The Impacts of Biochar-Assisted Factors on the Hydrophysical Characteristics of Amended Soils: A Review
Abstract
:1. Introduction
2. Pore Connectivity and Pore Size Distribution
2.1. Effect of Biochar’s Particle Size
2.2. Effect of Feedstock Type
2.3. Effect of Pyrolysis Condition
3. Water Movement and Soil Media
3.1. Saturated Hydraulic Conductivity
3.1.1. Soil Texture
3.1.2. Biochar Characteristics
3.1.3. Blocking, and Restraining
3.2. Evaporation
3.3. Infiltration
4. Compaction/Shrinkage (C/S)
4.1. Shear Strength
4.2. Desiccation
4.3. Types of Feedstock
4.4. Size of Particle
4.5. Dosage of Biochar
5. Aggregation Formation and Stability
5.1. Time of Application
5.2. The Fauna of Soil
5.3. Electrical Conductivity
5.4. Micro/Macro Aggregate
5.5. Seedling of Aggregate
5.6. Zeta Potential
6. Conclusions and Directions of Future Study
6.1. Conclusions
6.2. Directions of Future Study
- (i)
- Assess long-term and large-scale monitoring of the effects of size and dosage of biochar application on the aggregate formation and stability by different methods. Future studies should be conducted to examine the mechanisms of the multi-functional factor’s effects on soil-hydrophysical properties. The fundamental properties of biochar, such as the availability of inter pores and channels of biochar particles, and types and abundance of surface functional groups, change by elapsing time. Additionally, the rearrangements of aggregates and the possibility of changes in pores and canals may be induced by time. Additionally, the variation of laboratory methods, which provide the data from field conditions, must be calibrated, especially on measuring aggregate stability.
- (ii)
- Develop comprehensive guidelines for the application of biochar in different soils based on the purpose of addition as necessary. Soil’s physicochemical properties vary, basically, because of both its constituents and structures. It is necessary to introduce guidelines for adding biochar to different soils based on the purpose of addition. The behavior of biochar can be manipulated by the depth of application and spreading methods. The chance of biochar contribution in different depths is directly related to soil type and is under the influence of biochar properties.
- (iii)
- Strengthen the research on the effects of adding biochar on various soil textures. Studies have been conducted on the effects of adding biochar or its interactions on the properties of soils, mostly in light-textured soils. The lack of studies about the effects of biochar addition on hydrophysical properties of heavy- or medium-textured soils, with different regimes of moisture, should be resolved by future research. The complicated interaction between biochar, clay, silt, and organic matter must be verified in both arid and humid regions.
- (iv)
- There is a possibility of intensifying or mitigating the changes in soil hydrophysical properties by adding modified biochar. In particular, via surface functional groups or promoting biological activities of modified biochar, which are different from pristine biochar. The pore structures of biologically activated biochar are being investigated recently, but there is a need for further clarification regarding the interactions of living organisms and biochar on hydrophysical properties. Additionally, the positive or negative mechanisms of modified functional groups on water flux in amended soils should be developed, thus supporting future engineered biochar application.
- (v)
- Leveraging 3D imaging methods to study pore structures, and relevant mechanisms of pore filling by particles, should be strengthened. The topology of the pore network is a fundamental parameter for water flux in the soil profile. The application of biochar to soil, or the movement of its particle, could impact the microstructure of pores. In future studies, we should explore how mechanisms impact when adding biochar on particle relocation in a soil profile. Identifying the optimum dosage, size and type of biochar added to soil to improve soil hydrophysical properties should be prioritized, in order to reduce the leaching of pollutants or facilitate transport by particles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shakoor, A.; Arif, M.S.; Shahzad, S.M.; Farooq, T.H.; Ashraf, F.; Altaf, M.M.; Ahmed, W.; Tufail, M.A.; Ashraf, M. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil?—A global meta-analysis. Environ. Res. 2021, 202, 111789. [Google Scholar] [CrossRef] [PubMed]
- Danesh, P.; Niaparast, P.; Ghorbannezhad, P.; Ali, I. Biochar production: Recent developments, applications, and challenges. Fuel 2022, 337, 126889. [Google Scholar] [CrossRef]
- Wang, T.; Liu, H.; Duan, C.; Xu, R.; Zhang, Z.; She, D.; Zheng, J. The eco-friendly biochar and valuable bio-oil from caragana korshinskii: Pyrolysis preparation, characterization, and adsorption applications. Materials 2020, 13, 3391. [Google Scholar] [CrossRef] [PubMed]
- Rayhanitabar, A.; Farhadi, E.; Ramezanzadeh, H.; Oustan, S. Effect of pyrolysis temperature and feedstock sources on physicochemical characteristics of biochar. J. Agric. Sci. Technol. 2020, 22, 547–561. [Google Scholar]
