A Review on the Characterization and Measurement of the Carbonaceous Fraction of Particulate Matter
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Carbonaceous Fraction Present in Particulate Matter
4.2. Health Effects
4.3. Environment Effects
4.4. Measurement Equipment/Techniques
Equipment | Technique/Method | Protocol | Carbonaceous Aerosols | Filter | References |
---|---|---|---|---|---|
Sunset Carbon Analyzer | Thermal/Optical Reflectance | IMPROVE_A | OC, EC concentrations | Quartz fiber | [16,26,48,58,83,84,85] |
Carbon Analyzer DRI, 2001 | Thermal/Optical Reflectance | IMPROVE_A | OC, EC concentrations | Quartz fiber | [19,49,51,53,54,55,57,65,72,81,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100] |
Lab OC-EC Aerosol Analyzer | Thermo-Optical-Transmittance | NIOSH | OC/EC concentrations | Quartz fiber | [101,102] |
Aethalometer (Magee Sci., Inc., USA, Model AE-33) | DualSpot Multi-wavelength absorption technique | BC concentrations | Quartz Fiber | [12,33,69,103,104,105,106,107,108,109,110,111,112,113] | |
OC-EC analyzer (DRI Model 2015) | Multiwavelength Thermal/Optical | IMPROVE_A | OC/EC concentrations | Quartz fiber | [27,50,74,114,115,116,117,118] |
OC-EC analyzer (model 5 L, Sunset Laboratory Inc., Tigard, OR, USA) | Thermal Optical Transmittance | EUSAAR_2 | OC/EC concentrations | Quartz fiber | [17,52,119,120,121,122,123] |
EC-OC carbon analyzer (Model no-4F, Sunset laboratory Inc.) | Thermal Optical Transmittance | EUSAAR_2 | OC/EC Concentrations | Quartz fiber | [124,125] |
OC-EC analyzer | Thermal Optical Transmittance | NIOSH.1996 | OC/EC concentrations | Quartz fiber | [126] |
Aethalometer (Magee Scientific/Teledyne 633) | DualSpot Multi-wavelength absorption technique | - 1 | BC concentrations | - | [67] |
Micro Aethalometer (AE51) | - | - | BC concentrations | - | [69,85,127,128] |
Multiangle absorption photometer (MAAP, Thermo-Scientific, model 5012) | - | . | eBC concentrations | - | [17,125,129] |
OC-EC analyzer from Sunset Laboratory (Model 4G) | Thermal Optical Transmittance | NIOSH 5040 | OC/EC | Quartz Fiber | [32,117,130,131,132] |
EEL M43D Smoke Stain Reflectometer (SSR) | - | - | BC concentrations | Nucleopore grease-coated and track-etched membrane filters | [56] |
Dual-wavelength optical transmissometer (SootScan OT21, Magee Scientific | Thermal Optical | NIOSH | Bc concentrations Bc concentrations | Teflon filter papers Quartz Fiber | [15,133] |
Sunset Laboratory Dual-Optical Carbonaceous Analyzer. | Thermal Optical | EUSAAR_2 | OC/EC concentrations | Quartz fiber | [15,134] |
Carbon analyzer (Sunset Laboratory) | Tthermal-Optical Transmittance | NIOSH870 | OC/EC concentrations | Quartz fiber | [39,125,129,135,136,137] |
Soot particle aerosol mass spectrometer (SP-AMS) | - | - | rBC | - | [138] |
Seven- wavelength aethalometers (Model AE-31, Magee Scientific) | Multi-wavelength absorption technique | - | BC | - | [18,139] |
OC-EC analyzer (model 5 L, Sunset Laboratory Inc.) | Thermal Optical Reflectance | IMPROVE_A | OC/EC concentrations | Quartz fiber | [66] |
Elemental analyzer (Vario EL III) | - | - | OC/EC concentrations | - | |
Dual-wavelength Aethalometer (Model AE22, Magee Scientific) | - | . | BC | - | [140] |
Photometer Low-cost Aerosol Black Carbon Detector (ABCD) | - | - | BC concentrations | - | [141] |
4.5. Identification of Emission Sources
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gulia, S.; Nagendra, S.S.; Khare, M.; Khanna, I. Urban air quality management—A review. Atmos. Pollut. Res. 2015, 6, 286–304. [Google Scholar] [CrossRef]
- Von Schneidemesser, E.; Monks, P.S.; Allan, J.D.; Bruhwiler, L.; Forster, P.; Fowler, D.; Lauer, A.; Morgan, W.T.; Paasonen, P.; Righi, M.; et al. Chemistry and the Linkages between Air Quality and Climate Change. Chem. Rev. 2015, 115, 3856–3897. [Google Scholar] [CrossRef] [PubMed]
- Correa, M.A.; Franco, S.A.; Gómez, L.M.; Aguiar, D.; Colorado, H.A. Characterization Methods of Ions and Metals in Particulate Matter Pollutants on PM2.5 and PM10 Samples from Several Emission Sources. Sustainability 2023, 15, 4402. [Google Scholar] [CrossRef]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876. [Google Scholar] [CrossRef]
- Salinas, J.A. Caracterización Físico-Química Del Material Particulado en La Comunidad Foral de Navarra. Ph.D. Thesis, Universidad de Navarra, Pamplona, Spain, 2011. [Google Scholar]
- Pio, C.; Mário, C.; Harrison, R.M.; Nunes, T.; Mirante, F.; Alves, C.; Oliveira, C.; Sanchez de la Campa, A.; Artíñano, B.; Matos, M. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos. Environ. 2011, 45, 6121–6132. [Google Scholar] [CrossRef]
- Kucbel, M.; Sýkorová, B.; Růžičková, J. Carbonaceous particles in the air of the Moravian-Silesian Region, Czech Republic. Perspect. Sci. 2016, 7, 333–336. [Google Scholar] [CrossRef]
- Long, C.M.; Nascarella, M.A.; Valberg, P.A. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 2013, 181, 271–286. [Google Scholar] [CrossRef]
- U.S. EPA. Report to Congress on Black Carbon Department of the Interior, Environment, and Related Agencies Appropriations Act, 2010. 2012. Available online: https://www3.epa.gov/airquality/blackcarbon/2012report/fullreport.pdf (accessed on 10 January 2023).
