CO2 Flow Characteristics in Macro-Scale Coal Sample: Effect of CO2 Injection Pressure and Buried Depth
Abstract
:1. Introduction
2. Model Development
2.1. Coal Deformation
2.2. Stress–Strain Relation
2.3. Permeability Model with Porosity
2.4. Gas Migration in Coal
3. Finite Element Simulation
3.1. Model Definition and Boundary Conditions
3.2. Model Parameters
3.3. Model Meshing
4. Results and Discussion
4.1. Effect of Injection Time on Gas Flow Behaviour in Coal
4.2. Effect of CO2 Injection Pressure on Gas Flow Behaviour in Coal
4.3. Effect of Buried Depth on Gas Flow Behaviours in Coal
5. Implications for CO2 Sequestration in Deep Coal Seams
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mavrodieva, A.V.; Shaw, R. Disaster and Climate Change Issues in Japan’s Society 5.0—A Discussion. Sustainability 2020, 12, 1893. [Google Scholar] [CrossRef]
- Summers, J.K.; Lamper, A.; McMillion, C.; Harwell, L.C. Observed Changes in the Frequency, Intensity, and Spatial Patterns of Nine Natural Hazards in the United States from 2000 to 2019. Sustainability 2022, 14, 4158. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Long, D.; Scanlon, B.R.; Mann, M.E.; Li, X.; Tian, F.; Sun, Z.; Wang, G. Climate Change Threatens Terrestrial Water Storage over the Tibetan Plateau. Nat. Clim. Chang. 2022, 12, 801–807. [Google Scholar] [CrossRef]
- Hossain, B.; Sohel, M.S.; Ryakitimbo, C.M. Climate Change Induced Extreme Flood Disaster in Bangladesh: Implications on People’s Livelihoods in the Char Village and Their Coping Mechanisms. Prog. Disaster Sci. 2020, 6, 100079. [Google Scholar] [CrossRef]
- Al-Ghussain, L. Global Warming: Review on Driving Forces and Mitigation. Environ. Prog. Sustain. Energy 2019, 38, 13–21. [Google Scholar] [CrossRef]
- Statistical Review of World Energy Energy Economics Home. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 31 March 2023).
- Climate Action—United Nations Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/climate-action/ (accessed on 31 March 2023).
- The Paris Agreement UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 31 March 2023).
- Zhang, X.G.; Ranjith, P.G.; Perera, M.S.A.; Ranathunga, A.S.; Haque, A. Gas Transportation and Enhanced Coalbed Methane Recovery Processes in Deep Coal Seams: A Review. Energy Fuels 2016, 30, 8832–8849. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, S.; Zhang, X.; Wei, C. Coupled coal–gas interaction during CBM and CO2-ECBM recovery in coal seams: A critical review. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 1–32. [Google Scholar] [CrossRef]
- Tyne, R.L.; Barry, P.H.; Lawson, M.; Byrne, D.J.; Warr, O.; Xie, H.; Hillegonds, D.J.; Formolo, M.; Summers, Z.M.; Skinner, B.; et al. Rapid Microbial Methanogenesis during CO2 Storage in Hydrocarbon Reservoirs. Nature 2021, 600, 670–674. [Google Scholar] [CrossRef]
- Gunter, W.D.; Gentzis, T.; Rottenfusser, B.A.; Richardson, R.J.H. Deep Coalbed Methane in Alberta, Canada: A Fuel Resource with the Potential of Zero Greenhouse Gas Emissions. Energy Convers. Manag. 1997, 38, S217–S222. [Google Scholar] [CrossRef]
- Pan, Z.; Ye, J.; Zhou, F.; Tan, Y.; Connell, L.D.; Fan, J. CO2 Storage in Coal to Enhance Coalbed Methane Recovery: A Review of Field Experiments in China. Int. Geol. Rev. 2017, 60, 754–776. [Google Scholar] [CrossRef]
- Zhang, X.; Ranjith, P.G.; Ranathunga, A.S. Sub- and Super-Critical Carbon Dioxide Flow Variations in Large High-Rank Coal Specimen: An Experimental Study. Energy 2019, 181, 148–161. [Google Scholar] [CrossRef]