- Xu, H.; Cai, A.; Wu, D.; Liang, G.; Xiao, J.; Xu, M.; Colinet, G.; Zhang, W. Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar c:n ratio and soil pH: A global meta-analysis. Soil Tillage Res. 2021, 213, 105125. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, M.; Tang, Y.; Cui, X.; Cui, J.; Xu, C.; Qie, H.; Tan, X.; Liu, D.; Zhao, J.; et al. Immobilization on anionic metal(loid)s in soil by biochar: A meta-analysis assisted by machine learning. J. Hazard. Mater. 2022, 438, 129442. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Torkzaban, S.; Bradford, S.A.; Kookana, R.; Page, D.; Cook, P.G. Transport and retention of bacteria and viruses in biochar-amended sand. Sci. Total Environ. 2016, 548–549, 100–109. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Xu, Y.; Liu, Q.; Ngo, H.H.; Cao, W. Transport behaviors of biochar particles in saturated porous media under dc electric field. Sci. Total Environ. 2023, 856, 159084. [Google Scholar] [CrossRef]
- Hartley, W.; Riby, P.; Waterson, J. Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability. J. Environ. Manag. 2016, 181, 770–778. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does Biochar Influence Soil Physical Properties and Soil Water Availability? Plant Soil 2013, 376, 347–361. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.J.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.J.; Mommer, L.; van Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 2015, 251–252, 47–54. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Holthusen, D.; Horn, R. Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil Tillage Res. 2016, 155, 166–175. [Google Scholar] [CrossRef]
- Kazemi Shariat Panahi, H.; Dehhaghi, M.; Ok, Y.S.; Nizami, A.S.; Khoshnevisan, B.; Mussatto, S.I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. J. Clean. Prod. 2020, 270, 122462. [Google Scholar] [CrossRef]
- Jeffery, S.; van de Voorde, T.F.J.; Harris, W.E.; Mommer, L.; Van Groenigen, J.W.; De Deyn, G.B.; Ekelund, F.; Briones, M.J.I.; Bezemer, T.M. Biochar application differentially affects soil micro-, meso-macro-fauna and plant productivity within a nature restoration grassland. Soil Biol. Biochem. 2022, 174, 108789. [Google Scholar] [CrossRef]
- Tang, H.; Chen, M.; Wu, P.; Faheem, M.; Feng, Q.; Lee, X.; Wang, S.; Wang, B. Engineered biochar effects on soil physicochemical properties and biota communities: A critical review. Chemosphere 2023, 311, 137025. [Google Scholar] [CrossRef] [PubMed]
- Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Chang. Biol. 2010, 16, 1366–1379. [Google Scholar] [CrossRef]
- Villagra-Mendoza, K.; Horn, R. Effect of biochar addition on hydraulic functions of two textural soils. Geoderma 2018, 326, 88–95. [Google Scholar] [CrossRef]
- Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S. mossa. Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: An incubation study. Commun. Soil Sci. Plant Anal. 2017, 48, 1710–1718. [Google Scholar] [CrossRef]
- Song, B.; Chen, M.; Zhao, L.; Qiu, H.; Cao, X. Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources. Sci. Total Environ. 2019, 661, 685–695. [Google Scholar] [CrossRef]
- Edeh, I.G.; Mašek, O.; Buss, W. A meta-analysis on biochar’s effects on soil water properties—New insights and future research challenges. Sci. Total Environ. 2020, 714, 136857. [Google Scholar] [CrossRef]
- Yan, Y.; Akbar Nakhli, S.A.; Jin, J.; Mills, G.; Willson, C.S.; Legates, D.R.; Manahiloh, K.N.; Imhoff, P.T. predicting the impact of biochar on the saturated hydraulic conductivity of natural and engineered media. J. Environ. Manag. 2021, 295, 113143. [Google Scholar] [CrossRef] [PubMed]
- Edeh, I.G.; Mašek, O. The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. Eur. J. Soil Sci. 2021, 73, 13138. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Dokoohaki, H.; Miguez, F.E.; Laird, D.; Horton, R.; Basso, A.S. Assessing the biochar effects on selected physical properties of a sandy soil: An analytical approach. Commun. Soil Sci. Plant Anal. 2017, 48, 1387–1398. [Google Scholar] [CrossRef]
- Lu, S.G.; Sun, F.F.; Zong, Y.T. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (vertisol). Catena 2014, 114, 37–44. [Google Scholar] [CrossRef]
- Kim, Y.J.; Hyun, J.; Yoo, S.Y.; Yoo, G. The role of biochar in alleviating soil drought stress in urban roadside greenery. Geoderma 2021, 404, 115223. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Hunt, A.G.; Skaggs, T.H.; Jarvis, N. Upscaling soil saturated hydraulic conductivity from pore throat characteristics. Adv. Water Resour. 2017, 104, 105–113. [Google Scholar] [CrossRef]
- Ghorbani, M.; Neugschwandtner, R.W.; Konvalina, P.; Asadi, H.; Kopecky, M.; Amirahmadi, E. Comparative effects of biochar and compost applications on water holding capacity and crop yield of rice under evaporation stress: A two-years field study. Paddy Water Environ. 2023, 21, 47–58. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Zhuravel, A.; Silva, F.C.; Amaro, A.; Ben-Hur, M.; Keizer, J.J. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma 2019, 347, 194–202. [Google Scholar] [CrossRef]
- Głąb, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Chen, X.; Duan, M.; Zhou, B.; Cui, L. Effects of biochar nanoparticles as a soil amendment on the structure and hydraulic characteristics of a sandy loam soil. Soil Use Manag. 2021, 38, 836–849. [Google Scholar] [CrossRef]