- Andreae, M.O.; Gelencsér, A. Black carbon or brown carbon? the nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef]
- Peng, C.; Tian, M.; Wang, X.; Yang, F.; Shi, G.; Huang, R.J.; Yao, X.; Wang, Q.; Zhai, C.; Zhang, S.; et al. Light absorption of brown carbon in PM2.5 in the Three Gorges Reservoir region, southwestern China: Implications of biomass burning and secondary formation. Atmos. Environ. 2020, 229, 117409. [Google Scholar] [CrossRef]
- Rathod, T.D.; Sahu, S.K. Measurements of optical properties of black and brown carbon using multi-wavelength absorption technique at Mumbai, India. J. Earth Syst. Sci. 2022, 131, 32. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.; Frank, N.; Homolya, J. Guideline on speciated particulate monitoring, Draft 3. Desert Res. Inst. 1998, 291. [Google Scholar]
- Chow, J.C.; Wang, X.; Sumlin, B.J.; Gronstal, S.B.; Chen, L.-W.A.; Trimble, D.L.; Kohl, S.D.; Mayorga, S.R.; Riggio, G.; Hurbain, P.R.; et al. Optical calibration and equivalence of a multiwavelength thermal/optical carbon analyzer. Aerosol Air Qual. Res. 2015, 15, 1145–1159. [Google Scholar] [CrossRef]
- Greilinger, M.; Drinovec, L.; Močnik, G.; Kasper-Giebl, A. Evaluation of measurements of light transmission for the determination of black carbon on filters from different station types. Atmos. Environ. 2019, 198, 1–11. [Google Scholar] [CrossRef]
- Arregocés, H.A.; Rojano, R.; Restrepo, G. Meteorological factors contributing to organic and elemental carbon concentrations in PM10 near an open-pit coal mine. Environ. Sci. Pollut. Res. 2022, 29, 28854–28865. [Google Scholar] [CrossRef]
- Moretti, S.; Tassone, A.; Andreoli, V.; Carbone, F.; Pirrone, N.; Sprovieri, F.; Naccarato, A. Analytical study on the primary and secondary organic carbon and elemental carbon in the particulate matter at the high-altitude Monte Curcio GAW station, Italy. Environ. Sci. Pollut. Res. 2021, 28, 60221–60234. [Google Scholar] [CrossRef] [PubMed]
- Xulu, N.A.; Piketh, S.J.; Feig, G.T.; Lack, D.A.; Garland, R.M. Characterizing light-absorbing aerosols in a low-income settlement in South Africa. Aerosol Air Qual. Res. 2020, 20, 1812–1832. [Google Scholar] [CrossRef]
- Sharma, S.K.; Banoo, R.; Mandal, T.K. Seasonal characteristics and sources of carbonaceous components and elements of PM10 (2010–2019) in Delhi, India. J. Atmos. Chem. 2021, 78, 251–270. [Google Scholar] [CrossRef]
- Hama, S.; Ouchen, I.; Wyche, K.P.; Cordell, R.L.; Monks, P.S. Carbonaceous aerosols in five European cities: Insights into primary emissions and secondary particle formation. Atmos. Res. 2022, 274, 106180. [Google Scholar] [CrossRef]
- Li, P.-H.; Wang, Y.; Li, T.; Sun, L.; Yi, X.; Guo, L.G.; Su, R.H. Characterization of carbonaceous aerosols at Mount Lu in South China: Implication for secondary organic carbon formation and long-range transport. Environ. Sci. Pollut. Res. 2015, 22, 14189–14199. [Google Scholar] [CrossRef]
- Safai, P.D.; Raju, M.P.; Rao, P.S.P.; Pandithurai, G. Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. Atmos. Environ. 2014, 92, 493–500. [Google Scholar] [CrossRef]
- De Carvalho, G.D.G.; Sokulski, C.C.; Da Silva, W.V.; De Carvalho, H.G.; De Moura, R.V.; De Francisco, A.C.; Da Veiga, C.P. Bibliometrics and systematic reviews: A comparison between the Proknow-C and the Methodi Ordinatio. J. Informetr. 2020, 14, 101043. [Google Scholar] [CrossRef]
- Ensslin, S.R.; Ensslin, L.; Imlau, J.M.; Chaves, L.C. Processo de Mapeamento das Publicações Científicas de Um Tema: Portfólio Bibliográfico e Análise Bibliométrica sobre avaliação de desempenho de cooperativas de produção agropecuária. Rev. Econ. Sociol. Rural 2014, 52, 587–608. [Google Scholar] [CrossRef]
- Silva, L.F.O.; Schneider, I.L.; Artaxo, P.; Núñez, Y.; Pinto, D.; Flores, E.M.M.; Gómez-Plata, L.; Ramírez, O.; Dotto, G.L. Particulate matter geochemistry of a highly industrialized region in the Caribbean: Basis for future toxicological studies. Geosci. Front. 2021, 13, 101115. [Google Scholar] [CrossRef]
- Suradi, H.; Khan, M.F.; Sairi, N.A.; Rahim, H.A.; Yusoff, S.; Fujii, Y.; Qin, K.; Bari, M.A.; Othman, M.; Latif, M.T. Ambient levels, emission sources and health effect of pm2.5-bound carbonaceous particles and polycyclic aromatic hydrocarbons in the city of Kuala Lumpur, Malaysia. Atmosphere 2021, 12, 549. [Google Scholar] [CrossRef]
- Raparthi, N.; Phuleria, H.C. Real-world vehicular emissions in the Indian megacity: Carbonaceous, metal and morphological characterization, and the emission factors. Urban Clim. 2021, 39, 100955. [Google Scholar] [CrossRef]
- Massabò, D.; Prati, P. An overview of optical and thermal methods for the characterization of carbonaceous aerosol. Riv. Nuovo Cim. 2021, 44, 145–192. [Google Scholar] [CrossRef]
- Buchunde, P.S.; Safai, P.D.; Mukherjee, S.; Raju, M.P.; Meena, G.S.; Sonbawne, S.M.; Dani, K.K.; Pandithurai, G. Seasonal abundances of primary and secondary carbonaceous aerosols at a high-altitude station in the Western Ghat Mountains, India. Air Qual. Atmos. Health 2021, 15, 209–220. [Google Scholar] [CrossRef]
- Rincón-Riveros, J.M.; Rincón, M.A.; Sullivan, A.P.; Méndez, J.F.; Belalcazar, L.C.; Quirama, M.; Morales, R. Long-term brown carbon and smoke tracer observations in Bogotá, Colombia: Association with medium-range transport of biomass burning plumes. Atmos. Chem. Phys. 2020, 20, 7459–7472. [Google Scholar] [CrossRef]
- Hidy, G.M. Atmospheric Aerosols: Some Highlights and Highlighters, 1950 to 2018. Aerosol Sci. Eng. 2019, 3, 1–20. [Google Scholar] [CrossRef]
- Srivastava, P.; Naja, M. Characteristics of carbonaceous aerosols derived from long-term high-resolution measurements at a high-altitude site in the central Himalayas: Radiative forcing estimates and role of meteorology and biomass burning. Environ. Sci. Pollut. Res. 2021, 28, 14654–14670. [Google Scholar] [CrossRef]
- Sateesh, M.; Soni, V.K.; Raju, P.V.S.; Prasad, V.S. Analysis of Absorption Characteristics and Source Apportionment of Carbonaceous Aerosol in Arid Region of Western India. Earth Syst. Environ. 2019, 3, 551–562. [Google Scholar] [CrossRef]
- Tasoglou, A.; Subramanian, R.; Pandis, S.N. An inter-comparison of black-carbon-related instruments in a laboratory study of biomass burning aerosol. Aerosol Sci. Technol. 2018, 52, 1320–1331. [Google Scholar] [CrossRef]
- Pani, S.K.; Chantara, S.; Khamkaew, C.; Lee, C.T.; Lin, N.H. Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure. Atmos. Res. 2019, 224, 180–195. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M.; Hegde, P. Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: Sources and temporal variability. Atmos. Environ. 2008, 42, 6785–6796. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, X.; Wang, T.; Zhao, Y.; Zhao, Y.; Wang, D.; Chang, Y.; Wei, Y.; Yan, G.; Fan, Y.; et al. Characteristics of airborne particles retained on conifer needles across China in winter and preliminary evaluation of the capacity of trees in haze mitigation. Sci. Total Environ. 2021, 806, 150704. [Google Scholar] [CrossRef]
