Accepted Guidelines on the Potential of Water Budgets for Solving Droughts: A Case Study of Chum Saeng Sub-District, Satuek District, Buri Ram Province, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Areas
2.2. Meteorological and Hydrological Data Collection
2.3. Physical Maps
2.4. Water Demand Management
2.5. Water Balance Analysis
3. Results and Discussion
3.1. Physical Maps
3.2. Community Participation
3.3. Water Balance Models
3.4. Water Consumption
3.5. Water Demands
3.6. Water Management Guidelines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pame, A.R.P.; Vithoonjit, D.; Meesang, N.; Balingbing, C.; Gummert, M.; Van Hung, N.; Singleton, G.R.; Stuart, A.M. Improving the Sustainability of Rice Cultivation in Central Thailand with Biofertilizers and Laser Land Leveling. Agronomy 2023, 13, 587. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Zolghadr-Asli, B.; Sarzaeim, P.; Aboutalebi, M.; Chu, X.; Loáiciga, H.A. Evaluation of water shortage crisis in the Middle East and possible remedies. J. Water Supply Res. Technol.–Aqua 2020, 69, 85–98. [Google Scholar] [CrossRef]
- Lampridi, M.G.; Sørensen, C.G.; Bochtis, D. Agricultural sustainability: A review of concepts and methods. Sustainability 2019, 11, 5120. [Google Scholar] [CrossRef]
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What is sustainable agriculture? A systematic review. Sustainability 2015, 7, 7833–7865. J. Agric. Environ. Ethics 2005, 18, 293–303. [Google Scholar]
- Brown, T.C.; Mahat, V.; Ramirez, J.A. Adaptation to future water shortages in the United States caused by population growth and climate change. Earth’s Future 2019, 7, 219–234. [Google Scholar] [CrossRef]
- Luo, P.; Sun, Y.; Wang, S.; Wang, S.; Lyu, J.; Zhou, M.; Nakagami, K.; Takara, K.; Nover, D. Historical assessment and future sustainability challenges of Egyptian water resources management. J. Clean. Prod. 2020, 263, 121154. [Google Scholar] [CrossRef]
- Saatsaz, M. A historical investigation on water resources management in Iran. Environ. Dev. Sustain. 2020, 22, 1749–1785. [Google Scholar] [CrossRef]
- Boychenko, S.; Kuchma, T.; Khlobystov, I.V. Changes in the water surface area of reservoirs of the crimean peninsula and artificial increases in precipitation as one of the possible solutions to water shortages. Sustainability 2022, 14, 9995. [Google Scholar] [CrossRef]
- Chen, J.; Deng, M.; Xia, L.; Wang, H. Risk assessment of drought, based on IDM-VFS in the Nanpan River Basin, Yunnan Province, China. Sustainability 2017, 9, 1124. [Google Scholar] [CrossRef]
- Lehmann, F.; Vishwakarma, B.D.; Bamber, J. How well are we able to close the water budget at the global scale? Hydrol. Earth Syst. Sci. 2022, 26, 35–54. [Google Scholar] [CrossRef]
- Chen, T.; Song, C.; Ke, L.; Wang, J.; Liu, K.; Wu, Q. Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements. J. Hydrol. 2021, 593, 125781. [Google Scholar] [CrossRef]
- Liersch, S.; Fournet, S.; Koch, H.; Djibo, A.G.; Reinhardt, J.; Kortlandt, J.; Van Weert, F.; Seidou, O.; Klop, E.; Baker, C. Water resources planning in the Upper Niger River basin: Are there gaps between water demand and supply? J. Hydrol. Reg. Stud. 2019, 21, 176–194. [Google Scholar] [CrossRef]
- Ren, K.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.; Cheng, L.; Fang, W.; Li, P. A nature-based reservoir optimization model for resolving the conflict in human water demand and riverine ecosystem protection. J. Clean. Prod. 2019, 231, 406–418. [Google Scholar] [CrossRef]
- Kangrang, A.; Pakoktom, W.; Nuannukul, W.; Chaleeraktrakoon, C. Adaptive reservoir rule curves by optimisation and simulation. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2017; Volume 170, pp. 219–230. [Google Scholar]
- Sommer, T.; Sulzer, M.; Wetter, M.; Sotnikov, A.; Mennel, S.; Stettler, C. The reservoir network: A new network topology for district heating and cooling. Energy 2020, 199, 117418. [Google Scholar] [CrossRef]
- Dong, N.; Yu, Z.; Yang, C.; Yang, M.; Wang, W. Hydrological impact of a reservoir network in the upper Gan River Basin, China. Hydrol. Process. 2019, 33, 1709–1723. [Google Scholar] [CrossRef]
- Pardo, M.Á.; Riquelme, A.J.; Jodar-Abellan, A.; Melgarejo, J. Water and energy demand management in pressurized irrigation networks. Water 2020, 12, 1878. [Google Scholar] [CrossRef]
