A global outlook. J. Clean. Prod. 2017, 147, 340–351. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.S. The driver of green innovation and green image: Green core competence. J. Bus Ethics 2008, 81, 531–543. [Google Scholar] [CrossRef]
- Zhu, P.; Chen, Y.; Wang, L.Y.; Zhou, M. Treatment of waste printed circuit board by green solvent using liquid. Waste Manag. 2012, 32, 1914–1918. [Google Scholar] [CrossRef] [PubMed]
- Dangelico, R.M.; Pontrandolfo, P. Being green and competitive: The impact of environmental actions and collaborations on firm performance. Bus. Strateg. Environ. 2015, 24, 413–430. [Google Scholar] [CrossRef]
- Chiou, T.Y.; Chan, H.K.; Lettice, F. Chung, S.H. The influence of greening the suppliers and green innovation on environmental performance and competitive advantage in Taiwan. Transport. Res. E-log. 2011, 47, 822–836. [Google Scholar] [CrossRef]
- Phan, T.N.; Baird, K. The comprehensiveness of environmental management systems: The influence of institutional pressures and the impact on environmental performance. J. Environ. Manag. 2015, 160, 45–56. [Google Scholar] [CrossRef]
- Wruck, K.H.; Wu, Y. The relation between CEO equity incentives and the quality of accounting disclosures: New evidence. J. Corp. Finan. 2021, 67, 101895. [Google Scholar] [CrossRef]
- Hutchinson, M.; Gul, F.A. Investment opportunity set, corporate governance practices and firm performance. J. Corp. Finan. 2004, 10, 595–614. [Google Scholar] [CrossRef]
- Gal, P.; Nicoletti, G.; Rüden, C.V.; Sorbe, S.; Renault, T. Digitalization and productivity: In search of the holy grail: Firm-level empirical evidence from European countries. Int. Prod. Mon. 2019, 37, 39–71. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical consideration. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, W.; Huang, X. Bounded entrepreneurship and internationalisation of indigenous Chinese private-owned firms. Int. Bus. Rev. 2008, 17, 488–508. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Yang, Y.; Luo, Y.; Liu, C. Export, subsidy and innovation: China’s state-owned enterprises versus privately-owned enterprises. Econ. Polit. Stud-Eps. 2016, 4, 137–155. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, J.; Luo, L.J. Who is using government subsidies to innovate? The combined moderating effect of ownership and factor market distortions. Manag. World 2015, 1, 75–86. [Google Scholar]
- Ren, X.H.; Liu, Z.Q.; Jin, C.L.; Lin, R.Y. Oil price uncertainty and enterprise total factor productivity: Evidence from China. Int. Rev. Econ. Financ. 2021, 83, 201–218. [Google Scholar] [CrossRef]
- Buesa, M.; Heijs, J.; Baumert, T. The determinants of regional innovation in Europe: A combined factorial and regression knowledge production function approach. Res. Pol. 2010, 39, 722–735. [Google Scholar] [CrossRef]
- Todtling, F.; Trippl, M. One size fts all?: Towards a differentiated regional innovation policy approach. Res. Pol. 2005, 34, 1203–1219. [Google Scholar]
- Clarysse, B.; Wright, M.; Mustar, P. Behavioural additionality of R&D subsidies: A learning perspective. Res. Pol. 2009, 38, 1517–1533. [Google Scholar]
Variables | Obs. | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
ROA | 793 | 0.0358 | 0.0402 | −0.0282 | 0.4388 |
ROE | 793 | 0.0910 | 0.0796 | −0.0789 | 0.7833 |
DT | 793 | 1.7197 | 1.0650 | 0.0000 | 3.2958 |
GTI | 793 | 0.4815 | 0.7252 | 0.0000 | 3.9512 |
ES | 793 | 22.4598 | 1.2812 | 17.7826 | 25.8970 |
RGR | 793 | 0.1264 | 0.2058 | −0.4682 | 2.1797 |
AL | 793 | 0.5372 | 0.1354 | 0.1344 | 0.7643 |
EM | 793 | 2.1952 | 1.2478 | 1.0164 | 6.1431 |
BI | 793 | 31.4631 | 4.2617 | 27.2830 | 45.7928 |
LS | 793 | 29.5367 | 9.6491 | 12.2845 | 67.2832 |
Variables | ROA | ROE | ROA | ROE |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
DT | 0.0540 *** (4.21) | 0.0708 *** (5.88) | 0.0442 *** (4.64) | 0.0648 *** (4.77) |
ES | 0.0359 *** (4.75) | 0.0205 *** (4.20) | ||
RGR | 0.0248 *** (4.14) | 0.0270 *** (4.71) | ||
AL | 0.5312 *** (3.07) | 0.5385 *** (4.11) | ||
EM | −0.1635 * (−1.85) | −0.1147 * (−1.70) | ||
BI | −0.0390 (−1.28) | −0.0785 (−1.54) | ||
