Examining Firms’ Sustainability Frontier: Efficiency in Reaching the Triple Bottom Line
Abstract
:1. Introduction
2. Literature Review
2.1. Sustainability
2.2. DEA in Sustainability
2.3. Hypothesis Development
3. Methods
3.1. Research Design
3.2. Data Collection
3.3. Data Analysis
3.4. Results
3.4.1. Impact of Inputs and Outputs on Sustainability Efficiency
Regression with Two-Way Clustering
Regression with Quadratic Terms
3.5. Discussion
3.6. Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Article | Summary | Input | Output | Types of DEA Modes |
---|---|---|---|---|
Zhou et al. [84] | The study measures eight countries’ (regions’) carbon emission performance. | The consumption of total energy | GDP and CO2 emissions | Output-oriented models |
Belu [85] | This study rates public firms based on sustainable achievements as compared to financial results. | Return on assets; return on equity; yearly stock return | Sustainability scores based on a survey | Output-oriented models |
Chen and Delmas [86] | This study measures a firm’s corporate social performance index for 2190 firms using DEA approach. | CSP concerns from KLD database | CSP strengths from KLD database | Input-oriented DEA model |
Schoenherr and Talluri [87] | This study compares the influence of environmental sustainability initiatives on plant efficiency for 402 plants in Europe and the U.S. | Total plant employees; % invested in new equipment; % machines grouped by families | Cost performance index Rejection rate (%) % products late Lead time (days) | Not specified |
Chen et al. [88] | The authors employ DEA to estimate the environmental efficiency in China among 30 provinces based on the data from 2001 to 2010. | Energy consumption; social fixed assets investment | Desirable outputs: GDP; undesirable outputs: wastewater, solid, and gas | Output-oriented DEA model |
Wang et al. [89] | This study assesses the environmental performance of S&P 500 companies during the period of 2012 to 2013. | Firms’ investment in CO2 abatement and R&D expense; working capital; number of employees; total assets | Desirable outputs: CO2 savings and return on assets; undesirable outputs: emission levels. | Not specified |
Liu and Wang [90] | This study evaluates the regional energy efficiency of 30 provinces in China in 2008. | Numbers of employees; capital assets; tons of coal used | The gross industrial output value | Network DEA model |
Jacobs et al. [71] | The authors examine the relationship between operational productivity, corporate social performance, financial performance, and risk based on data from 476 US manufacturing firms. | CSP concerns from KLD database | CSP strengths from KLD database | Ordinal DEA |
Wu et al. [91] | The study measures the sustainable performance among 30 manufacturing firms in China. | Multiple inputs (see Table 1 in their paper) | Multiple outputs (see Table 1 in their paper) | Two-stage network DEA model |
Jiang et al. [92] | The study conducted an assessment of sustainability efficiency in wastewater treatment plants in China. | Operating cost; electricity consumption; number of laborers | Chemical oxygen demand removal rate; ammonia nitrogen removal rate; reclaimed water yield; undesirable outputs: dry sludge yield | Slacked-based DEA model based on cluster benchmarking |
