The Potential of Battery Electric Taxis in Santiago de Chile
Abstract
:1. Introduction
2. Literature Review
2.1. Feasibility of BEVs for Private Use
2.2. Feasibility of BEVs for Taxis
3. Data Description
3.1. Data Processing
3.2. Data Summary
4. Methodology
4.1. Parameters
4.2. Daily Trip Taxi Feasibility Procedure
5. Operational Analysis
5.1. Base Case Scenario: Actual Locations of Charging Stations in Santiago, Chile
5.2. Sensitivity Analysis
5.3. Comparison with Other Studies
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. Energy Policies Beyond IEA Countries: Chile 2018 Review; IEA: Paris, France, 2018. [Google Scholar]
- CNE. Anuario Estadístico de Energía. 2020. Available online: https://www.cne.cl/wp-content/uploads/2021/12/AnuarioCNE2020.pdf (accessed on 5 January 2022).
- CEIC. Chile Motor Vehicles Sales Growth, 2010–2021. 2022. Available online: https://www.ceicdata.com/en/indicator/chile/motor-vehicles-sales-growth (accessed on 5 January 2022).
- INE. Base de Datos de Permisos de Circulación. 2021. Available online: https://www.ine.gob.cl/docs/default-source/parque-de-vehiculos/bbdd/2021/base-de-datos-permisos-de-circulación.accdb?sfvrsn=dba78113_5&download=true (accessed on 5 January 2022).
- Ministerio de Energía. Estrategia Nacional de Electro-Movilidad. 2020. Available online: https://energia.gob.cl/sites/default/files/estrategia-nacional-electromovilidad_ministerio-de-energia.pdf (accessed on 5 January 2022).
- Zhou, M.; Long, P.; Kong, N.; Zhao, L.; Jia, F.; Campy, K.S. Characterizing the motivational mechanism behind taxi driver’s adoption of electric vehicles for living: Insights from China. Transp. Res. Part A Policy Pract. 2021, 144, 134–152. [Google Scholar] [CrossRef]
- Simsekoglu, Ö. Socio-demographic characteristics, psychological factors and knowledge related to electric car use: A comparison between electric and conventional car drivers. Transp. Policy 2018, 72, 180–186. [Google Scholar] [CrossRef]
- Danielis, R.; Rotaris, L.; Giansoldati, M.; Scorrano, M. Drivers’ preferences for electric cars in Italy. Evidence from a country with limited but growing electric car uptake. Transp. Res. Part A Policy Pract. 2020, 137, 79–94. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, B.; Wang, B.; Wang, Z. Urban households’ purchase intentions for pure electric vehicles under subsidy contexts in China: Do cost factors matter? Transp. Res. Part A Policy Pract. 2020, 135, 183–197. [Google Scholar] [CrossRef]
- Rotaris, L.; Giansoldati, M.; Scorrano, M. The slow uptake of electric cars in Italy and Slovenia. Evidence from a stated-preference survey and the role of knowledge and environmental awareness. Transp. Res. Part A Policy Pract. 2021, 144, 1–18. [Google Scholar] [CrossRef]
- Globisch, J.; Plötz, P.; Dütschke, E.; Wietschel, M. Consumer preferences for public charging infrastructure for electric vehicles. Transp. Policy 2019, 81, 54–63. [Google Scholar] [CrossRef]
- Canepa, K.; Hardman, S.; Tal, G. An early look at plug-in electric vehicle adoption in disadvantaged communities in California. Transp. Policy 2019, 78, 19–30. [Google Scholar] [CrossRef]
- Sun, Z.; Gao, W.; Li, B.; Wang, L. Locating charging stations for electric vehicles. Transp. Policy 2020, 98, 48–54. [Google Scholar] [CrossRef]
- Giansoldati, M.; Danielis, R.; Rotaris, L.; Scorrano, M. The role of driving range in consumers’ purchasing decision for electric cars in Italy. Energy 2018, 165, 267–274. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Baek, S.; Kim, H.; Chang, H.J. A Feasibility Test on Adopting Electric Vehicles to Serve as Taxis in Daejeon Metropolitan City of South Korea. Sustainability 2016, 8, 964. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Lin, Z.; Hu, L. Predicting market potential and environmental benefits of deploying electric taxis in Nanjing, China. Transp. Res. Part D Transp. Environ. 2016, 49, 68–81. [Google Scholar] [CrossRef]