- Donyaii, A.; Sarraf, A.; Ahmadi, H. A novel approach to supply the water reservoir demand based on a hybrid whale optimization algorithm. Shock Vib. 2020, 2020, 8833866. [Google Scholar] [CrossRef]
- Asadieh, B.; Afshar, A. Optimization of water-supply and hydropower reservoir operation using the charged system search algorithm. Hydrology 2019, 6, 5. [Google Scholar] [CrossRef]
- Xu, Z.; Cai, X.; Yin, X.; Su, M.; Wu, Y.; Yang, Z. Is water shortage risk decreased at the expense of deteriorating water quality in a large water supply reservoir? Water Res. 2019, 165, 114984. [Google Scholar] [CrossRef] [PubMed]
- Farmer, D.; Sivapalan, M.; Jothityangkoon, C. Climate, soil, and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: Downward approach to water balance analysis. Water Resour. Res. 2003, 39, WR000328. [Google Scholar] [CrossRef]
- Kummu, M.; Tes, S.; Yin, S.; Adamson, P.; Józsa, J.; Koponen, J.; Richey, J.; Sarkkula, J. Water balance analysis for the Tonle Sap Lake–floodplain system. Hydrol. Process. 2014, 28, 1722–1733. [Google Scholar] [CrossRef]
- Kangrang, A.; Chaleeraktrakoon, C.; Patamatamkul, S.; Hormwichian, R. Expert participation with optimization technique for improving optimal rule curves of reservoir. Bulg. J. Agric. Sci. 2013, 19, 1140–1147. [Google Scholar]
- Videira, N.; Antunes, P.; Santos, R.; Lobo, G. Public and stakeholder participation in European water policy: A critical review of project evaluation processes. Eur. Environ. 2006, 16, 19–31. [Google Scholar] [CrossRef]
- Palmer, R.N.; Cardwell, H.E.; Lorie, M.A.; Werick, W. Disciplined planning, structured participation, and collaborative modeling—Applying shared vision planning to water resources. J. Am. Water Resour. Assoc. 2013, 49, 614–628. [Google Scholar] [CrossRef]
- Uphoff, N. People’s participation in water management: Gal Oya, Sri Lanka. In Public Participation in Development Planning and Management; Routledge: Abingdon-on-Thames, UK, 2019; pp. 131–178. [Google Scholar]
- Hartley, T.W. Public perception and participation in water reuse. Desalination 2006, 187, 115–126. [Google Scholar] [CrossRef]
- Daher, B.; Hannibal, B.; Portney, K.E.; Mohtar, R.H. Toward creating an environment of cooperation between water, energy, and food stakeholders in San Antonio. Sci. Total Environ. 2019, 651, 2913–2926. [Google Scholar] [CrossRef]
- Raei, E.; Alizadeh, M.R.; Nikoo, M.R.; Adamowski, J. Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty. J. Hydrol. 2019, 579, 124091. [Google Scholar] [CrossRef]
- Jonsson, A. Public participation in water resources management: Stakeholder voices on degree, scale, potential, and methods in future water management. AMBIO J. Hum. Environ. 2005, 34, 495–500. [Google Scholar] [CrossRef]
- Amiraslani, F.; Caiserman, A. Multi-stakeholder and multi-level interventions to tackle climate change and land degradation: The case of Iran. Sustainability 2018, 10, 2000. [Google Scholar] [CrossRef]
- Markowska, J.; Szalińska, W.; Dąbrowska, J.; Brząkała, M. The concept of a participatory approach to water management on a reservoir in response to wicked problems. J. Environ. Manag. 2020, 259, 109626. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: A case study of the Xinfengjiang reservoir in southern China. Agric. Water Manag. 2013, 116, 110–121. [Google Scholar] [CrossRef]
- Amisigo, B.A.; McCluskey, A.; Swanson, R. Modeling impact of climate change on water resources and agriculture demand in the Volta Basin and other basin systems in Ghana. Sustainability 2015, 7, 6957–6975. [Google Scholar] [CrossRef]
- Li, X.-Y.; Xu, H.-Y.; Sun, Y.-L.; Zhang, D.-S.; Yang, Z.-P. Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades. Water Resour. Manag. 2007, 21, 1505–1516. [Google Scholar] [CrossRef]
- Sriworamas, K.; Kangrang, A.; Thongwan, T.; Prasanchum, H. Optimal reservoir of small reservoirs by optimization techniques on reservoir simulation model. Adv. Civ. Eng. 2021, 2021, 6625743. [Google Scholar] [CrossRef]
- Webber, K.; Van Geuns, L. Framework for constructing clastic reservoir simulation models. J. Pet. Technol. 1990, 42, 1248–1297. [Google Scholar] [CrossRef]