Jiang et al. [93] | The study assesses the sustainability efficiency of list companies in China from 2017 to 2019. | Total freshwater consumption; Comprehensive energy consumption; Total assets; Total number of employees | Operating income; net profit; taxa payable income; total emission of greenhouse gas | Super-efficiency slacks-based measure DEA |
Lozano-Ramírez et al. [94] | This study assesses the sustainable efficacy of tourism in 27 European Union nations from 2015 to 2019. | Number of bed-places | International tourism receipts; female employment; male employment; undesirable outputs: greenhouse gas emissions | Non-oriented, slacks-based inefficiency DEA model |
Database | Evaluation Composition | Firm Coverage | Representative Studies |
---|---|---|---|
KLD (MSCI) | Environmental indicator (positive and negative); social indicator (positive and negative); governance indicator (positive and negative) | 2600 companies worldwide (in 2015) | Sharfman [95]; Harrison and Freeman [96]; McWilliams and Siegel [97] |
CSRHub | CSR performance in four dimensions: community, employee, environment, and governance | 17,334 companies from 141 countries | Bu et al. [98]; Soytas et al. [57] |
ASSET4 | 250+ key performance indicators from three dimensions including environmental, social, and governance | More than 3400 public firms from 38 countries | Cheng et al. [99]; Khatri [100] |
Sustainalytics | Environmental, social, and governance | Not specified | Cohen et al. [101]; Sancha et al. [102] |
References
- Barbosa, M.W.; Ladeira, M.B.; de Oliveira, M.P.V.; de Oliveira, V.M.; de Sousa, P.R. The Effects of Internationalization Orientation in the Sustainable Performance of the Agri-Food Industry through Environmental Collaboration: An Emerging Economy Perspective. Sustain. Prod. Consum. 2022, 31, 407–418. [Google Scholar] [CrossRef]
- Jan, A.A.; Lai, F.-W.; Tahir, M. Developing an Islamic Corporate Governance Framework to Examine Sustainability Performance in Islamic Banks and Financial Institutions. J. Clean. Prod. 2021, 315, 128099. [Google Scholar] [CrossRef]
- Villena, V.H.; Dhanorkar, S. How Institutional Pressures and Managerial Incentives Elicit Carbon Transparency in Global Supply Chains. J. Oper. Manag. 2020, 66, 697–734. [Google Scholar] [CrossRef]
- Zhuang, Y.; Ye, L. Building Social Capital for a Proactive Environmental Strategy: A Multidisciplinary Perspective. IEEE Eng. Manag. Rev. 2022, 50, 201–210. [Google Scholar] [CrossRef]
- Amin-Chaudhry, A.; Young, S.; Afshari, L. Sustainability Motivations and Challenges in the Australian Agribusiness. J. Clean. Prod. 2022, 361, 132229. [Google Scholar] [CrossRef]
- Tebaldi, L.; Brun, A.; Bottani, E. Evidences on Sustainability Issues in the Fashion Supply Chain: An Empirical Study in Italy. Sustain. Prod. Consum. 2022, 33, 651–663. [Google Scholar] [CrossRef]
- Bhattacharya, C.B.; Sen, S. Doing Better at Doing Good: When, Why, and How Consumers Respond to Corporate Social Initiatives. Calif. Manag. Rev. 2004, 47, 9–24. [Google Scholar] [CrossRef]
- Valbuena-Hernandez, J.P.; Ortiz-de-Mandojana, N. Encouraging Corporate Sustainability through Effective Strategic Partnerships. Corp. Soc. Responsib. Environ. Manag. 2022, 29, 124–134. [Google Scholar] [CrossRef]