- Girard, A.; Roberts, C.; Simon, F.; Ordoñez, J. Solar electricity production and taxi electrical vehicle conversion in Chile. J. Clean. Prod. 2019, 210, 1261–1269. [Google Scholar] [CrossRef]
- Zou, Y.; Wei, S.; Sun, F.; Hu, X.; Shiao, Y. Large-scale deployment of electric taxis in Beijing: A real-world analysis. Energy 2016, 100, 25–39. [Google Scholar] [CrossRef]
- Hu, L.; Dong, J.; Lin, Z.; Yang, J. Analyzing battery electric vehicle feasibility from taxi travel patterns: The case study of New York City, USA. Transp. Res. Part C Emerg. Technol. 2018, 87, 91–104. [Google Scholar] [CrossRef]
- Pearre, N.S.; Kempton, W.; Guensler, R.L.; Elango, V.V. Electric vehicles: How much range is required for a day’s driving? Transp. Res. Part C Emerg. Technol. 2011, 19, 1171–1184. [Google Scholar] [CrossRef]
- Khan, M.; Kockelman, K.M. Predicting the market potential of plug-in electric vehicles using multiday GPS data. Energy Policy 2012, 46, 225–233. [Google Scholar] [CrossRef]
- Greaves, S.; Backman, H.; Ellison, A.B. An empirical assessment of the feasibility of battery electric vehicles for day-to-day driving. Transp. Res. Part A Policy Pract. 2014, 66, 226–237. [Google Scholar] [CrossRef]
- Dong, J.; Wu, X.; Liu, C.; Lin, Z.; Hu, L. The impact of reliable range estimation on battery electric vehicle feasibility. Int. J. Sustain. Transp. 2020, 14, 833–842. [Google Scholar] [CrossRef]
- Dalla Chiara, B.; Deflorio, F.; Eid, M. Analysis of real driving data to explore travelling needs in relation to hybrid–electric vehicle solutions. Transp. Policy 2019, 80, 97–116. [Google Scholar] [CrossRef]
- Miwa, T.; Sato, H.; Morikawa, T. Range and Battery Depletion Concerns with Electric Vehicles. J. Adv. Transp. 2017, 2017, 7491234. [Google Scholar] [CrossRef]
- Wu, Y.A.; Lau, Y.Y.; Wong, L.M.; Wu, J. A Preliminary Feasibility Study of Electric Taxi Promotion in Hong Kongâ Behavior Modelling of Driving Patterns and Preferences. Appl. Sci. 2023, 13, 1491. [Google Scholar] [CrossRef]
- Kang, S.C.; Lee, H. Economic appraisal of implementing electric vehicle taxis in Seoul. Res. Transp. Econ. 2019, 73, 45–52. [Google Scholar] [CrossRef]
- Darcovich, K.; Ribberink, H.; Michelet, C.; Lombardi, K.; Ghorab, M. The Feasibility of Electric Vehicles as Taxis in a Canadian Context. In Proceedings of the 2019 Electric Vehicles International Conference (EV), Bucharest, Romania, 3–4 October 2019. [Google Scholar] [CrossRef]
- Heredia, C.; Moreno, S.; Yushimito, W.F. Characterization of Mobility Patterns with a Hierarchical Clustering of Origin-Destination GPS Taxi Data. IEEE Trans. Intell. Transp. Syst. 2022, 23, 12700–12710. [Google Scholar] [CrossRef]
- Keawthong, P.; Muangsin, V.; Gowanit, C. Location Selection of Charging Stations for Electric Taxis: A Bangkok Case. Sustainability 2022, 14, 11033. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Liu, Z.; Qi, Y. Application of Clustering Algorithms in the Location of Electric Taxi Charging Stations. Sustainability 2022, 14, 7566. [Google Scholar] [CrossRef]
- Delos Reyes, J.R.M.; Parsons, R.V.; Hoemsen, R. Winter Happens: The Effect of Ambient Temperature on the Travel Range of Electric Vehicles. IEEE Trans. Veh. Technol. 2016, 65, 4016–4022. [Google Scholar] [CrossRef]
- Programa Mi Taxi Eléctrico. Available online: https://mitaxielectrico.cl (accessed on 9 May 2023).