- Tanksali, A.; Soraganvi, V.S. Assessment of impacts of land use/land cover changes upstream of a dam in a semi-arid watershed using QSWAT. Model. Earth Syst. Environ. 2021, 7, 2391–2406. [Google Scholar] [CrossRef]
- Dlamini, T.; Songsom, V.; Koedsin, W.; Ritchie, R.J. Intensity, duration and spatial coverage of aridity during meteorological drought years over Northeast Thailand. Climate 2022, 10, 137. [Google Scholar] [CrossRef]
- Irie, M.; Kotegawa, H.; Kawachi, A.; Ouni, H.; Tarhouni, J. Modeling of sediment transportation in Ichkeul Lake for the estimation of the influence of the constructions of the reservoirs in the upper streams. Water 2022, 14, 1984. [Google Scholar] [CrossRef]
- Heidari, H.; Francois, B.; Brown, C. Possibility assessment of reservoir expansion in the conterminous United States. Hydrology 2022, 9, 175. [Google Scholar] [CrossRef]
- Prasanchum, H.; Kangrang, A.; Hormwichian, R. Change in inflow and hydrologic response due to proactive agriculture land use policy in Northeast of Thailand. Int. Rev. Civ. Eng. 2020, 11, 141–151. [Google Scholar] [CrossRef]
- Expand catchment-Yalew, S.G.; Mul, M.L.; Van Griensven, A.; Teferi, E.; Priess, J.; Schweitzer, C.; Van Der Zaag, P. Land-use change modelling in the upper Blue Nile Basin. Environments 2016, 3, 21. [Google Scholar] [CrossRef]
Year | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Highest | 40.6 | 97.9 | 132.6 | 200.6 | 345.6 | 331.6 | 364.7 | 397.6 | 495.3 | 288.5 | 199.2 | 7.3 | 1777.9 |
Average | 4.9 | 12.5 | 29.2 | 61.8 | 155.3 | 155.7 | 173.6 | 191.6 | 235.0 | 107.4 | 20.8 | 0.5 | 1148.2 |
Lowest | 0.0 | 0.0 | 0.0 | 0.0 | 36.9 | 25.2 | 43.0 | 49.7 | 50.9 | 2.4 | 0.0 | 0.0 | 828.7 |
Year | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Evaporate | 126 | 131 | 164 | 161 | 151 | 134 | 132 | 124 | 109 | 112 | 115 | 121 | 1580.0 |
Water Reservoir | Nhong Chonlaprathan | Nhong Taban | Nhong Jabok-Takian |
---|---|---|---|
Leaked volume | 5833.33 | 3333.33 | 5833.33 |
Water Demands | Nhong Chonlaprathan | Nhong Taban | Nhong Jabok-Takian |
---|---|---|---|
Consumption | 0.15 | - | - |
Agriculture | 0.88 | 0.55 | 0.97 |
Plant Species | Jasmine Rice | Sticky Rice | Cassava | Vegetables |
---|---|---|---|---|
Expanded plantation areas (m2) | 360,000 | 336,000 | 1,052,800 | 427,200 |
Plant Species | Jasmine Rice | Sticky Rice | Cassava | Vegetables |
---|---|---|---|---|
Expanded plantation areas (m2) | 476,800 | 443,200 | 1,385,600 | 1,331,200 |
Plant Species | Jasmine Rice | Sticky Rice | Cassava | Vegetables |
---|---|---|---|---|
Expanded plantation areas (m2) | 1,008,000 | 937,600 | 2,929,600 | 2,880,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaiyason, T.; Laohavanich, J.; Yangyuen, S.; Chiawchanwattana, C.; Kaewwinud, N.; Khongthon, N.; Kaewplang, S.; Nontapon, J.; Kangrang, A. Accepted Guidelines on the Potential of Water Budgets for Solving Droughts: A Case Study of Chum Saeng Sub-District, Satuek District, Buri Ram Province, Thailand. Sustainability 2023, 15, 8152. https://doi.org/10.3390/su15108152
Chaiyason T, Laohavanich J, Yangyuen S, Chiawchanwattana C, Kaewwinud N, Khongthon N, Kaewplang S, Nontapon J, Kangrang A. Accepted Guidelines on the Potential of Water Budgets for Solving Droughts: A Case Study of Chum Saeng Sub-District, Satuek District, Buri Ram Province, Thailand. Sustainability. 2023; 15(10):8152. https://doi.org/10.3390/su15108152
Chicago/Turabian StyleChaiyason, Teerajet, Juckamas Laohavanich, Suphan Yangyuen, Cherdpong Chiawchanwattana, Nisanath Kaewwinud, Nirattisak Khongthon, Siwa Kaewplang, Jurawan Nontapon, and Anongrit Kangrang. 2023. "Accepted Guidelines on the Potential of Water Budgets for Solving Droughts: A Case Study of Chum Saeng Sub-District, Satuek District, Buri Ram Province, Thailand" Sustainability 15, no. 10: 8152. https://doi.org/10.3390/su15108152
APA StyleChaiyason, T., Laohavanich, J., Yangyuen, S., Chiawchanwattana, C., Kaewwinud, N., Khongthon, N., Kaewplang, S., Nontapon, J., & Kangrang, A. (2023). Accepted Guidelines on the Potential of Water Budgets for Solving Droughts: A Case Study of Chum Saeng Sub-District, Satuek District, Buri Ram Province, Thailand. Sustainability, 15(10), 8152. https://doi.org/10.3390/su15108152