- Yan, Y.; Zhao, T.; Huang, W.; Fang, D.; Zhang, X.; Zhang, L.; Huo, P.; Xiao, K.; Zhang, Y.; Zhang, Y. The complexation between transition metals and water-soluble organic compounds (WSOC) and its effect on reactive oxygen species (ROS) formation. Atmos. Environ. 2022, 287, 119247. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, X.; Zhang, J.; Xue, L.; Chen, T.; Zheng, P.; Sun, J.; Yan, X.; Han, G.; Wang, W. Characteristics of airborne water-soluble organic carbon (WSOC) at a background site of the North China Plain. Atmos. Res. 2020, 231, 104668. [Google Scholar] [CrossRef]
- Samara, C.; Kantiranis, N.; Kollias, P.; Planou, S.; Kouras, A.; Besis, A.; Manoli, E.; Voutsa, D. Spatial and seasonal variations of the chemical, mineralogical and morphological features of quasi-ultrafine particles (PM0.49) at urban sites. Sci. Total Environ. 2016, 553, 392–403. [Google Scholar] [CrossRef]
- Fermo, P.; Comite, V.; Ciantelli, C.; Sardella, A.; Bonazza, A. A multi-analytical approach to study the chemical composition of total suspended particulate matter (TSP) to assess the impact on urban monumental heritage in Florence. Sci. Total Environ. 2020, 740, 140055. [Google Scholar] [CrossRef]
- Błaszczak, B.; Mathews, B. Characteristics of Carbonaceous Matter in Aerosol from Selected Urban and Rural Areas of Southern Poland. Atmosphere 2020, 11, 687. [Google Scholar] [CrossRef]
- Jamhari, A.A.; Latif, M.T.; Wahab, M.I.A.; Hassan, H.; Othman, M.; Abd Hamid, H.H.; Hata, M.; Furuchi, M.; Rajab, N.F.; Phairuang, W.; et al. Seasonal variation and size distribution of inorganic and carbonaceous components, source identification of size-fractioned urban air particles in Kuala Lumpur, Malaysia. Chemosphere 2022, 287, 132309. [Google Scholar] [CrossRef] [PubMed]
- Galindo, N.; Yubero, E.; Clemente, A.; Nicolás, J.F.; Navarro-Selma, B.; Crespo, J. Insights into the origin and evolution of carbonaceous aerosols in a mediterranean urban environment. Chemosphere 2019, 235, 636–642. [Google Scholar] [CrossRef]
- Olson, M.R.; Yuqin, W.; de Foy, B.; Li, Z.; Bergin, M.H.; Zhang, Y.; Schauer, J.J. Source attribution of black and Brown carbon near-UV light absorption in Beijing, China and the impact of regional air-mass transport. Sci. Total Environ. 2022, 807, 150871. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Luo, T.; Zhou, L.; Song, T.; Wang, N.; Luo, Q.; Huang, G.; Jiang, X.; Zhou, S.; Qiu, Y.; et al. Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China. Environ. Pollut. 2022, 312, 119966. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Miyakawa, T.; Irie, H.; Choi, Y.; Taketani, F.; Kanaya, Y. Light-absorption properties of brown carbon aerosols in the Asian outflow: Implications of a combination of filter and ground remote-sensing observations at Fukue Island, Japan. Sci. Total Environ. 2021, 797, 149155. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, H.; Tripathee, L.; Kang, S.; Chen, P.; Sharma, C.M.; Ram, K.; Guo, J.; Rupakheti, M. Nitrogenous and carbonaceous aerosols in PM2.5 and TSP during pre-monsoon: Characteristics and sources in the highly polluted mountain valley. J. Environ. Sci. 2022, 115, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Yuan, Y.; Cui, Y.; Zhu, L.; Zhao, Z.; Ma, S.; Ye, Z.; Ge, X. Comparative analysis of the chemical characteristics and sources of fine atmospheric particulate matter (PM2.5) at two sites in Changzhou, China. Atmos. Pollut. Res. 2021, 12, 101124. [Google Scholar] [CrossRef]
- Huang, S.; Chen, P.; Hu, K.; Qiu, Y.; Feng, W.; Ren, Z.; Wang, X.; Huang, T.; Wu, D. Characteristics and source identification of fine particles in the Nanchang subway, China. Build. Environ. 2021, 199, 107925. [Google Scholar] [CrossRef]
- Samiksha, S.; Kumar, S.; Raman, R.S. Two-year record of carbonaceous fraction in ambient PM2.5 over a forested location in central India: Temporal characteristics and estimation of secondary organic carbon. Air Qual. Atmos. Health 2021, 14, 473–480. [Google Scholar] [CrossRef]
- Major, I.; Furu, E.; Varga, T.; Horváth, A.; Futó, I.; Gyökös, B.; Somodi, G.; Lisztes-Szabó, Z.; Jull, A.J.; Kertész, Z.; et al. Source identification of PM2.5 carbonaceous aerosol using combined carbon fraction, radiocarbon and stable carbon isotope analyses in Debrecen, Hungary. Sci. Total Environ. 2021, 782, 146520. [Google Scholar] [CrossRef]
- Singh, A.K.; Srivastava, A. Seasonal Trends of Organic and Elemental Carbon in PM1 Measured over an Industrial Area of Delhi, India. Aerosol Sci. Eng. 2021, 5, 112–125. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mukherjee, S.; Choudhary, N.; Rai, A.; Ghosh, A.; Chatterjee, A.; Vijayan, N.; Mandal, T.K. Seasonal variation and sources of carbonaceous species and elements in PM2.5 and PM10 over the eastern Himalaya. Environ. Sci. Pollut. Res. 2021, 28, 51642–51656. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Kumar, N.; Singh, N.; Kumar, K.; Mishra, A.K.; Chourasiya, S.; Kushwaha, H.S. Seasonal Abundance and Source Attribution of Carbonaceous Aerosols at Different Altitude of Mountainous Locations in Uttarakhand Himalaya. Aerosol Sci. Eng. 2021, 5, 233–246. [Google Scholar] [CrossRef]
- Nducol, N.; Siaka, Y.F.T.; Yakum-Ntaw, S.Y.; Saidou; Manga, J.D.; Vardamides, J.C. Preliminary study of black carbon content in airborne particulate matters from an open site in the city of Yaoundé, Cameroon. Environ. Monit. Assess. 2021, 193, 135. [Google Scholar] [CrossRef]
- Yadav, A.K.; Sarkar, S.; Jyethi, D.S.; Rawat, P.; Aithani, D.; Siddiqui, Z.; Khillare, P.S. Fine Particulate Matter Bound Polycyclic Aromatic Hydrocarbons and Carbonaceous Species in Delhi’s Atmosphere: Seasonal Variation, Sources, and Health Risk Assessment. Aerosol Sci. Eng. 2021, 5, 193–213. [Google Scholar] [CrossRef]
- Amarillo, A.; Carreras, H.; Krisna, T.; Mignola, M.; Busso, I.T.; Wendisch, M. Exploratory analysis of carbonaceous PM2.5 species in urban environments: Relationship with meteorological variables and satellite data. Atmos. Environ. 2021, 245, 117987. [Google Scholar] [CrossRef]
- Cátia, G.; Alves, C.; Fernandes, A.P.; Monteiro, C.; Tarelho, L.; Evtyugina, M.; Pio, C. Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species. Atmos. Environ. 2011, 45, 4533–4545. [Google Scholar]
- Zhang, X.; Ji, G.; Peng, X.; Kong, L.; Zhao, X.; Ying, R.; Yin, W.; Xu, T.; Cheng, J.; Wang, L. Characteristics of the chemical composition and source apportionment of PM2.5 for a one-year period in Wuhan, China. J. Atmos. Chem. 2022, 79, 101–115. [Google Scholar] [CrossRef]