- Burksiene, V.; Dvorak, J.; Burbulyte-Tsiskarishvili, G. Sustainability and Sustainability Marketing in Competing for the Title of European Capital of Culture. Organizacija 2018, 51, 66–78. [Google Scholar] [CrossRef]
- Elkington, J. Partnerships from Cannibals with Forks: The Triple Bottom Line of 21st-Century Business. Environ. Qual. Manag. 1998, 8, 37–51. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, C.K. The Measurement of Efficiency of Production; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1985; Volume 6. [Google Scholar]
- Montabon, F.; Pagell, M.; Wu, Z. Making Sustainability Sustainable. J. Supply Chain Manag. 2016, 52, 11–27. [Google Scholar] [CrossRef]
- Elkington, J. Enter the Triple Bottom Line. In The Triple Bottom Line; Routledge: Abingdon-on-Thames, UK, 2004; ISBN 978-1-84977-334-8. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Seiford, L.; Stutz, J. A Multiplicative Model for Efficiency Analysis. Socio-Econ. Plan. Sci. 1982, 16, 223–224. [Google Scholar] [CrossRef]
- Hannan, M.T.; Freeman, J. Structural Inertia and Organizational Change. Am. Sociol. Rev. 1984, 49, 149–164. [Google Scholar] [CrossRef]
- Hannan, M.T.; Freeman, J. Organizational Ecology; Harvard University Press: Cambridge, MA, USA, 1989; ISBN 0-674-64349-6. [Google Scholar]
- Machado, C.G.; Pinheiro de Lima, E.; Gouvea da Costa, S.E.; Angelis, J.J.; Mattioda, R.A. Framing Maturity Based on Sustainable Operations Management Principles. Int. J. Prod. Econ. 2017, 190, 3–21. [Google Scholar] [CrossRef]
- Asara, V.; Otero, I.; Demaria, F.; Corbera, E. Socially Sustainable Degrowth as a Social–Ecological Transformation: Repoliticizing Sustainability. Sustain. Sci. 2015, 10, 375–384. [Google Scholar] [CrossRef]
- Jiang, Y.; Jia, F.; Blome, C.; Chen, L. Achieving Sustainability in Global Sourcing: Towards a Conceptual Framework. Supply Chain Manag. Int. J. 2019, 25, 35–60. [Google Scholar] [CrossRef]
- Lis, A.; Sudolska, A.; Tomanek, M. Mapping Research on Sustainable Supply-Chain Management. Sustainability 2020, 12, 3987. [Google Scholar] [CrossRef]
- Peng, D.X.; Schroeder, R.G.; Shah, R. Linking Routines to Operations Capabilities: A New Perspective. J. Oper. Manag. 2008, 26, 730–748. [Google Scholar] [CrossRef]
- Neri, A.; Cagno, E.; Lepri, M.; Trianni, A. A Triple Bottom Line Balanced Set of Key Performance Indicators to Measure the Sustainability Performance of Industrial Supply Chains. Sustain. Prod. Consum. 2021, 26, 648–691. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Yu, Z.; Golpira, H.; Sharif, A.; Mardani, A. A State-of-the-Art Review and Meta-Analysis on Sustainable Supply Chain Management: Future Research Directions. J. Clean. Prod. 2021, 278, 123357. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three Pillars of Sustainability: In Search of Conceptual Origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Touboulic, A.; Walker, H. Theories in Sustainable Supply Chain Management: A Structured Literature Review. Int. J. Phys. Distrib. Logist. Manag. 2015, 45, 16–42. [Google Scholar] [CrossRef]
- Said, R.; Joseph, C.; Rahmat, M.; Abdullah, W.N.; Radjeman, L.A.; Hotrawaisaya, C.; Moryadee, C. Development of Supply Chain Management Sustainability Index (SCMsi). Int. J. Supply Chain Manag. 2020, 9, 902–907. [Google Scholar]