- Cui, X.; Bustin, R.M.; Chikatamarla, L. Adsorption-Induced Coal Swelling and Stress: Implications for Methane Production and Acid Gas Sequestration into Coal Seams. J. Geophys. Res. Solid. Earth 2007, 112, 10202. [Google Scholar] [CrossRef]
- Qu, H.; Liu, J.; Pan, Z.; Connell, L. Impact of Matrix Swelling Area Propagation on the Evolution of Coal Permeability under Coupled Multiple Processes. J. Nat. Gas. Sci. Eng. 2014, 18, 451–466. [Google Scholar] [CrossRef]
- Zhang, X.; Ranjith, P.G. Experimental Investigation of Effects of CO2 Injection on Enhanced Methane Recovery in Coal Seam Reservoirs. J. CO2 Util. 2019, 33, 394–404. [Google Scholar] [CrossRef]
- Zhang, X.; Gamage, R.P.; Perera, M.S.A.; Ranathunga, A.S. Effects of Water and Brine Saturation on Mechanical Property Alterations of Brown Coal. Energies 2018, 11, 1116. [Google Scholar] [CrossRef]
- Yao, H.; Chen, Y.; Liang, W.; Li, Z.; Song, X. Experimental Study on the Permeability Evolution of Coal with CO2 Phase Transition. Energy 2023, 266, 126531. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Q.; Niu, Q.; Pan, J.; Wang, H.; Wang, Z. CO2 Adsorption and Swelling of Coal under Constrained Conditions and Their Stage-Change Relationship. J. Nat. Gas. Sci. Eng. 2020, 76, 103205. [Google Scholar] [CrossRef]
- Vishal, V. In-Situ Disposal of CO2: Liquid and Supercritical CO2 Permeability in Coal at Multiple down-Hole Stress Conditions. J. CO2 Util. 2017, 17, 235–242. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, M.; Li, X.; Liu, Y. Impact Research of CH4 Replacement with CO2 in Hydrous Coal under High Pressure Injection. Min. Mineral. Depos. 2022, 16, 121–126. [Google Scholar] [CrossRef]
- Perera, M.S.A.; Ranjith, P.G.; Choi, S.K.; Airey, D. Investigation of Temperature Effect on Permeability of Naturally Fractured Black Coal for Carbon Dioxide Movement: An Experimental and Numerical Study. Fuel 2012, 94, 596–605. [Google Scholar] [CrossRef]
- Jasinge, D.; Ranjith, P.G.; Choi, S.K. Effects of Effective Stress Changes on Permeability of Latrobe Valley Brown Coal. Fuel 2011, 90, 1292–1300. [Google Scholar] [CrossRef]
- Connell, L.D. A New Interpretation of the Response of Coal Permeability to Changes in Pore Pressure, Stress and Matrix Shrinkage. Int. J. Coal Geol. 2016, 162, 169–182. [Google Scholar] [CrossRef]
- Ren, J.; Niu, Q.; Wang, Z.; Wang, W.; Yuan, W.; Weng, H.; Sun, H.; Li, Y.; Du, Z. CO2 Adsorption/Desorption, Induced Deformation Behavior, and Permeability Characteristics of Different Rank Coals: Application for CO2-Enhanced Coalbed Methane Recovery. Energy Fuels 2022, 36, 5709–5722. [Google Scholar] [CrossRef]
- De Silva, P.N.K.; Ranjith, P.G. Advanced Core Flooding Apparatus to Estimate Permeability and Storage Dynamics of CO2 in Large Coal Specimens. Fuel 2013, 104, 417–425. [Google Scholar] [CrossRef]
- Ranathunga, A.S.; Perera, M.S.A.; Ranjith, P.G.; De Silva, G.P.D. A Macro-Scale View of the Influence of Effective Stress on Carbon Dioxide Flow Behaviour in Coal: An Experimental Study. Geomech. Geophys. Geo-Energy Geo-Resour. 2016, 3, 13–28. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, C.; Zhang, D.; Zhang, C.; Ranjith, P.G.; Yuan, Y. Carbon Dioxide Flow Behaviour in Macro-Scale Bituminous Coal: An Experimental Determination of the Influence of Effective Stress. Energy 2023, 268, 126754. [Google Scholar] [CrossRef]
- Li, Z.; Yu, H.; Bai, Y. Numerical Simulation of CO2-ECBM Based on Multi-Physical Field Coupling Model. Sustainability 2022, 14, 11789. [Google Scholar] [CrossRef]