- Ramírez, O.; de la Campa, A.M.M.S.; Amato, F.; Catacolí, R.A.; Rojas, N.Y.; de la Rosa, J. Chemical composition and source apportionment of PM10 at an urban background site in a high-altitude Latin American megacity (Bogota, Colombia). Environ. Pollut. 2018, 233, 142–155. [Google Scholar] [CrossRef]
- Li, N.; Wei, X.; Han, W.; Sun, S.; Wu, J. Characteristics and temporal variations of organic and elemental carbon aerosols in PM1 in Changchun, Northeast China. Environ. Sci. Pollut. Res. 2020, 27, 8653–8661. [Google Scholar] [CrossRef]
- Peláez, L.M.G.; Santos, J.M.; de Almeida Albuquerque, T.T.; Reis, N.C.; Andreão, W.L.; de Fátima Andrade, M. Air quality status and trends over large cities in South America. Environ. Sci. Policy 2020, 114, 422–435. [Google Scholar] [CrossRef]
- Aguiar-Gil, D.; Gómez-Peláez, L.M.; Álvarez-Jaramillo, T.; Correa-Ochoa, M.A.; Saldarriaga-Molina, J.C. Evaluating the impact of PM2.5 atmospheric pollution on population mortality in an urbanized valley in the American tropics. Atmos. Environ. 2020, 224, 117343. [Google Scholar] [CrossRef]
- Rai, A.; Mukherjee, S.; Chatterjee, A.; Choudhary, N.; Kotnala, G.; Mandal, T.K.; Sharma, S.K. Seasonal Variation of OC, EC, and WSOC of PM10 and Their CWT Analysis Over the Eastern Himalaya. Aerosol Sci. Eng. 2020, 4, 26–40. [Google Scholar] [CrossRef]
- Phairuang, W.; Inerb, M.; Furuuchi, M.; Hata, M.; Tekasakul, S.; Tekasakul, P. Size-fractionated carbonaceous aerosols down to PM0.1 in southern Thailand: Local and long-range transport effects. Environ. Pollut. 2020, 260, 114031. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.L.; Wagner, J. Composition of particulate matter during a wildfire smoke episode in an urban area. Aerosol Sci. Technol. 2021, 55, 734–747. [Google Scholar] [CrossRef]
- Vallejo, L.A.M.; Pardo, M.A.H.; Piracón, J.A.B.; Cerón, L.C.B.; Achury, N.J.M. Exposure levels to PM2.5 and black carbon for people with disabilities in rural homes of Colombia. Environ. Monit. Assess. 2021, 193, 37. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.G.; Chiang, A.W.J.; Balasubramanian, R. Insights into characteristics of light absorbing carbonaceous aerosols over an urban location in Southeast Asia. Environ. Pollut. 2020, 257, 113425. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Pozzer, A.; Haines, A.; Klingmüller, K.; Münzel, T.; Paasonen, P.; Sharma, A.; Venkataraman, C.; Lelieveld, J. Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols. Environ. Int. 2022, 159, 107020. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Shivani; Gadi, R.; Sharma, S.K.; Mandal, T.K. Seasonal variation, source apportionment and source attributed health risk of fine carbonaceous aerosols over National Capital Region, India. Chemosphere 2019, 237, 124500. [Google Scholar] [CrossRef]
- Venkatraman, K.; Bhaskar, V.; Kesarkar, A.P. A Systematic Approach to Comprehend the Role of Atmospheric Black Carbon in Different Environmental Segments. Aerosol Sci. Eng. 2021, 5, 253–274. [Google Scholar] [CrossRef]
- Luo, L.; Tian, H.; Liu, H.; Bai, X.; Liu, W.; Liu, S.; Wu, B.; Lin, S.; Zhao, S.; Hao, Y.; et al. Seasonal variations in the mass characteristics and optical properties of carbonaceous constituents of PM2.5 in six cities of North China. Environ. Pollut. 2021, 268, 115780. [Google Scholar] [CrossRef]
- Chen, L.W.A.; Chow, J.C.; Wang, X.L.; Robles, J.A.; Sumlin, B.J.; Lowenthal, D.H.; Zimmermann, R.; Watson, J.G. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol. Atmos. Meas. Tech. 2015, 8, 451–461. [Google Scholar] [CrossRef]
- Sunlab. OCEC Lab Instrument. 2021. Available online: https://sunlab.com/wp-content/uploads/Lab-Instrument-brochure.pdf (accessed on 10 January 2023).
- Blanchard, C.L.; Shaw, S.L.; Edgerton, E.S.; Schwab, J.J. Ambient PM2.5 organic and elemental carbon in New York City: Changing source contributions during a decade of large emission reductions. J. Air Waste Manag. Assoc. 2021, 71, 995–1012. [Google Scholar] [CrossRef]
- Karanasiou, A.; Minguillón, M.C.; Viana, M.; Alastuey, A.; Putaud, J.P.; Maenhaut, W.; Panteliadis, P.; Močnik, G.; Favez, O.; Kuhlbusch, T.A.J. Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review. Atmos. Meas. Tech. Discuss 2015, 8, 9649–9712. [Google Scholar] [CrossRef]
- Demir, T.; Karakaş, D.; Yenisoy-Karakaş, S. Source identification of exhaust and non-exhaust traffic emissions through the elemental carbon fractions and Positive Matrix Factorization method. Environ. Res. 2022, 204, 112399. [Google Scholar] [CrossRef]
- Brown, S.; Minor, H.; O’Brien, T.; Hameed, Y.; Feenstra, B.; Kuebler, D.; Wetherell, W.; Day, R.; Tun, R.; Landis, E.; et al. Review of Sunset OC/EC Instrument Measurements During the EPA’s Sunset Carbon Evaluation Project. Atmosphere 2019, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, Y.Y.; Wang, Y.Y.; Wang, T.; Tan, H. The characteristics of particulate matter and optical properties of Brown carbon in air lean condition related to residential coal combustion. Powder Technol. 2021, 379, 505–514. [Google Scholar] [CrossRef]
- Cavalli, F.; Viana, M.; Yttri, K.E.; Genberg, J.; Putaud, J.P. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos. Meas. Tech. 2010, 3, 79–89. [Google Scholar] [CrossRef]
- Boongla, Y.; Chanonmuang, P.; Hata, M.; Furuuchi, M.; Phairuang, W. The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand. Environ. Pollut. 2021, 272, 115940. [Google Scholar] [CrossRef]
- Amin, M.; Putri, R.M.; Handika, R.A.; Ullah, A.; Goembira, F.; Phairuang, W.; Ikemori, F.; Hata, M.; Tekasakul, P.; Furuuchi, M. Size-Segregated Particulate Matter Down to PM0.1 and Carbon Content during the Rainy and Dry Seasons in Sumatra Island, Indonesia. Atmosphere 2021, 12, 1441. [Google Scholar] [CrossRef]
- Phairuang, W.; Suwattiga, P.; Chetiyanukornkul, T.; Hongtieab, S.; Limpaseni, W.; Ikemori, F.; Hata, M.; Furuuchi, M. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environ. Pollut. 2019, 247, 238–247. [Google Scholar] [CrossRef]
- Liu, P.; Zhou, H.; Chun, X.; Wan, Z.; Liu, T.; Sun, B.; Wang, J.; Zhang, W. Characteristics of fine carbonaceous aerosols in Wuhai, a resource-based city in Northern China:Insights from energy efficiency and population density. Environ. Pollut. 2022, 292, 118368. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh, T.; Sinha, V.; Sinha, B.; Paul, S.; Attri, S.D.; Mor, S. Appraisal of regional haze event and its relationship with PM2.5 concentration, crop residue burning and meteorology in Chandigarh, India. Chemosphere 2021, 273, 128562. [Google Scholar] [CrossRef]
- Wen, H.; Zhou, Y.; Xu, X.; Wang, T.; Chen, Q.Q.; Li, W.; Wang, Z.; Huang, Z.; Zhou, T.; Shi, J.; et al. Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: Optical properties, chemical compositions, and potential sources. Sci. Total Environ. 2021, 789, 147971. [Google Scholar] [CrossRef]
- Ni, X.; Pan, Y.; Shao, P.; Tian, S.; Zong, Z.; Gu, M.; Liu, B.; Liu, J.; Cao, J.; Sun, Q.; et al. Size distribution and formation processes of aerosol water-soluble organic carbon during winter and summer in urban Beijing. Atmos. Environ. 2021, 244, 117983. [Google Scholar] [CrossRef]