- Wang, H.; Pan, C.; Wang, Q.; Zhou, P. Assessing Sustainability Performance of Global Supply Chains: An Input-Output Modeling Approach. Eur. J. Oper. Res. 2020, 285, 393–404. [Google Scholar] [CrossRef]
- Malesios, C.; Dey, P.K.; Abdelaziz, F.B. Supply Chain Sustainability Performance Measurement of Small and Medium Sized Enterprises Using Structural Equation Modeling. Ann. Oper. Res. 2020, 294, 623–653. [Google Scholar] [CrossRef]
- Pachar, N.; Darbari, J.D.; Govindan, K.; Jha, P.C. Sustainable Performance Measurement of Indian Retail Chain Using Two-Stage Network DEA. Ann. Oper. Res. 2022, 315, 1477–1515. [Google Scholar] [CrossRef]
- Qorri, A.; Gashi, S.; Kraslawski, A. A Practical Method to Measure Sustainability Performance of Supply Chains with Incomplete Information. J. Clean. Prod. 2022, 341, 130707. [Google Scholar] [CrossRef]
- Rajesh, R. Sustainability Performance Predictions in Supply Chains: Grey and Rough Set Theoretical Approaches. Ann. Oper. Res. 2022, 310, 171–200. [Google Scholar] [CrossRef]
- Zhou, H.B.; Yang, Y.; Chen, Y.; Zhu, J. Data Envelopment Analysis Application in Sustainability: The Origins, Development and Future Directions. Eur. J. Oper. Res. 2018, 264, 1–16. [Google Scholar] [CrossRef]
- Sancak, I.E. Change Management in Sustainability Transformation: A Model for Business Organizations. J. Environ. Manag. 2023, 330, 117165. [Google Scholar] [CrossRef] [PubMed]
- Haveman, H.A. Between a Rock and a Hard Place: Organizational Change and Performance Under Conditions of Fundamental Environmental Transformation. Adm. Sci. Q. 1992, 37, 48–75. [Google Scholar] [CrossRef]
- Stinchcombe, A.L. Social Structure and Organizations. In Economics Meets Sociology in Strategic Management; Emerald Group Publishing Limited: Bingley, UK, 1965. [Google Scholar]
- Amburgey, T.L.; Kelly, D.; Barnett, W.P. Resetting the Clock: The Dynamics of Organizational Change and Failure. Adm. Sci. Q. 1993, 38, 51–73. [Google Scholar] [CrossRef]
- Bourke, J.; Roper, S. Innovation, Quality Management and Learning: Short-Term and Longer-Term Effects. Res. Policy 2017, 46, 1505–1518. [Google Scholar] [CrossRef]
- McAdam, R.; Bannister, A. Business Performance Measurement and Change Management within a TQM Framework. Int. J. Oper. Prod. Manag. 2001, 21, 88–108. [Google Scholar] [CrossRef]
- Wendler, R. The Maturity of Maturity Model Research: A Systematic Mapping Study. Inf. Softw. Technol. 2012, 54, 1317–1339. [Google Scholar] [CrossRef]
- Becker, J.; Knackstedt, R.; Pöppelbuß, J. Developing Maturity Models for IT Management. Bus. Inf. Syst. Eng. 2009, 1, 213–222. [Google Scholar] [CrossRef]
- Klimko, G. Knowledge Management and Maturity Models: Building Common Understanding. In Proceedings of the 2nd European Conference on Knowledge Management, Bled, Slovenia, 8–9 November 2001; Volume 2, pp. 269–278. [Google Scholar]
- Layne, R. Are Companies Actually Greener—Or Are They All Talk? Available online: http://hbswk.hbs.edu/item/are-companies-actually-greener-or-are-they-all-talk-esg-greenwashing (accessed on 2 May 2023).
- Threlfall, R.; King, A.; Shulman, J. The Time Has Come—KPMG Global. Available online: https://home.kpmg/xx/en/home/insights/2020/11/the-time-has-come-survey-of-sustainability-reporting.html (accessed on 24 April 2022).