- Li, Q.; Jin, Z.; Chen, X.; Jing, Y.; Huang, Q.; Zhang, J. Effects of biochar on aggregate characteristics of upland red soil in subtropical China. Environ. Earth Sci. 2017, 76, 372. [Google Scholar] [CrossRef]
- Petersen, C.T.; Hansen, E.; Larsen, H.H.; Hansen, L.V.; Ahrenfeldt, J.; Hauggaard-Nielsen, H. Pore-size distribution and compressibility of coarse sandy subsoil with added biochar. Eur. J. Soil Sci. 2016, 67, 726–736. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef]
- Sun, F.; Lu, S. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Soil Sci. Plant. Nutr. 2013, 177, 26–33. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Y.; Chen, G.; Wang, X.; Zhang, R. Improvement of physical and hydraulic properties of desert soil with amendment of different biochars. J. Soils Sediments 2019, 19, 2984–2996. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Sun, C.; Yang, K.; Zheng, J.; Zhou, J. Biochar application alters soil structure but not soil hydraulic conductivity of an expansive clayey soil under field conditions. J. Soils Sediments 2020, 21, 73–82. [Google Scholar] [CrossRef]
- Yang, C.D.; Lu, S.G. Effects of five different biochars on aggregation, water retention and mechanical properties of paddy soil: A field experiment of three-season crops. Soil Tillage Res. 2021, 205, 104798. [Google Scholar] [CrossRef]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar Amendment techniques for upland rice production in northern laos. Field Crop. Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Chen, Y.; Shinogi, Y.; Taira, M. Influence of biochar use on sugarcane growth, soil parameters, and groundwater quality. Soil Res. 2010, 48, 526. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Shiono, T. Influence of biochar incorporation on TDR-based soil water content measurements. Eur. J. Soil Sci. 2013, 65, 105–112. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Hale, S.E.; Nurida, N.L.; Cornelissen, G. The potential of biochar in improving drainage, aeration and maize yields in heavy clay soils. PLoS ONE 2018, 13, e0196794. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.T.F.; Chen, Z.; Wong, A.Y.Y.; Ng, C.W.W.; Wong, M.H. Effects of biochar on hydraulic conductivity of compacted kaolin clay. Environ. Pollut. 2018, 234, 468–472. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Duarte, S.; Glaser, B.; Pellegrino Cerri, C. Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy 2019, 9, 165. [Google Scholar] [CrossRef]
- Jin, Z.; Chen, C.; Chen, X.; Hopkins, I.; Zhang, X.; Han, Z.; Jiang, F.; Billy, G. The crucial factors of soil fertility and rapeseed yield—A five year field trial with biochar addition in upland red soil, China. Sci. Total Environ. 2019, 649, 1467–1480. [Google Scholar] [CrossRef]
- Karer, J.; Wimmer, B.; Zehetner, F.; Kloss, S.; Soja, G. Biochar application to temperate soils: Effects on nutrient uptake and crop yield under field conditions. Agric. Food Sci. 2013, 22, 390–403. [Google Scholar] [CrossRef]
- Koide, R.T.; Nguyen, B.T.; Skinner, R.H.; Dell, C.J.; Peoples, M.S.; Adler, P.R.; Drohan, P.J. Biochar amendment of soil improves resilience to climate change. Glob. Chang. Biol. Bioenergy 2014, 7, 1084–1091. [Google Scholar] [CrossRef]
- Lei, O.; Zhang, R. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J. Soils Sediments 2013, 13, 1561–1572. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar Impact on Nutrient Leaching from a Midwestern Agricultural Soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Eibisch, N.; Durner, W.; Bechtold, M.; Fuß, R.; Mikutta, R.; Woche, S.K.; Helfrich, M. Does water repellency of pyrochars and hydrochars counter their positive effects on soil hydraulic properties? Geoderma 2015, 245–246, 31–39. [Google Scholar] [CrossRef]
- Wiersma, W.; van der Ploeg, M.J.; Sauren, I.J.M.H.; Stoof, C.R. No effect of pyrolysis temperature and feedstock type on hydraulic properties of biochar and amended sandy soil. Geoderma 2020, 364, 114209. [Google Scholar] [CrossRef]
- Hussain, R.; Kumar Ghosh, K.; Ravi, K. Impact of biochar produced from hardwood of mesquite on the hydraulic and physical properties of compacted soils for potential application in engineered structures. Geoderma 2021, 385, 114836. [Google Scholar] [CrossRef]
- Speratti, A.; Johnson, M.; Martins Sousa, H.; Nunes Torres, G.; Guimarães Couto, E. Impact of different agricultural waste biochars on maize biomass and soil water content in a brazilian cerrado arenosol. Agronomy 2017, 7, 49. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Brockhoff, S.R.; Christians, N.E.; Killorn, R.J.; Horton, R.; Davis, D.D. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron. J. 2010, 102, 1627–1631. [Google Scholar] [CrossRef]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2013, 60, 457–470. [Google Scholar] [CrossRef]
- Barnes, R.T.; Gallagher, M.E.; Masiello, C.A.; Liu, Z.; Dugan, B. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE 2014, 9, e108340. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Barnes, R.T.; Gallagher, M.E.; Gonnermann, H. Impacts of biochar concentration and particle size on hydraulic conductivity and doc leaching of biochar–sand mixtures. J. Hydrol. 2016, 533, 461–472. [Google Scholar] [CrossRef]