- Chen, P.; Kang, S.; Tripathee, L.; Panday, A.K.; Rupakheti, M.; Rupakheti, D.; Zhang, Q.; Guo, J.; Li, C.; Pu, T. Severe air pollution and characteristics of light-absorbing particles in a typical rural area of the Indo-Gangetic Plain. Environ. Sci. Pollut. Res. 2020, 27, 10617–10628. [Google Scholar] [CrossRef]
- Banoo, R.; Sharma, S.K.; Gadi, R.; Gupta, S.; Mandal, T.K. Seasonal Variation of Carbonaceous Species of PM10 Over Urban Sites of National Capital Region of India. Aerosol Sci. Eng. 2020, 4, 111–123. [Google Scholar] [CrossRef]
- Chen, P.; Kang, S.; Tripathee, L.; Ram, K.; Rupakheti, M.; Panday, A.K.; Zhang, Q.; Guo, J.; Wang, X.; Pu, T.; et al. Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS–BrC) in the Kathmandu Valley, Nepal: A 5-year study. Environ. Pollut. 2020, 261, 114239. [Google Scholar] [CrossRef] [PubMed]
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Deelaman, W.; Iadtem, N.; Suttinun, O.; Wang, Q.; Xing, L.; Li, G.; Han, Y.; et al. Effects of Agricultural Waste Burning on PM2.5-Bound Polycyclic Aromatic Hydrocarbons, Carbonaceous Compositions, and Water-Soluble Ionic Species in the Ambient Air of Chiang-Mai, Thailand. Polycycl. Aromat. Compd. 2020, 42, 749–770. [Google Scholar] [CrossRef]
- Sharma, S.K.; Choudhary, N.; Srivastava, P.; Naja, M.; Vijayan, N.; Kotnala, G.; Mandal, T.K. Variation of carbonaceous species and trace elements in PM10 at a mountain site in the central Himalayan region of India. J. Atmos. Chem. 2020, 77, 49–62. [Google Scholar] [CrossRef]
- Chen, P.; Kang, S.; Gul, C.; Tripathee, L.; Wang, X.; Hu, Z.; Li, C.; Pu, T. Seasonality of carbonaceous aerosol composition and light absorption properties in Karachi, Pakistan. J. Environ. Sci. 2020, 90, 286–296. [Google Scholar] [CrossRef]
- Javed, W.; Iakovides, M.; Stephanou, E.G.; Wolfson, J.M.; Koutrakis, P.; Guo, B. Concentrations of aliphatic and polycyclic aromatic hydrocarbons in ambient PM2.5 and PM10 particulates in Doha, Qatar. J. Air Waste Manag. Assoc. 2019, 69, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Qi, J.; Meng, X. Characteristics and sources of organic carbon in coastal and marine atmospheric particulates over East China. Atmos. Res. 2019, 228, 281–291. [Google Scholar] [CrossRef]
- Zhan, C.; Zhang, J.; Zheng, J.; Yao, R.; Wang, P.; Liu, H.; Xiao, W.; Liu, X.; Cao, J. Characterization of carbonaceous fractions in PM2.5 and PM10 over a typical industrial city in central China. Environ. Sci. Pollut. Res. 2019, 26, 16855–16867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tong, L.; Huang, Z.; Zhang, H.; He, M.; Dai, X.; Zheng, J.; Xiao, H. Seasonal variation and size distributions of water-soluble inorganic ions and carbonaceous aerosols at a coastal site in Ningbo, China. Sci. Total Environ. 2018, 639, 793–803. [Google Scholar] [CrossRef]
- Zhang, N.; Cao, J.; Wang, Q.; Huang, R.; Zhu, C.; Xiao, S.; Wang, L. Biomass burning influences determination based on PM2.5 chemical composition combined with fire counts at southeastern Tibetan Plateau during pre-monsoon period. Atmos. Res. 2018, 206, 108–116. [Google Scholar] [CrossRef]
- Bocchicchio, S.; Commodo, M.; Sgro, L.A.; Chiari, M.; D’Anna, A.; Minutolo, P. Thermo-optical-transmission OC/EC and Raman spectroscopy analyses of flame-generated carbonaceous nanoparticles. Fuel 2022, 310, 122308. [Google Scholar] [CrossRef]
- Siciliano, T.; Siciliano, M.; Malitesta, C.; Proto, A.; Cucciniello, R.; Giove, A.; Iacobellis, S.; Genga, A. Carbonaceous PM10 and PM2.5 and secondary organic aerosol in a coastal rural site near Brindisi (Southern Italy). Environ. Sci. Pollut. Res. 2018, 25, 23929–23945. [Google Scholar] [CrossRef]
- Ambade, B.; Kurwadkar, S.; Sankar, T.K.; Kumar, A. Emission reduction of black carbon and polycyclic aromatic hydrocarbons during COVID-19 pandemic lockdown. Air Qual. Atmos. Health 2021, 14, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Pirker, L.; Velkavrh, Ž.; Osīte, A.; Drinovec, L.; Močnik, G.; Remškar, M. Fireworks—A source of nanoparticles, PM2.5, PM10, and carbonaceous aerosols. Air Qual. Atmos. Health 2021, 15, 1275–1286. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Z.; Zhang, T.; Kong, S.; Lei, Y.; Wang, Q.; Tao, J.; Zhang, R.; Wei, P.; Wei, C.; et al. Spatial distribution and sources of winter black carbon and brown carbon in six Chinese megacities. Sci. Total Environ. 2021, 762, 143075. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Rastogi, N.; Kumar, V.; Slowik, J.G.; Satish, R.; Lalchandani, V.; Thamban, N.M.; Rai, P.; Bhattu, D.; Vats, P.; et al. Sources and characteristics of light-absorbing fine particulates over Delhi through the synergy of real-time optical and chemical measurements. Atmos. Environ. 2021, 252, 118338. [Google Scholar] [CrossRef]
- Lin, Y.C.; Zhang, Y.L.; Xie, F.; Fan, M.Y.; Liu, X. Substantial decreases of light absorption, concentrations and relative contributions of fossil fuel to light-absorbing carbonaceous aerosols attributed to the COVID-19 lockdown in east China. Environ. Pollut. 2021, 275, 116615. [Google Scholar] [CrossRef]
- Li, Z.; Tan, H.; Zheng, J.; Liu, L.; Qin, Y.; Wang, N.; Li, F.; Li, Y.; Cai, M.; Ma, Y.; et al. Light absorption properties and potential sources of particulate brown carbon in the Pearl River Delta region of China. Atmos. Chem. Phys. 2019, 19, 11669–11685. [Google Scholar] [CrossRef]
- Cruz-Núñez, X. Black carbon radiative forcing in south Mexico City, 2015. Atmósfera 2019, 32, 167–179. [Google Scholar] [CrossRef]
- Malmborg, V.B.; Eriksson, A.C.; Török, S.; Zhang, Y.; Kling, K.; Martinsson, J.; Fortner, E.C.; Gren, L.; Kook, S.; Onasch, T.B.; et al. Relating aerosol mass spectra to composition and nanostructure of soot particles. Carbon N. Y. 2019, 142, 535–546. [Google Scholar] [CrossRef]
- Corbin, J.C.; Pieber, S.M.; Czech, H.; Zanatta, M.; Jakobi, G.; Massabò, D.; Orasche, J.; El Haddad, I.; Mensah, A.A.; Stengel, B.; et al. Brown and Black Carbon Emitted by a Marine Engine Operated on Heavy Fuel Oil and Distillate Fuels: Optical Properties, Size Distributions, and Emission Factors. J. Geophys. Res. Atmos. 2018, 123, 6175–6195. [Google Scholar] [CrossRef]
- Qin, Y.M.; Bo Tan, H.; Li, Y.J.; Jie Li, Z.; Schurman, M.I.; Liu, L.; Wu, C.; Chan, C.K. Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China. Atmos. Chem. Phys. 2018, 18, 16409–16418. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Z.; Lei, Y.; Wang, Y.; Zeng, Y.; Wang, Q.; Ning, Z.; Cao, J.; Wang, L.; Xu, H. Variations of particle size distribution, black carbon, and brown carbon during a severe winter pollution event over Xi’an, China. Aerosol Air Qual. Res. 2018, 18, 1419–1430. [Google Scholar] [CrossRef]