Variable | Definition |
---|---|
Full battery driving range (full autonomy) of taxi i. | |
Capacity of the battery of taxi i. | |
Driving range efficiency of taxi i. | |
Charging power of station j. | |
Distance added to the battery driving range of the vehicle after charging during trip k. | |
Distance considering the actual battery driving range of the taxi at the beginning of trip k. | |
Distance to the closest electric station after trip k. | |
Distance from the current position to the passenger in trip k. | |
Distance of trip k. | |
Time to the closest electric station after trip k. | |
Time from the current position to the passenger in trip k. |
(km) | % Feasible Trips |
---|---|
150 | 87.35% |
175 | 89.77% |
210 | 93.44% |
245 | 94.34% |
(km) | (km/kWh) | (kW) | T (min) | % Feasible Trips |
---|---|---|---|---|
150 | 5 | 7.4 | 5 | 75.87% |
150 | 5 | 7.4 | 15 | 75.05% |
150 | 5 | 7.4 | 30 | 74.09% |
150 | 5 | 7.4 | 40 | 73.52% |
150 | 5 | 22 | 5 | 84.57% |
150 | 5 | 22 | 15 | 83.41% |
150 | 5 | 22 | 30 | 82.02% |
150 | 5 | 22 | 40 | 81.16% |
150 | 5 | 50 | 5 | 89.36% |
150 | 5 | 50 | 15 | 88.22% |
150 | 5 | 50 | 30 | 86.84% |
150 | 5 | 50 | 40 | 86.02% |
(km) | (km/kWh) | (kW) | T (min) | % Feasible Trips |
---|---|---|---|---|
175 | 5 | 7.4 | 5 | 80.51% |
175 | 5 | 7.4 | 15 | 79.73% |
175 | 5 | 7.4 | 30 | 78.80% |
175 | 5 | 7.4 | 40 | 78.28% |
175 | 5 | 22 | 5 | 87.62% |
175 | 5 | 22 | 15 | 86.54% |
175 | 5 | 22 | 30 | 85.27% |
175 | 5 | 22 | 40 | 84.56% |
175 | 5 | 50 | 5 | 91.73% |
175 | 5 | 50 | 15 | 90.75% |
175 | 5 | 50 | 30 | 89.56% |
175 | 5 | 50 | 40 | 88.85% |
(km) | (km/kWh) | (kW) | T (min) | % Feasible Trips |
---|---|---|---|---|
210 | 7 | 7.4 | 5 | 87.05% |
210 | 7 | 7.4 | 15 | 86.29% |
210 | 7 | 7.4 | 30 | 85.32% |
210 | 7 | 7.4 | 40 | 84.77% |
210 | 7 | 22 | 5 | 91.71% |
210 | 7 | 22 | 15 | 90.83% |
210 | 7 | 22 | 30 | 89.71% |
210 | 7 | 22 | 40 | 89.07% |
210 | 7 | 50 | 5 | 94.41% |
210 | 7 | 50 | 15 | 93.63% |
210 | 7 | 50 | 30 | 92.66% |
210 | 7 | 50 | 40 | 92.07% |
(km) | (km/kWh) | (kW) | T (min) | % Feasible Trips |
---|---|---|---|---|
245 | 7 | 7.4 | 5 | 90.37% |
245 | 7 | 7.4 | 15 | 89.72% |
245 | 7 | 7.4 | 30 | 88.87% |
245 | 7 | 7.4 | 40 | 88.35% |
245 | 7 | 22 | 5 | 94.08% |
245 | 7 | 22 | 15 | 93.35% |
245 | 7 | 22 | 30 | 92.46% |
245 | 7 | 22 | 40 | 91.89% |
245 | 7 | 50 | 5 | 96.08% |
245 | 7 | 50 | 15 | 95.46% |
245 | 7 | 50 | 30 | 94.67% |
245 | 7 | 50 | 40 | 94.19% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yushimito, W.F.; Moreno, S.; Miranda, D. The Potential of Battery Electric Taxis in Santiago de Chile. Sustainability 2023, 15, 8689. https://doi.org/10.3390/su15118689
Yushimito WF, Moreno S, Miranda D. The Potential of Battery Electric Taxis in Santiago de Chile. Sustainability. 2023; 15(11):8689. https://doi.org/10.3390/su15118689
Chicago/Turabian StyleYushimito, Wilfredo F., Sebastian Moreno, and Daniela Miranda. 2023. "The Potential of Battery Electric Taxis in Santiago de Chile" Sustainability 15, no. 11: 8689. https://doi.org/10.3390/su15118689
APA StyleYushimito, W. F., Moreno, S., & Miranda, D. (2023). The Potential of Battery Electric Taxis in Santiago de Chile. Sustainability, 15(11), 8689. https://doi.org/10.3390/su15118689