- Sorrenti, G.; Masiello, C.A.; Dugan, B.; Toselli, M. Biochar physico-chemical properties as affected by environmental exposure. Sci. Total Environ. 2016, 563–564, 237–246. [Google Scholar] [CrossRef]
- Hussain, R.; Ghosh, K.K.; Ravi, K. Influence of biochar particle size on the hydraulic conductivity of two different compacted engineered soils. Biomass Convers. Biorefin. 2021, 13, 801–811. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Horn, R. Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil Tillage Res. 2016, 164, 34–44. [Google Scholar] [CrossRef]
- Jačka, L.; Trakal, L.; Ouředníček, P.; Pohořelý, M.; Šípek, V. Biochar presence in soil significantly decreased saturated hydraulic conductivity due to swelling. Soil Tillage Res. 2018, 184, 181–185. [Google Scholar] [CrossRef]
- Hussain, R.; Ravi, K. Investigating biochar-amended soil as a potential lightweight material for embankments. Ecol. Eng. 2022, 180, 106645. [Google Scholar] [CrossRef]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef]
- Bayabil, H.K.; Stoof, C.R.; Lehmann, J.C.; Yitaferu, B.; Steenhuis, T.S. Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid ethiopian highlands: The anjeni watershed. Geoderma 2015, 243–244, 115–123. [Google Scholar] [CrossRef]
- Fu, G.; Qiu, X.; Xu, X.; Zhang, W.; Zang, F.; Zhao, C. The role of biochar particle size and application rate in promoting the hydraulic and physical properties of sandy desert soil. Catena 2021, 207, 105607. [Google Scholar] [CrossRef]
- Obia, A.; Børresen, T.; Martinsen, V.; Cornelissen, G.; Mulder, J. Effect of biochar on crust formation, penetration resistance and hydraulic properties of two coarse-textured tropical soils. Soil Tillage Res. 2017, 170, 114–121. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; You, C. Biochar effect on water evaporation and hydraulic conductivity in sandy soil. Pedosphere 2016, 26, 265–272. [Google Scholar] [CrossRef]
- Ojeda, G.; Mattana, S.; Àvila, A.; Alcañiz, J.M.; Volkmann, M.; Bachmann, J. Are soil–water functions affected by biochar application? Geoderma 2015, 249–250, 1–11. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, K.; Chen, B. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environ. Pollut. 2019, 253, 779–789. [Google Scholar] [CrossRef]
- Wang, H.; Shao, D.; Ji, B.; Gu, W.; Yao, M. Biochar effects on soil properties, water movement and irrigation water use efficiency of cultivated land in Qinghai-Tibet plateau. Sci. Total Environ. 2022, 829, 154520. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhou, R.; Zhao, Z.; Bai, B. Unveiling the hydroxyl-dependent viscosity of water in graphene oxide nanochannels via molecular dynamics simulations. Chem. Phys. Lett. 2021, 778, 138808. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. Glob. Chang. Biol. Bioenergy 2012, 5, 132–143. [Google Scholar] [CrossRef]
- Amoakwah, E.; Frimpong, K.A.; Arthur, E. Corn cob biochar improves aggregate characteristics of a tropical sandy loam. Soil Sci. Soc. Am. J. 2017, 81, 1054–1063. [Google Scholar] [CrossRef]
- Devereux, R.C.; Sturrock, C.J.; Mooney, S.J. The effects of biochar on soil physical properties and winter wheat growth. Earth Environ. Sci. Trans. R. Soc. Edinb. 2012, 103, 13–18. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yan, W.; Shangguan, Z. Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil Tillage Res. 2018, 183, 100–108. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, F.; Tang, J.; Yu, L.; Zhang, R. Effects of biochar amendment on soil aggregates and hydraulic properties. J. Soil Sci. Plant Nutr. 2013, 13, 991–1002. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Yao, R.; Wang, X.; Xie, W. Short-term effects of biochar and gypsum on soil hydraulic properties and sodicity in a saline-alkali soil. Pedosphere 2020, 30, 694–702. [Google Scholar] [CrossRef]
- Celebi, A.T.; Barisik, M.; Beskok, A. Surface charge-dependent transport of water in graphene nano-channels. Microfluid. Nanofluid. 2017, 22, 7. [Google Scholar] [CrossRef]
- Ni, J.J.; Bordoloi, S.; Shao, W.; Garg, A.; Xu, G.; Sarmah, A.K. Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system. Sci. Total Environ. 2020, 712, 136486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Niu, J.; Morales, V.L.; Chen, X.; Hay, A.G.; Lehmann, J.; Steenhuis, T.S. Transport and retention of biochar particles in porous media: Effect of pH, ionic strength, and particle size. Ecohydrology 2010, 3, 497–508. [Google Scholar] [CrossRef]
- Castan, S.; Sigmund, G.; Hüffer, T.; Hofmann, T. Biochar particle aggregation in soil pore water: The influence of ionic strength and interactions with pyrene. Environ. Sci. Process. Impacts 2019, 21, 1722–1728. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, Y.; Sharma, P.; Li, B.; Liu, K.; Liu, J.; Flury, M.; Shang, J. Effect of naphthalene on transport and retention of biochar colloids through saturated porous media. Colloids Surf. A Physicochem. Eng. Asp. 2017, 530, 146–154. [Google Scholar] [CrossRef]
- Meng, Q.; Jin, L.; Cheng, L.; Fang, J.; Lin, D. Release and sedimentation behaviors of biochar colloids in soil solutions. J. Environ. Sci. 2021, 100, 269–278. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, W.; Hao, X.; Zhou, D. Transport of biochar particles in saturated granular media: Effects of pyrolysis temperature and particle size. Environ. Sci. Technol. 2013, 47, 821–828. [Google Scholar] [CrossRef]