- Zhang, R.; Li, S.; Fu, X.; Pei, C.; Huang, Z.; Wang, Y.; Chen, Y.; Yan, J.; Wang, J.; Yu, Q.; et al. Emissions and light absorption of carbonaceous aerosols from on-road vehicles in an urban tunnel in south China. Sci. Total Environ. 2021, 790, 148220. [Google Scholar] [CrossRef]
- Ahmad, M.; Cheng, S.; Yu, Q.; Qin, W.; Zhang, Y.; Chen, J. Chemical and source characterization of PM2.5 in summertime in severely polluted Lahore, Pakistan. Atmos. Res. 2020, 234, 104715. [Google Scholar] [CrossRef]
- Zhao, Z.; Lv, S.; Zhang, Y.; Zhao, Q.; Shen, L.; Xu, S.; Yu, J.; Hou, J.; Jin, C. Characteristics and source apportionment of PM 2.5 in Jiaxing, China. Environ. Sci. Pollut. Res. 2019, 26, 7497–7511. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S. Characteristics of carbonaceous aerosols analyzed using a multiwavelength thermal/optical carbon analyzer: A case study in Lanzhou City. Sci. China Earth Sci. 2019, 62, 389–402. [Google Scholar] [CrossRef]
- Li, S.; Zhu, M.; Yang, W.; Tang, M.; Huang, X.; Yu, Y.; Fang, H.; Yu, X.; Yu, Q.; Fu, X.; et al. Filter-based measurement of light absorption by brown carbon in PM2.5 in a megacity in South China. Sci. Total Environ. 2018, 633, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Arun, B.S.; Gogoi, M.M.; Borgohain, A.; Hegde, P.; Kundu, S.S.; Babu, S.S. Role of sulphate and carbonaceous aerosols on the radiative effects of aerosols over a remote high-altitude site Lachung in the Eastern Himalayas. Atmos. Res. 2021, 263, 105799. [Google Scholar] [CrossRef]
- Mifka, B.; Žurga, P.; Kontošić, D.; Odorčić, D.; Mezlar, M.; Merico, E.; Grasso, F.M.; Conte, M.; Contini, D.; Alebić-Juretić, A. Characterization of airborne particulate fractions from the port city of Rijeka, Croatia. Mar. Pollut. Bull. 2021, 166, 112236. [Google Scholar] [CrossRef]
- Cesari, D.; Merico, E.; Dinoi, A.; Gambaro, A.; Morabito, E.; Gregoris, E.; Barbaro, E.; Feltracco, M.; Alebić-Juretić, A.; Odorčić, D.; et al. An inter-comparison of size segregated carbonaceous aerosol collected by low-volume impactor in the port-cities of Venice (Italy) and Rijeka (Croatia). Atmos. Pollut. Res. 2020, 11, 1705–1714. [Google Scholar] [CrossRef]
- Golly, B.; Waked, A.; Weber, S.; Samake, A.; Jacob, V.; Conil, S.; Rangognio, J.; Chrétien, E.; Vagnot, M.P.; Robic, P.Y.; et al. Organic markers and OC source apportionment for seasonal variations of PM2.5 at 5 rural sites in France. Atmos. Environ. 2019, 198, 142–157. [Google Scholar] [CrossRef]
- Bauer, J.J.; Yu, X.-Y.; Cary, R.; Laulainen, N.; Berkowitz, C. Characterization of the sunset semi-continuous carbon aerosol analyzer. J. Air Waste Manag. Assoc. 2009, 59, 826–833. [Google Scholar] [CrossRef]
- Bhowmik, H.S.; Naresh, S.; Bhattu, D.; Rastogi, N.; Prévôt, A.S.H.; Tripathi, S.N. Temporal and spatial variability of carbonaceous species (EC; OC; WSOC and SOA) in PM2.5 aerosol over five sites of Indo-Gangetic Plain. Atmos. Pollut. Res. 2021, 12, 375–390. [Google Scholar] [CrossRef]
- Merico, E.; Cesari, D.; Dinoi, A.; Gambaro, A.; Barbaro, E.; Guascito, M.R.; Giannossa, L.C.; Mangone, A.; Contini, D. Inter-comparison of carbon content in PM10 and PM2.5 measured with two thermo-optical protocols on samples collected in a Mediterranean site. Environ. Sci. Pollut. Res. 2019, 26, 29334–29350. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.H.; Park, S. Chemical characterization and source apportionment of PM2.5 at an urban site in Gwangju, Korea. Atmos. Pollut. Res. 2021, 12, 101092. [Google Scholar] [CrossRef]
- Ferrero, L.; Mocnik, G.; Ferrini, B.S.; Perrone, M.G.; Sangiorgi, G.; Bolzacchini, E. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan. Sci. Total Environ. 2011, 409, 2824–2837. [Google Scholar] [CrossRef]
- Miyakawa, T.; Mordovskoi, P.; Kanaya, Y. Evaluation of black carbon mass concentrations using a miniaturized aethalometer: Intercomparison with a continuous soot monitoring system (COSMOS) and a single-particle soot photometer (SP2). Aerosol Sci. Technol. 2020, 54, 811–825. [Google Scholar] [CrossRef]
- Cesari, D.; Merico, E.; Dinoi, A.; Marinoni, A.; Bonasoni, P.; Contini, D. Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy. Atmos. Res. 2018, 200, 97–108. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.; Song, W.; Zhang, Y.L.; Ponsawansong, P.; Prapamontol, T.; Wang, Y. Contribution of brown carbon to the light absorption and radiative effect of carbonaceous aerosols from biomass burning emissions in Chiang Mai, Thailand. Atmos. Environ. 2021, 260, 118544. [Google Scholar] [CrossRef]
- Jovanović, M.V.; Savić, J.; Kovačević, R.; Tasić, V.; Todorović, Ž.; Stevanović, S.; Manojlović, D.; Jovašević-Stojanović, M. Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments. Sci. Total Environ. 2020, 708, 135209. [Google Scholar] [CrossRef]
- Ji, D.; Gao, W.; Maenhaut, W.; He, J.; Wang, Z.; Li, J.; Hu, B.; Xin, J.; Sun, Y.; Wang, Y.; et al. Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: Insights gained from long-term measurement. Atmos. Chem. Phys. 2019, 19, 8569–8590. [Google Scholar] [CrossRef]
- Srithawirat, T.; Garivait, S.; Brimblecombe, P. Seasonal Variation of Black Carbon in Fine Particulate Matter in Semi-urban and Agricultural Areas of Thailand. Aerosol Sci. Eng. 2021, 5, 419–428. [Google Scholar] [CrossRef]
- Górka, M.; Kosztowniak, E.; Lewandowska, A.U.; Widory, D. Carbon isotope compositions and TC/OC/EC levels in atmospheric PM10 from Lower Silesia (SW Poland): Spatial variations, seasonality, sources and implications. Atmos. Pollut. Res. 2020, 11, 1099–1114. [Google Scholar] [CrossRef]
- Kılavuz, S.A.; Bozkurt, Z.; Öztürk, F. Characterization and source estimates of primary and secondary carbonaceous aerosols at urban and suburban atmospheres of Düzce, Turkey. Environ. Sci. Pollut. Res. 2019, 26, 6839–6854. [Google Scholar] [CrossRef]
- Bae, M.S.; Schwab, J.J.; Park, D.J.; Shon, Z.H.; Kim, K.H. Carbonaceous aerosol in ambient air: Parallel measurements between water cyclone and carbon analyzer. Particuology 2019, 44, 153–158. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, B.; Li, J.; Hao, Y.; Yang, W.; Shi, F.; Chen, Y.; Simayi, M.; Xie, S. Characteristics of six criteria air pollutants before, during, and after a severe air pollution episode caused by biomass burning in the southern Sichuan Basin, China. Atmos. Environ. 2019, 215, 116840. [Google Scholar] [CrossRef]
- Rivellini, L.H.; Adam, M.G.; Kasthuriarachchi, N.; Lee, A.K.Y. Characterization of carbonaceous aerosols in Singapore: Insight from black carbon fragments and trace metal ions detected by a soot particle aerosol mass spectrometer. Atmos. Chem. Phys. 2020, 20, 5977–5993. [Google Scholar] [CrossRef]
- Xia, Y.; Wu, Y.; Huang, R.J.; Xia, X.; Tang, J.; Wang, M.; Li, J.; Wang, C.; Zhou, C.; Zhang, R. Variation in black carbon concentration and aerosol optical properties in Beijing: Role of emission control and meteorological transport variability. Chemosphere 2020, 254, 126849. [Google Scholar] [CrossRef]