- Cun, Z.; Bo, L.; Ziyu, S.; Jinbao, L.; Jinlong, Z. Breakage Mechanism and Pore Evolution Characteristics of Gangue Materials under Compression. Acta Geotech. 2022, 17, 4823–4835. [Google Scholar] [CrossRef]
- Connell, L.D.; Lu, M.; Pan, Z. An Analytical Coal Permeability Model for Tri-Axial Strain and Stress Conditions. Int. J. Coal Geol. 2010, 84, 103–114. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Elsworth, D.; Connell, L.D.; Pan, Z. Impact of CO2 Injection and Differential Deformation on CO2 Injectivity under In-Situ Stress Conditions. Int. J. Coal Geol. 2010, 81, 97–108. [Google Scholar] [CrossRef]
- Xue, Y.; Ranjith, P.G.; Chen, Y.; Cai, C.; Gao, F.; Liu, X. Nonlinear Mechanical Characteristics and Damage Constitutive Model of Coal under CO2 Adsorption during Geological Sequestration. Fuel 2023, 331, 125690. [Google Scholar] [CrossRef]
- Zhu, W.C.; Wei, C.H.; Liu, J.; Qu, H.Y.; Elsworth, D. A Model of Coal–Gas Interaction under Variable Temperatures. Int. J. Coal Geol. 2011, 86, 213–221. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2013. [Google Scholar]
- Czerw, K. Methane and Carbon Dioxide Sorption/Desorption on Bituminous Coal—Experiments on Cubicoid Sample Cut from the Primal Coal Lump. Int. J. Coal Geol. 2011, 85, 72–77. [Google Scholar] [CrossRef]
- Dutta, P.; Bhowmik, S.; Das, S. Methane and Carbon Dioxide Sorption on a Set of Coals from India. Int. J. Coal Geol. 2011, 85, 289–299. [Google Scholar] [CrossRef]
- Bae, J.S.; Bhatia, S.K. High-Pressure Adsorption of Methane and Carbon Dioxide on Coal. Energy Fuels 2006, 20, 2599–2607. [Google Scholar] [CrossRef]
- Vandamme, M.; Brochard, L.; Lecampion, B.; Coussy, O. Adsorption and Strain: The CO2-Induced Swelling of Coal. J. Mech. Phys. Solids 2010, 58, 1489–1505. [Google Scholar] [CrossRef]
- Hol, S.; Spiers, C.J. Competition between Adsorption-Induced Swelling and Elastic Compression of Coal at CO2 Pressures up to 100 MPa. J. Mech. Phys. Solids 2012, 60, 1862–1882. [Google Scholar] [CrossRef]
- Day, S.; Fry, R.; Sakurovs, R. Swelling of Australian Coals in Supercritical CO2. Int. J. Coal Geol. 2008, 74, 41–52. [Google Scholar] [CrossRef]
- Ge, Z.; Zeng, M.; Cheng, Y.; Wang, H.; Liu, X. Effects of Supercritical CO2 Treatment Temperature on Functional Groups and Pore Structure of Coals. Sustainability 2019, 11, 7180. [Google Scholar] [CrossRef]
Model Parameter | Value |
---|---|
CO2 properties | |
2.32 MPa | |
0.0513 m3/kg | |
) | From 6 MPa to 25 MPa |
Coal properties | |
) | 1450 kg/m3 |
) | 3.37 GPa |
) | 0.263 |
Injection Pressure | Minimum Porosity |
---|---|
6 MPa | 6.94% |
7 MPa | 6.87% |
8 MPa | 6.81% |
9 MPa | 6.76% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wang, Z.; Yin, H.; Jin, C.; Zhang, X.; Liu, L. CO2 Flow Characteristics in Macro-Scale Coal Sample: Effect of CO2 Injection Pressure and Buried Depth. Sustainability 2023, 15, 8002. https://doi.org/10.3390/su15108002
Wang H, Wang Z, Yin H, Jin C, Zhang X, Liu L. CO2 Flow Characteristics in Macro-Scale Coal Sample: Effect of CO2 Injection Pressure and Buried Depth. Sustainability. 2023; 15(10):8002. https://doi.org/10.3390/su15108002
Chicago/Turabian StyleWang, Huping, Zhao Wang, Haikui Yin, Chao Jin, Xiaogang Zhang, and Langtao Liu. 2023. "CO2 Flow Characteristics in Macro-Scale Coal Sample: Effect of CO2 Injection Pressure and Buried Depth" Sustainability 15, no. 10: 8002. https://doi.org/10.3390/su15108002
APA StyleWang, H., Wang, Z., Yin, H., Jin, C., Zhang, X., & Liu, L. (2023). CO2 Flow Characteristics in Macro-Scale Coal Sample: Effect of CO2 Injection Pressure and Buried Depth. Sustainability, 15(10), 8002. https://doi.org/10.3390/su15108002