- Ramezanzadeh, H.; Reyhanitabar, A.; Oustan, S.; Mohammadi, M.H.; van der Zee, S.E.A.T.M. Enhanced sorption of cadmium by using biochar nanoparticles from ball milling in a sandy soil. Eurasian Soil Sci. 2021, 54, 201–211. [Google Scholar] [CrossRef]
- Ibrahim, A.; Usman, A.R.A.; Al-Wabel, M.I.; Nadeem, M.; Ok, Y.S.; Al-Omran, A. Effects of conocarpus biochar on hydraulic properties of calcareous sandy soil: Influence of particle size and application depth. Arch. Agron. Soil Sci. 2016, 63, 185–197. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, S.; Shi, Z.; Zhou, H.; Zheng, H.; Hu, J.; Mei, J.; Bai, L.; Jia, J. Effects of mixed-based biochar on water infiltration and evaporation in aeolian sand soil. J. Arid. Land 2022, 14, 374–389. [Google Scholar] [CrossRef]
- Zhan, S.; Song, M.; Li, Z.; Ma, H. Effects of different straw biochars on soil water infiltration and evaporation. J. Soil Water Conserv. 2021, 35, 294–300. [Google Scholar]
- Xu, Q.; Liu, H.; Li, M.; Li, P. The presence of the biochar interlayer effectively inhibits soil water evaporation and salt migration to the soil surface. Agriculture 2023, 13, 638. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jeffery, S.; van der Velde, M.; Penížek, V.; Beland, M.; Bastos, A.C.; Keizer, J.J. Reductions in soil surface albedo as a function of biochar application rate: Implications for global radiative forcing. Environ. Res. Lett. 2013, 8, 044008. [Google Scholar] [CrossRef]
- Xiong, J.; Yu, R.; Islam, E.; Zhu, F.; Zha, J.; Sohail, M.I. Effect of biochar on soil temperature under high soil surface temperature in coal mined arid and semiarid regions. Sustainability 2020, 12, 8238. [Google Scholar] [CrossRef]
- Yang, B.B.; Li, D.; Yuan, S.C.; Jin, L.C. Role of biochar from corn straw in influencing crack propagation and evaporation in sodic soils. Catena 2021, 204, 105457. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Y.; Li, Z.; Bao, Z. Effects of biochar on infiltration and evaporation of soil water with sand Mulching. J. Biobased Mater. Bioenergy 2021, 15, 369–373. [Google Scholar] [CrossRef]
- Novak, J.; Sigua, G.; Watts, D.; Cantrell, K.; Shumaker, P.; Szogi, A.; Johnson, M.G.; Spokas, K. Biochars impact on water infiltration and water quality through a compacted subsoil layer. Chemosphere 2015, 142, 160–167. [Google Scholar] [CrossRef]
- Hussain, R.; Bordoloi, S.; Gupta, P.; Garg, A.; Ravi, K.; Sreedeep, S.; Sahoo, L. Effect of biochar type on infiltration, water retention and desiccation crack potential of a silty sand. Biochar 2020, 2, 465–478. [Google Scholar] [CrossRef]
- Chen, Z.; Kamchoom, V.; Apriyono, A.; Chen, R.; Chen, C. Laboratory study of water infiltration and evaporation in biochar-amended landfill covers under extreme climate. Waste Manag. 2022, 153, 323–334. [Google Scholar] [CrossRef]
- Wang, T.; Stewart, C.E.; Ma, J.; Zheng, J.; Zhang, X. Applicability of five models to simulate water infiltration into soil with added biochar. J. Arid. Land 2017, 9, 701–711. [Google Scholar] [CrossRef]
- Gopal, P.; Bordoloi, S.; Ratnam, R.; Lin, P.; Cai, W.; Buragohain, P.; Garg, A.; Sreedeep, S. Investigation of infiltration rate for soil-biochar composites of water hyacinth. Acta Geophys. 2019, 67, 231–246. [Google Scholar] [CrossRef]
- Abrol, V.; Ben-Hur, M.; Verheijen, F.G.A.; Keizer, J.J.; Martins, M.A.S.; Tenaw, H.; Tchehansky, L.; Graber, E.R. Biochar effects on soil water infiltration and erosion under seal formation conditions: Rainfall simulation experiment. J. Soils Sediments 2016, 16, 2709–2719. [Google Scholar] [CrossRef]
- Wei, C.; Gao, W.; Whalley, W.R.; Li, B. Shrinkage characteristics of lime concretion black soil as affected by biochar amendment. Pedosphere 2018, 28, 713–725. [Google Scholar] [CrossRef]
- Lu, Y.; Gu, K.; Shen, Z.; Wang, X.; Zhang, Y.; Tang, C.S.; Shi, B. Effects of biochar particle size and dosage on the desiccation cracking behavior of a silty clay. Sci. Total Environ. 2022, 837, 155788. [Google Scholar] [CrossRef] [PubMed]
- Baronti, S.; Magno, R.; Maienza, A.; Montagnoli, A.; Ungaro, F.; Vaccari, F.P. Long term effect of biochar on soil plant water relation and fine roots: Results after 10 years of vineyard experiment. Sci. Total Environ. 2022, 851, 158225. [Google Scholar] [CrossRef]
- Xu, K.; Yang, B.; Wang, J.; Wu, M. Improvement of mechanical properties of clay in landfill lines with biochar additive. Arab. J. Geosci. 2020, 13, 584. [Google Scholar] [CrossRef]
- Pan, Z.; Garg, A.; Huang, S.; Mei, G. Swelling suppression mechanism of compacted expansive soil amended with animal and plant based biochar. Waste Biomass Valorization 2020, 12, 2653–2664. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, K.; Tang, C.; Shen, Z.; Narala, G.R.; Shi, B. Effects of biochar on the compression and swelling characteristics of clayey soils. Int. J. Geosynth. Ground Eng. 2020, 6, 22. [Google Scholar] [CrossRef]
- Kumar, H.; Cai, W.; Lai, J.; Chen, P.; Ganesan, S.P.; Bordoloi, S.; Liu, X.; Wen, Y.; Garg, A.; Mei, G. Influence of in-house produced biochars on cracks and retained water during drying-wetting cycles: Comparison between conventional plant, animal, and nano-biochars. J. Soils Sediments 2020, 20, 1983–1996. [Google Scholar] [CrossRef]