- Healy, R.M.; Wang, J.M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Jeong, C.H.; Hilker, N.; Evans, G.J.; et al. Black carbon in the Lower Fraser Valley, British Columbia: Impact of 2017 wildfires on local air quality and aerosol optical properties. Atmos. Environ. 2019, 217, 116976. [Google Scholar] [CrossRef]
- Caubel, J.J.; Cados, T.E.; Preble, C.V.; Kirchstetter, T.W. A Distributed Network of 100 Black Carbon Sensors for 100 Days of Air Quality Monitoring in West Oakland, California. Environ. Sci. Technol. 2019, 53, 7564–7573. [Google Scholar] [CrossRef]
- Liu, F.; Yon, J.; Fuentes, A.; Lobo, P.; Smallwood, G.J.; Corbin, J.C. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Sci. Technol. 2020, 54, 33–51. [Google Scholar] [CrossRef]
- Bhuyan, P.; Deka, P.; Prakash, A.; Balachandran, S.; Hoque, R.R. Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environ. Pollut. 2018, 234, 997–1010. [Google Scholar] [CrossRef] [PubMed]
- Scerri, M.M.; Genga, A.; Iacobellis, S.; Delmaire, G.; Giove, A.; Siciliano, M.; Siciliano, T.; Weinbruch, S. Investigating the plausibility of a PMF source apportionment solution derived using a small dataset: A case study from a receptor in a rural site in Apulia—South East Italy. Chemosphere 2019, 236, 124376. [Google Scholar] [CrossRef]
- Ikemori, F.; Uranishi, K.; Asakawa, D.; Nakatsubo, R.; Makino, M.; Kido, M.; Mitamura, N.; Asano, K.; Nonaka, S.; Nishimura, R.; et al. Source apportionment in PM2.5 in central Japan using positive matrix factorization focusing on small-scale local biomass burning. Atmos. Pollut. Res. 2021, 12, 162–172. [Google Scholar] [CrossRef]
- Villalobos, A.M.; Barraza, F.; Jorquera, H.; Schauer, J.J. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Sci. Total Environ. 2015, 512–513, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Murillo, J.H.; Marin, J.F.R.; Roman, S.R.; Guerrero, V.H.B.; Arias, D.S.; Ramos, A.C.; Gonazalez, B.C.; Baumgardner, D.G. Temporal and spatial variations in organic and elemental carbon concentrations in PM10/PM2.5 in the metropolitan area of Costa Rica, Central America. Atmos. Pollut. Res. 2013, 4, 53–63. [Google Scholar] [CrossRef]
- Leinonen, V.; Tiitta, P.; Sippula, O.; Czech, H.; Leskinen, A.; Isokääntä, S.; Karvanen, J.; Mikkonen, S. Modeling atmospheric aging of small-scale wood combustion emissions: Distinguishing causal effects from non-causal associations. Environ. Sci. Atmos. 2022, 2, 1551–1567. [Google Scholar] [CrossRef]
- Tiitta, P.; Leskinen, A.; Hao, L.; Yli-Pirilä, P.; Kortelainen, M.; Grigonyte, J.; Tissari, J.; Lamberg, H.; Hartikainen, A.; Kuuspalo, K.; et al. Transformation of logwood combustion emissions in a smog chamber: Formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging. Atmos. Chem. Phys. 2016, 16, 13251–13269. [Google Scholar] [CrossRef]
- Bertrand, A.; Stefenelli, G.; Bruns, E.A.; Pieber, S.M.; Temime-Roussel, B.; Slowik, J.G.; Prévôt, A.S.H.; Wortham, H.; El Haddad, I.; Marchand, N. Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency. Atmos. Environ. 2017, 169, 65–79. [Google Scholar] [CrossRef]
- Liu, H.; Qi, L.; Liang, C.; Deng, F.; Man, H.; He, K. How aging process changes characteristics of vehicle emissions? A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1796–1828. [Google Scholar] [CrossRef]
- Castro, L.M.; Pio, C.A.; Harrison, R.M.; Smith, D.J.T. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ. 1999, 33, 2771–2781. [Google Scholar] [CrossRef]
- Pipal, A.S.; Tiwari, S.; Satsangi, P.G.; Taneja, A.; Bisht, D.S.; Srivastava, A.K.; Srivastava, M.K. Sources and characteristics of carbonaceous aerosols at Agra ‘World heritage site’ and Delhi ‘capital city of India’. Environ. Sci. Pollut. Res. 2014, 21, 8678–8691. [Google Scholar] [CrossRef]
Command | Search Commands |
---|---|
1 | “Determination” AND “Carbon Compounds” AND “Particulate Matter” |
2 | “Chemical Analysis” AND “Carbon Compounds” AND “Particulate Matter” |
3 | “Techniques” AND “Determination” AND “Carbon compounds” AND “Particulate matter” |
4 | “Techniques” AND “Chemical Analysis” AND “Carbon Compounds” AND “Particulate Matter” |
5 | “Carbon” AND “Air pollution” AND “Particulate Matter” AND “Emission sources” |
6 | “Characterization” AND “Carbon compounds” AND “Air pollution” |
7 | “Characterization” AND “Carbon compounds” AND “Air pollution” AND “Particulate Matter” |
8 | “Emission sources” AND “Carbon compounds” AND “Air pollution” AND “Particulate Matter” |
9 | (“Carbon compounds” OR “Carbon”) AND “PM10” AND “PM2.5” AND “Determination” AND “Techniques” |
10 | “Techniques” AND “Chemical Analysis” AND “Determination” AND “Carbon compounds” AND “Particulate matter” AND “Filters” |
11 | “Brown Carbon” AND “Black Carbon” AND “Particulate Matter” |
12 | “Brown Carbon” AND “Black Carbon” AND “Particulate Matter” AND “Water Soluble Organic Carbon” |
13 | “Brown Carbon” AND “Black Carbon” AND “Particulate Matter” AND “Water Soluble Organic Carbon” AND “Air Pollution” |
14 | “Water Soluble Organic Carbon” OR “Brown Carbon” OR “Black Carbon” AND “Characterization” AND “Air Pollution” |
15 | “BrC” AND “BC” AND “WSCO” AND “PM” AND “Chemical Analysis” AND “Air Quality” |
16 | “Water Soluble Organic Carbon” AND “Particulate Matter” AND “Air Pollution” AND (“Techniques” OR “Chemical Analysis”) |
17 | “Water Soluble Organic Carbon” AND “Characterization” AND “Particulate Matter” AND “Air Pollution” AND (“Chemical Analysis” OR “Techniques”) |
18 | “BrC” AND “BC” AND “WSCO” AND “PM” AND “Air Quality” AND (“Chemical Analysis” OR “Characterization” OR “Techniques”) |
Compilation of Results | |
---|---|
Raw articles | 3507 |
Articles not repeated and with access | 2456 |
Representative articles (2018 onwards) | 462 |
Bibliographic portfolio | 110 |
Carbonaceous Specie | Definition | Emission Sources | Properties or Characteristics |
---|---|---|---|
EC 1 | Primary pollutant that originates from the incomplete combustion of carbon-based fuels. EC occurs in an inert state in the atmosphere; therefore, it can be a direct indicator of the degree of air pollution in urban areas [42,43]. It refers to the fraction of carbon that is oxidized in the combustion analysis above a certain temperature threshold, and only in the presence of an oxygen-containing atmosphere [10]. | It is generated in the combustion of fossil fuels and the burning of biomass [20,44]. | Ability to absorb solar radiation causes positive radiative forcing, generating impacts on climate change. It is ranked as the second most important contributor to global warming after CO2 [43]. It is the fraction of TC carbon that does not volatilize at low temperatures, generally below 550 °C [28]. It plays an important role in reducing visibility [44]. It is highly refractive [29]. |