LS | 0.0536 *** (6.21) | 0.0791 *** (5.36) | ||
_cons | 3.8560 *** (11.79) | 2.5740*** (9.12) | −1.1987 *** (−6.01) | −1.7394 *** (−7.16) |
IE | YES | YES | YES | YES |
YE | YES | YES | YES | YES |
Obs. | 793 | 793 | 793 | 793 |
R2 | 0.2310 | 0.2136 | 0.2491 | 0.2270 |
Variables | Excluding the Observations in 2020 and 2021 | Adding Control Variables | Alternative Indicator for Corporate Performance | ||
---|---|---|---|---|---|
ROA | ROE | ROA | ROE | TFP | |
(1) | (2) | (3) | (4) | (5) | |
DT | 0.0376 *** (4.98) | 0.0615 *** (4.81) | 0.0325 *** (4.56) | 0.0619 *** (3.45) | 0.0214 *** (3.29) |
_cons | −3.0425 *** (−9.785) | −3.6116 *** (−11.05) | −2.7599 *** (−6.25) | −3.3842 *** (−8.69) | −2.1633 *** (−8.10) |
Control Variables | YES | YES | YES | YES | YES |
IE | YES | YES | YES | YES | YES |
YE | YES | YES | YES | YES | YES |
Obs. | 671 | 671 | 793 | 793 | 793 |
R2 | 0.2585 | 0.2349 | 0.2756 | 0.2157 | 0.2557 |
Variables | SOFs | NSOFs | ||
---|---|---|---|---|
ROA | ROE | ROA | ROE | |
(1) | (2) | (3) | (4) | |
DT | 0.0428 *** (4.26) | 0.0739 *** (4.34) | 0.0256 (1.54) | 0.0571 (1.13) |
_cons | −3.7655 *** (−9.62) | −2.4438 *** (−6.11) | −2.3080 *** (−7.15) | −2.1759 *** (−5.15) |
Control Variables | YES | YES | YES | YES |
IE | YES | YES | YES | YES |
YE | YES | YES | YES | YES |
Obs. | 260 | 260 | 533 | 533 |
R2 | 0.2782 | 0.2973 | 0.1413 | 0.1286 |
Variables | Above Mean | Below Mean | ||
---|---|---|---|---|
ROA | ROE | ROA | ROE | |
(1) | (2) | (3) | (4) | |
DT | 0.0404 *** (4.87) | 0.0711 *** (5.22) | 0.0359 ** (2.07) | 0.0532 ** (2.13) |
_cons | −2.1637 *** (−6.90) | −2.9384 *** (−8.62) | −2.5007 *** (−6.16) | −2.7951 *** (−7.39) |
Control Variables | YES | YES | YES | YES |
IE | YES | YES | YES | YES |
YE | YES | YES | YES | YES |
Obs. | 312 | 312 | 481 | 481 |
R2 | 0.2917 | 0.2325 | 0.2439 | 0.2047 |
Variables | Eastern Region | Central Region | Western Region | |||
---|---|---|---|---|---|---|
ROA | ROE | ROA | ROE | ROA | ROE | |
(1) | (2) | (3) | (4) | (5) | (6) | |
DT | 0.0424 *** (4.56) | 0.0633 *** (5.14) | 0.0241 (1.55) | 0.0432 (1.35) | 0.0245 (1.49) | 0.034 (1.22) |
_cons | −2.3190 *** (−6.59) | −2.8526 *** (−8.08) | −2.6935 *** (−6.61) | −2.0890 *** (−7.07) | −1.4802 *** (−4.87) | −2.8521 *** (−4.54) |
Control Variables | YES | YES | YES | YES | YES | YES |
IE | YES | YES | YES | YES | YES | YES |
YE | YES | YES | YES | YES | YES | YES |
Obs. | 553 | 553 | 169 | 169 | 91 | 91 |
R2 | 0.318 | 0.2947 | 0.1292 | 0.1569 | 0.134 | 0.1478 |
Variables | GTI | ROA | ROE |
---|---|---|---|
(1) | (2) | (3) | |
DT | 0.0561 *** (4.14) | 0.0364 (1.02) | 0.0549 (1.18) |
GTI | 0.1275 *** (3.65) | 0.1851 *** (5.18) | |
_cons | −2.0335 *** (−5.28) | −3.5440 *** (−7.27) | −4.6186 *** (−8.13) |
Control Variables | YES | YES | YES |
IE | YES | YES | YES |
YE | YES | YES | YES |
Obs. | 793 | 793 | 793 |
R2 | 0.2509 | 0.2808 | 0.2961 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Li, B. Digital Transformation, Green Technology Innovation and Enterprise Financial Performance: Empirical Evidence from the Textual Analysis of the Annual Reports of Listed Renewable Energy Enterprises in China. Sustainability 2023, 15, 712. https://doi.org/10.3390/su15010712
Ren Y, Li B. Digital Transformation, Green Technology Innovation and Enterprise Financial Performance: Empirical Evidence from the Textual Analysis of the Annual Reports of Listed Renewable Energy Enterprises in China. Sustainability. 2023; 15(1):712. https://doi.org/10.3390/su15010712
Chicago/Turabian StyleRen, Yangjun, and Botang Li. 2023. "Digital Transformation, Green Technology Innovation and Enterprise Financial Performance: Empirical Evidence from the Textual Analysis of the Annual Reports of Listed Renewable Energy Enterprises in China" Sustainability 15, no. 1: 712. https://doi.org/10.3390/su15010712
APA StyleRen, Y., & Li, B. (2023). Digital Transformation, Green Technology Innovation and Enterprise Financial Performance: Empirical Evidence from the Textual Analysis of the Annual Reports of Listed Renewable Energy Enterprises in China. Sustainability, 15(1), 712. https://doi.org/10.3390/su15010712