- Lu, Y.; Gu, K.; Zhang, Y.; Tang, C.; Shen, Z.; Shi, B. Impact of biochar on the desiccation cracking behavior of silty clay and its mechanisms. Sci. Total Environ. 2021, 794, 148608. [Google Scholar] [CrossRef]
- Hussain, R.; Ghosh, K.K.; Garg, A.; Ravi, K. Effect of biochar produced from mesquite on the compaction characteristics and shear strength of a clayey sand. Geotech. Geol. Eng. 2020, 39, 1117–1131. [Google Scholar] [CrossRef]
- Kumar, H.; Huang, S.; Mei, G.; Garg, A. Influence of feedstock type and particle size on efficiency of biochar in improving tensile crack resistance and shear strength in lean clayey soil. Int. J. Damage Mech. 2021, 30, 646–661. [Google Scholar] [CrossRef]
- Khitab, A.; Ahmad, S.; Khan, R.A.; Arshad, M.T.; Anwar, W.; Tariq, J.; Khan, A.S.R.; Khan, R.B.N.; Jalil, A.; Tariq, Z. production of biochar and its potential application in cementitious composites. Crystals 2021, 11, 527. [Google Scholar] [CrossRef]
- Zong, Y.; Chen, D.; Lu, S. Impact of biochars on swell–shrinkage behavior, mechanical strength, and surface cracking of clayey soil. J. Soil Sci. Plant Nutr. 2014, 177, 920–926. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Horn, R. Biochar-induced changes in soil resilience: Effects of soil texture and biochar dosage. Pedosphere 2017, 27, 236–247. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, H.; Lv, Q.; Tang, Q. Impact of biochar on red paddy soil physical and hydraulic properties and rice yield over 3 years. J. Soils Sediments 2021, 22, 607–616. [Google Scholar] [CrossRef]
- Teng, Y.; Zhang, Y.; Heng, L.; Meng, X.; Yang, Q.; Jiang, L. conductive polymer porous film with tunable wettability and adhesion. Materials 2015, 8, 1817–1830. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Jing, Y.; Li, Q.; Zhang, J.; Huang, Q. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2014, 123, 45–51. [Google Scholar] [CrossRef]
- Li, Y.; Feng, G.; Tewolde, H.; Yang, M.; Zhang, F. Soil, biochar, and nitrogen loss to runoff from loess soil amended with biochar under simulated rainfall. J. Hydrol. 2020, 591, 125318. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Luo, X.; Wang, Z.; Xing, B. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Sci. Total Environ. 2018, 610–611, 951–960. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, M.; Liu, G.; Yao, X.; Tuo, D.; Zhang, R.; Xiao, T.; Peng, G. Quantification of soil aggregate microstructure on abandoned cropland during vegetative succession using synchrotron radiation-based micro-computed tomography. Soil Tillage Res. 2017, 165, 239–246. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.; Liu, J.; Yuan, J.; Liang, Y.; Ren, J.; Cai, H. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a mollisol in northeast China: A five-year field experiment. Soil Tillage Res. 2019, 190, 1–9. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, Y.; Wu, Z.; Yan, X.; Gunina, A.; Kuzyakov, Y.; Xiong, Z. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. J. Clean. Prod. 2020, 242, 118435. [Google Scholar] [CrossRef]
- Wang, D.; Fonte, S.J.; Parikh, S.J.; Six, J.; Scow, K.M. Biochar additions can enhance soil structure and the physical stabilization of c in aggregates. Geoderma 2017, 303, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Dai, Z.; Xiao, K.; Meng, J.; Brookes, P.C.; Liu, X.; Wang, H.; Wu, J.; Xu, J. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma 2014, 226–227, 270–278. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Yao, G.; Lin, Z.; Xu, L.; Jiang, Y.; Jin, Z.; Shan, S.; Ping, L. Advances in the effects of biochar on microbial ecological function in soil and crop quality. Sustainability 2022, 14, 10411. [Google Scholar] [CrossRef]
- Zhang, M.; He, L.; Zhang, X.; Wang, S.; Zhang, B.; Hsieh, L.; Yang, K.; Tong, M. Improved removal performance of gram-negative and gram-positive bacteria in sand filtration system with arginine modified biochar amendment. Water Res. 2022, 211, 118006. [Google Scholar] [CrossRef]
- Bossuyt, H.; Denef, K.; Six, J.; Frey, S.D.; Merckx, R.; Paustian, K. Influence of microbial populations and residue quality on aggregate stability. Appl. Soil Ecol. 2001, 16, 195–208. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, H.; Jiang, Z.; Wang, Z. Effects of biochar input on the properties of soil nanoparticles and dispersion/sedimentation of natural mineral nanoparticles in aqueous phase. Sci. Total Environ. 2018, 634, 595–605. [Google Scholar] [CrossRef]
- Sun, J.; Lu, X.; Chen, G.; Luo, N.; Zhang, Q.; Li, X. Biochar promotes soil aggregate stability and associated organic carbon sequestration, and regulates microbial community structures in mollisols from northeast China. EGUsphere 2022, 1–39. [Google Scholar] [CrossRef]
- Bailey, V.L.; McCue, L.A.; Fansler, S.J.; Boyanov, M.I.; DeCarlo, F.; Kemner, K.M.; Konopka, A. Micrometer-scale physical structure and microbial composition of soil macroaggregates. Soil Biol. Biochem. 2013, 65, 60–68. [Google Scholar] [CrossRef]
- Guhra, T.; Stolze, K.; Totsche, K.U. Pathways of biogenically excreted organic matter into soil aggregates. Soil Biol. Biochem. 2022, 164, 108483. [Google Scholar] [CrossRef]