OC 2 | It can be divided into primary and secondary OC. Primary OC is emitted from biogenic and anthropogenic sources. Secondary OC is formed through chemical reaction of gaseous precursors, including volatile organic compounds [42,43]. | The main anthropogenic sources of OC in the atmosphere are vehicle exhaust and combustion of fossil fuels and biomass [29]. Other sources may be the degradation of carbon-containing products (e.g., vegetation, windblown biological particles) [17] | It has an impact on climatic change due to its ability to absorb and scatter radiation [44]. It can act as cloud condensation nuclei [44]. It comprises a wide variety of organic compounds (aliphatic, aromatic and acid compounds) [22]. |
BC 3 | It is a kind of carbonaceous particle in the air that forms during combustion and is emitted when there is insufficient oxygen and heat available for the combustion process to completely burn the fuel [45]. BC is also operationally defined as the TC fraction that exhibits high absorption over a broad spectrum of visible and infrared wavelengths. The acronym BC is frequently used to identify the results of optical determination of carbon content in PM, as in the case of attenuation and/or absorption measurements [28]. | Anthropogenic sources such as diesel engines and to a lesser extent gasoline engines. Utility generating units that use fossil fuels. Industrial boilers. Residential combustion sources (furnaces, fireplaces, wood stoves). Open biomass burning sources [8]. | Black carbon is the most effective form or particulate matter, by mass, at absorbing solar energy [8]. BC can absorb a million times more energy than CO2 [9]. A major climate warming pollutant in regions affected by combustion emissions [9]. BC originates as tiny spherules, ranging in size from 0.001 to 0.005 micrometers (µm), which aggregate to form larger particles (0.1 to 1 μm) [9]. |
BrC 4 | It is another product of incomplete combustion. BrC particles, referred to as brown carbon to reflect its characteristic brown appearance, are found in biomass and biofuel combustion soot and contain little or no elemental or black carbon [8]. BrC is a fraction of OC generally associated with biomass burning [28]. BrC can be directly emitted as a product of incomplete combustion, or it can be formed in the atmosphere as pollutants age [9]. | Atmospheric BrC can come from biomass burning, coal combustion, secondary formation and vehicle emissions [46]. | It contributes considerably to the absorption of the visible and ultraviolet regions of the light spectrum [46]. Is less efficient at capturing solar energy than BC [9]. It can be referred to as “tar balls” or “carbon spheres”, ranging in diameter from 0.03 to 0.5 µm [9]. The half-life of BrC in the atmosphere during biomass burning is 9 to 15 h, although it varies from case to case [47]. |
Percentage | Carbonaceous Aerosol | PM Size | Place | References |
---|---|---|---|---|
25%, 22% (KS Site) 35%, 8% (BG Site) | OC 1, EC 2 OC, EC | PM2.5 | Mumbai, India | [27] |
41%, 53% | EC | TSP | Kathmandu Valley, Nepal | [48] |
~30% | EC | PM2.5 | Changzhou, China | [49] |
11.8% | Carbon compounds | PM2.5 | Nanchang subway, China | [50] |
38% 27%, 11% | TC 3 OC, EC | PM2.5 | National Park in Bhopal, central India | [51] |
42% (Winter) 79% (Summer) 13% (Winter) 12% (Summer) 55% (Winter) 90% (Summer) | OC OC EC EC TC TC | PM2.5 | Western Ghat Mountains, India | [29] |
24.1% (2012) 22.4% (2013) | TC | PM2.5 | Debrecen, Hungary | [52] |
13.81% 16.37% 1.16% 1.59% | OC OC EC EC | PM10 PM2.5 PM10 PM2.5 | Monte Curcio, Italy | [17] |
22.48% 9.16% 45.18% | OC EC TC | PM1 | Industrial area of Delhi, India | [53] |
18.6% 20.6% | TC TC | PM10 PM2.5 | Eastern Himalaya, India | [54] |
22.5% | TCA 4 | PM10 | Delhi, India | [19] |
26.0% 28.9% 24.4% | TCA TCA TCA | TSP TSP TSP | Three Locations in Uttarakhand Himalaya, India | [55] |
8.27 ± 5.00% 6.63 ± 4.49% | BC BC | PM2.5 PM10 | Yaoundé, Cameroon | [56] |
17.3% 16.2% | OC EC | PM2.5 PM2.5 | Delhi, India | [57] |
49.8% | TC | PM2.5 | Córdoba, Argentina | [58] |
35.2% 26.6% | Carbonaceous species (OC + EC) Carbonaceous species (OC + EC) | PM0.5–1.0 PM2.5–10 | Kuala Lumpur, Malasia | [59] |
48% 26% | Carbonaceous species (OC + EC) Carbonaceous species (OC + EC) | PM1 PM10 | Elche, Spain | [44] |
42.5% | Carbonaceous species (OC + EC) | PM2.5 | Yibin, China | [46] |
~33% ~40% | TC TC | PM10 PM10 | Rural station in southern Poland Urban station in southern Poland | [42] |
12.8%, 2.4% 9.8%, 2.4% 13.9%, 4.9% 15.3%, 4.4% 15.1%, 4.0% | OC, EC OC, EC OC, EC OC, EC OC, EC | PM10 PM10 PM10 PM10 PM10 | Amsterdam (the Netherlands) Wijk aan Zee (the Netherlands) Antwerp (Belgium) Leicester (United Kingdom) Lille (France) | [20] |
14.8%, 6.7% | OC, EC | PM2.5 | Wuhan, China | [60] |
45–55% | Carbonaceous fraction | PM10 | Bogotá, Colombia | [61] |
9.11–40.35% | TC | PM1 | Changchun, China | [62] |
Ratio OC/EC | PM Size | Place | Year | References |
---|---|---|---|---|
3.03 ± 1.47 | PM2.5 | Kathmandu Valley, Nepal | 2022 | [48] |
4.64 ± 1.73 | TSP | Kathmandu Valley, Nepal | 2022 | [48] |
1.5 ± 1.1 | PM2.5 | Mumbai, India | 2021 | [27] |
4.9 ± 2.7 | PM2.5 | Mumbai, India | 2021 | [27] |
>8.0 | PM10 | Indo-Gangetic Plains of India. | 2021 | [119] |
1.73 ± 0.48 | PM2.5–PM10 | Rangsit, Thailand (Wet Season). | 2021 | [83] |
2.57 ± 0.67 | PM2.5–PM10 | Rangsit, Thailand (Dry Season). | 2021 | [83] |
7.0–12.0 | PM2.5 | Indo-Gangetic Plains of India (Winter) | 2021 | [83] |
7.0–12.0 | PM2.5 | Indo-Gangetic Plains of India (Winter) | 2021 | [124] |
0.7–38.3 | PM10 | Northern zone of Colombia | 2022 | [16] |
1.8 ± 2.6 | PM2.5 | Delhi, India | 2021 | [57] |
2.9 ± 1.4 | PM2.5 | Wuhan, China | 2022 | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Ochoa, M.A.; Bedoya, R.; Gómez, L.M.; Aguiar, D.; Palacio-Tobón, C.A.; Colorado, H.A. A Review on the Characterization and Measurement of the Carbonaceous Fraction of Particulate Matter. Sustainability 2023, 15, 8717. https://doi.org/10.3390/su15118717
Correa-Ochoa MA, Bedoya R, Gómez LM, Aguiar D, Palacio-Tobón CA, Colorado HA. A Review on the Characterization and Measurement of the Carbonaceous Fraction of Particulate Matter. Sustainability. 2023; 15(11):8717. https://doi.org/10.3390/su15118717
Chicago/Turabian StyleCorrea-Ochoa, Mauricio A., Roxana Bedoya, Luisa M. Gómez, David Aguiar, Carlos A. Palacio-Tobón, and Henry A. Colorado. 2023. "A Review on the Characterization and Measurement of the Carbonaceous Fraction of Particulate Matter" Sustainability 15, no. 11: 8717. https://doi.org/10.3390/su15118717
APA StyleCorrea-Ochoa, M. A., Bedoya, R., Gómez, L. M., Aguiar, D., Palacio-Tobón, C. A., & Colorado, H. A. (2023). A Review on the Characterization and Measurement of the Carbonaceous Fraction of Particulate Matter. Sustainability, 15(11), 8717. https://doi.org/10.3390/su15118717