- Xin, Y.; Fan, Y.; Babalola, O.O.; Zhang, X.; Yang, W. Legacy effects of biochar and compost addition on arbuscular mycorrhizal fungal community and co-occurrence network in black soil. Microorganisms 2022, 10, 2137. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, D.; Shen, J.; Yuan, Q.; Fan, F.; Wei, W.; Li, Y.; Wu, J. Biochar alters soil microbial communities and potential functions 3–4 years after amendment in a double rice cropping system. Agric. Ecosyst. Environ. 2021, 311, 107291. [Google Scholar] [CrossRef]
- Fungo, B.; Lehmann, J.; Kalbitz, K.; Thionģo, M.; Okeyo, I.; Tenywa, M.; Neufeldt, H. Aggregate size distribution in a biochar-amended tropical ultisol under conventional hand-hoe tillage. Soil Tillage Res. 2017, 165, 190–197. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Peng, Y.; Xiang, P.; Zhou, Y.; Yao, B.; Zhou, Y.; Sun, C. Co-application of biochar and organic fertilizer promotes the yield and quality of red pitaya (Hylocereus polyrhizus) by improving soil properties. Chemosphere 2022, 294, 133619. [Google Scholar] [CrossRef]
- Chaganti, V.N.; Crohn, D.M. Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma 2015, 259–260, 45–55. [Google Scholar] [CrossRef]
- Wang, C.; Shen, J.; Liu, J.; Qin, H.; Yuan, Q.; Fan, F.; Hu, Y.; Wang, J.; Wei, W.; Li, Y.; et al. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: A four-year study. Soil Biol. Biochem. 2019, 135, 251–263. [Google Scholar] [CrossRef]
- Sarker, T.C.; Incerti, G.; Spaccini, R.; Piccolo, A.; Mazzoleni, S.; Bonanomi, G. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biol. Biochem. 2018, 117, 175–184. [Google Scholar] [CrossRef]
- Hu, F.; Xu, C.; Ma, R.; Tu, K.; Yang, J.; Zhao, S.; Yang, M.; Zhang, F. Biochar application driven change in soil internal forces improves aggregate stability: Based on a two-year field study. Geoderma 2021, 403, 115276. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, F.; Wang, Z.; Cao, X.; Xing, B. Heteroaggregation of graphene oxide with minerals in aqueous phase. Environ. Sci. Technol. 2015, 49, 2849–2857. [Google Scholar] [CrossRef]
- Abbas, Q.; Yousaf, B.; Amina; Ali, M.U.; Munir, M.A.M.; El-Naggar, A.; Rinklebe, J.; Naushad, M. Transformation pathways and fate of engineered nanoparticles (enps) in distinct interactive environmental compartments: A review. Environ. Int. 2020, 138, 105646. [Google Scholar] [CrossRef] [PubMed]
- Mai, N.T.; Nguyen, A.M.; Pham, N.T.T.; Nguyen, A.T.Q.; Nguyen, T.T.; Do, C.L.; Nguyen, N.H.; Dultz, S.; Nguyen, M.N. Colloidal interactions of micro-sized biochar and a kaolinitic soil clay. Sci. Total Environ. 2020, 738, 139844. [Google Scholar] [CrossRef] [PubMed]
- Jing, F.; Sun, Y.; Liu, Y.; Wan, Z.; Chen, J.; Tsang, D.C.W. Interactions between biochar and clay minerals in changing biochar carbon stability. Sci. Total Environ. 2022, 809, 151124. [Google Scholar] [CrossRef]
- Jin, R.; Liu, Y.; Liu, G.; Liu, L.; Zhou, J. Influence of chromate adsorption and reduction on transport and retention of biochar colloids in saturated porous media. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124791. [Google Scholar] [CrossRef]
- Hou, J.; Yu, J.; Li, W.; He, X.; Li, X. The effects of chemical oxidation and high-temperature reduction on surface functional groups and the adsorption performance of biochar for sulfamethoxazole adsorption. Agronomy 2022, 12, 510. [Google Scholar] [CrossRef]
- Yang, W.; Feng, T.; Flury, M.; Li, B.; Shang, J. Effect of sulfamethazine on surface characteristics of biochar colloids and its implications for transport in porous media. Environ. Pollut. 2020, 256, 113482. [Google Scholar] [CrossRef] [PubMed]
- Teutscherova, N.; Lojka, B.; Benito, M.; Masaguer, A.; Vázquez, E. Biochar reduces the stability of soil aggregates during intensive leaching experiment. Agronomy 2020, 10, 1910. [Google Scholar] [CrossRef]
- Duan, M.; Liu, G.; Zhou, B.; Chen, X.; Wang, Q.; Zhu, H.; Li, Z. Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil. J. Soils Sediments 2021, 21, 2192–2202. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
Soil Texture | Feedstock Type | Pyrolysis Temp (°C)/ Rate (°C min−1) | Experiment Scale | Application Dosage | IOP * | IOKs ** | Ref |
---|---|---|---|---|---|---|---|
Clay | Wood residue | --- | Column | 4, 8, 16 t ha−1 | + | + | [39] |
Sugercane bagasse | 600 | Lysimeter | 3% | + | + | [40] | |
Biosolids | 600 | Lysimeter | 1% | − | − | [40] | |
Sugercane bagasse | 400, 600, 800 | Column | 1, 3, 5% | + | + | [41] | |
Hard wood pellet | 500 | Column | 1, 2, 5% | + | + | [64] | |
Pine wood chips | 500 | Column | 1, 2, 5% | + | + | [64] | |
Hard wood chips | 500 | Column | 1, 2, 5% | + | + | [64] | |
Oat hulls | 500 | Column | 1, 2, 5% | + | + | [64] | |
Hardwood | 500 | Field | 2.5, 5% | 0 | + | [42] | |
Herbaceous shrub | 500 | Column | 2.5, 5, 10% | 0 | + | [42] | |
Peanut shell | 500 | Column | 0, 5, 20% | + | + | [43] | |
Clay loam | Mesquite wood | 400/6 | Column | 10% | + | + | [57] |
Hard wood | 450 | Column | 0.50% | + | [65] | ||
Wood chip | 525 | Pot | 3% | + | + | [40] | |
Miscanthus grass | 450/15 | Pot | 25 t ha−1 | 0 | 0 | [44] | |
Wheat straw | 450 | Field | 2.5, 5, 10, 20, 30, 40 t ha−1 | + | + | [45] | |
Beech wood | --- | Field | 0, 24, 72 t ha−1 | + | + | [46] | |
Loam | Switch grass | 375–475 | Field | 1% | + | [47] | |
Hard wood pellet | 500 | Column | 1, 2, 5% | 0 | 0 | [64] | |
Pine wood chips | 500 | Column | 1, 2, 5% | 0 | 0 | [64] | |
Hard wood chips | 500 | Column | 1, 2, 5% | 0 | 0 | [64] | |
Oat hulls | 500 | Column | 1, 2, 5% | 0 | 0 | [64] | |
Grape stalks | 600 | Column | 2, 5% | − | [62] | ||
Dairy manure | 300, 500, 700 | Column | 5% | + | (+700) | [48] | |
Wood chip | 300, 500, 700 | Column | 5% | + | (+700) | [48] | |
Loamy (Fine) | Hardwood charcol | --- | Column | 5, 10, 20 g kg−1 soil | + | 0 | [49] |
Loamy sand | Maize (whole plant) | 750/20 | Column, Field | 1, 2.5, 5% | + | 0 | [73] |
Woodchips | 750 | Column | 2% | + | + | [50] | |
Digestate corn | 750 | Column | 2% | + | + | [50] | |
Peanut hulls | 500 | Column | 0, 25, 50, 75, 100% | + | − | [56] | |
Pine | 550 | Column | 2, 4, 6% | − | (~) | [21] | |
Organic rich soil | Mesquite wood | 400/6 | Column | 10% | − | − | [57] |
Sand | Beechwood | 550/15 | Column, Field | 0, 1, 2.5, 5% | + | 0 | [73] |
Grassland species | 400 | Column, Field | 1, 5, 20, 50 | 0 | 0 | [11] | |
Mesquite wood | 400 -/5 | Column | 2% | + | + | [34] | |
Miscanthus straw pellet | 550, 700 | Column, Field | 10 t ha−1 | 0 | 0 | [51] | |
Oil seed rape | 550, 700 | Column, Field | 10 t ha−1 | 0 | 0 | [51] | |
Rice husk | 550, 700 | Column, field | 10 t ha−1 | 0 | 0 | [51] | |
Sewage sludge | 550, 700 | Column, field | 10 t ha−1 | 0 | 0 | [51] | |
Wheat straw pellet | 550, 700 | Column, field | 10 t ha−1 | 0 | 0 | [51] | |
Softwood pellet | 550, 700 | Column, Field | 10 t ha−1 | 0 | 0 | [51] | |
Cotton | 300, 400, 500 | Pot | 5% | + | − | [53] | |
Swine manure | 300, 400, 500 | Pot | 5% | + | − | [53] | |
Eucalyptus | 300, 400, 500 | Pot | 5% | + | − | [53] | |
Sugarcane filtercake | 300, 400, 500 | Pot | 5% | + | − | [53] | |
Black locust | 300, 400, 500 | Column | 10, 20 t ha−1 | 0 | − | [54] | |
Switch grass | 500 | Pot | 0, 5, 10, 15, 20, 25% | + | + | [55] | |
Pine | 450, 550 | Column | + | − | [68] | ||
Poplar | 450, 550 | Column | + | − | [68] | ||
Sand (coarse) | Hard wood pellet | 500 | Column | 1, 2, 5% | + | − | [64] |
Pine wood chips | 500 | Column | 1, 2, 5% | + | − | [64] | |
Hard wood chips | 500 | Column | 1, 2, 5% | + | − | [64] | |
Oat hulls | 500 | Column | 1, 2, 5% | + | − | [64] | |
Sand (fine) | Wood chip | 500–600 | Column | 20, 50, 100 g kg−1 soil | + | − | [61] |
Miscanthus grass | 450/15 | Pot | 25 t ha−1 | 0 | 0 | [44] | |
Hard wood pellet | 500 | Column | 1, 2, 5% | + | − | [64] | |
Pine wood chips | 500 | Column | 1, 2, 5% | + | − | [64] | |
Hard wood chips | 500 | Column | 1, 2, 5% | + | − | [64] | |
Oat hulls | 500 | Column | 1, 2, 5% | + | − | [64] | |
Mesquite wood | 500 | Column | 5, 10, 15% | − | − | [52] | |
Sand (silica sand) | Pine | 550 | Column | 2, 4, 6% | + | (~) | [21] |
Sandy clay loam | Hardwood | 500 | Column | 0, 3, 6% | + | + | [74] |
Sandy loam | Wood chip | 500–600 | Column | 20, 50, 100 g kg−1 soil | + | - | [61] |
Corn cob | 500–550 | Field | 10, 20 t ha−1 | + | + | [75] | |
Wood chip | 550/10 | Column | 2% | + | − | [18] | |
Wood chip | 350/10 | Column | 2% | + | − | [18] | |
Acacia green waste | --- | Field | 47 t ha−1 | + | [10] | ||
Switch grass | 375-475 | Field | 1% | + | [47] | ||
Powered wood charcol | --- | Column | 0, 0.5, 1.5, 2.5, 5% | − | [76] | ||
Pine | 550 | Column | 2, 4, 6% | + | − | [21] | |
Grape stalks | 600 | Column | 2, 5% | − | [62] | ||
Mesquite wood | 400/6 | Column | 10% | − | − | [57] | |
Wheat straw | 525 | Pot | 3% | + | + | [40] | |
Silt loam | Corn stover | 350/36 | Column | 1.13, 1.50 t ha−1 | + | + | [39] |
Corn stover | 550/51 | Column | 1.00, 1.33 t ha−1 | 0 | (+350) | [39] | |
Pine | 550 | Column | 2, 4, 6% | 0 | + | [21] | |
Vineyard-pruning | 525, 400 | Pot | 3% | + | + | [40] | |
Beech wood | --- | Field | 0, 24, 72 t ha−1 | + | + | [46] | |
Wheat straw | 450 | Column | 27 t ha−1 | 0 | 0 | [79] | |
Silty clay | Apple branch | 450 | Column, Field | 0, 1, 2, 4% | + | + | [77] |
Diary manure | 500/10 | Pot | 2% | 0 | [78] | ||
Silty clay loam | Wood chip | 500–600 | Column | 20, 50, 100 g kg−1 soil | + | + | [61] |
Switch grass | 375–475 | Field | 1% | + | [47] | ||
Silty sand (compacted) | Mesquite wood | 500 | Column | 5, 10, 15% | + | + | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramezanzadeh, H.; Zarehaghi, D.; Baybordi, A.; Bouket, A.C.; Oszako, T.; Alenezi, F.N.; Belbahri, L. The Impacts of Biochar-Assisted Factors on the Hydrophysical Characteristics of Amended Soils: A Review. Sustainability 2023, 15, 8700. https://doi.org/10.3390/su15118700
Ramezanzadeh H, Zarehaghi D, Baybordi A, Bouket AC, Oszako T, Alenezi FN, Belbahri L. The Impacts of Biochar-Assisted Factors on the Hydrophysical Characteristics of Amended Soils: A Review. Sustainability. 2023; 15(11):8700. https://doi.org/10.3390/su15118700
Chicago/Turabian StyleRamezanzadeh, Habib, Davoud Zarehaghi, Ahmad Baybordi, Ali Chenari Bouket, Tomasz Oszako, Faizah N. Alenezi, and Lassaad Belbahri. 2023. "The Impacts of Biochar-Assisted Factors on the Hydrophysical Characteristics of Amended Soils: A Review" Sustainability 15, no. 11: 8700. https://doi.org/10.3390/su15118700
APA StyleRamezanzadeh, H., Zarehaghi, D., Baybordi, A., Bouket, A. C., Oszako, T., Alenezi, F. N., & Belbahri, L. (2023). The Impacts of Biochar-Assisted Factors on the Hydrophysical Characteristics of Amended Soils: A Review. Sustainability, 15(11), 8700. https://doi.org/10.3390/su15118700