- Adams, C.A.; McNicholas, P. Making a Difference: Sustainability Reporting, Accountability and Organisational Change. Account. Audit. Account. J. 2007, 20, 382–402. [Google Scholar] [CrossRef]
- Doppelt, B.; McDonough, W. Leading Change toward Sustainability: A Change-Management Guide for Business, Government and Civil Society; Routledge: Abingdon-on-Thames, UK, 2017; ISBN 1-351-27896-7. [Google Scholar]
- Lozano, R.; Nummert, B.; Ceulemans, K. Elucidating the Relationship between Sustainability Reporting and Organisational Change Management for Sustainability. J. Clean. Prod. 2016, 125, 168–188. [Google Scholar] [CrossRef]
- Hai, B.; Yin, X.; Xiong, J.; Chen, J. Could More Innovation Output Bring Better Financial Performance? The Role of Financial Constraints. Financ. Innov. 2022, 8, 6. [Google Scholar] [CrossRef]
- Cook, W.D.; Tone, K.; Zhu, J. Data Envelopment Analysis: Prior to Choosing a Model. Omega 2014, 44, 1–4. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Handbook on Data Envelopment Analysis; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Aslani, N.; Zhang, J. Integration of Simulation and DEA to Determine the Most Efficient Patient Appointment Scheduling Model for a Specific Healthcare Setting. J. Ind. Eng. Manag. (JIEM) 2014, 7, 785–815. [Google Scholar] [CrossRef]
- Goswami, M.; Ghadge, A. A Supplier Performance Evaluation Framework Using Single and Bi-Objective DEA Efficiency Modelling Approach: Individual and Cross-Efficiency Perspective. Int. J. Prod. Res. 2020, 58, 3066–3089. [Google Scholar] [CrossRef]
- Bendheim, C.L.; Waddock, S.A.; Graves, S.B. Determining Best Practice in Corporate-Stakeholder Relations Using Data Envelopment Analysis. Bus. Soc. 1998, 37, 306–338. [Google Scholar] [CrossRef]
- CSRHub Big Data Corporate and Investment ESG Solutions|Consensus ESG Scores. Available online: https://www.csrhub.com (accessed on 25 March 2023).
- CSRHub The CSRHub ESG Data Schema. Available online: https://www.csrhub.com/csrhub-esg-data-schema (accessed on 2 February 2023).
- Calza, F.; Parmentola, A.; Tutore, I. For Green or Not for Green? The Effect of Cooperation Goals and Type on Environmental Performance. Bus. Strategy Environ. 2021, 30, 267–281. [Google Scholar] [CrossRef]
- Lin, W.L.; Ho, J.A.; Lee, C.; Ng, S.I. Impact of Positive and Negative Corporate Social Responsibility on Automotive Firms’ Financial Performance: A Market-Based Asset Perspective. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 1761–1773. [Google Scholar] [CrossRef]
- Soytas, M.A.; Denizel, M.; Durak Usar, D. Addressing Endogeneity in the Causal Relationship between Sustainability and Financial Performance. Int. J. Prod. Econ. 2019, 210, 56–71. [Google Scholar] [CrossRef]
- Bu, M.; Wagner, M. Racing to the Bottom and Racing to the Top: The Crucial Role of Firm Characteristics in Foreign Direct Investment Choices. J. Int. Bus. Stud. 2016, 47, 1032–1057. [Google Scholar] [CrossRef]
- Modigliani, F.; Miller, M.H. The Cost of Capital, Corporation Finance and the Theory of Investment. Am. Econ. Rev. 1958, 48, 261–297. [Google Scholar]
- Amadeo, K. Labor, One of the Four Factors of Production. Available online: https://www.thebalance.com/labor-definition-types-and-how-it-affects-the-economy-3305859 (accessed on 26 February 2021).
- U.S. Bureau of Labor Statistics. How the Government Measures Unemployment. Available online: https://www.bls.gov/cps/cps_htgm.htm#definitions (accessed on 26 February 2021).
- DeSmet, B. Supply Chain Strategy and Financial Metrics: The Supply Chain Triangle of Service, Cost and Cash; Kogan Page Publishers: London, UK, 2018. [Google Scholar]
- Verdecho, M.-J.; Alarcón-Valero, F.; Pérez-Perales, D.; Alfaro-Saiz, J.-J.; Rodríguez-Rodríguez, R. A Methodology to Select Suppliers to Increase Sustainability within Supply Chains. Cent. Eur. J. Oper. Res. 2021, 29, 1231–1251. [Google Scholar] [CrossRef]
- Muir, W.A.; Miller, J.W.; Griffis, S.E.; Bolumole, Y.A.; Schwieterman, M.A. Strategic Purity and Efficiency in the Motor Carrier Industry: A Multiyear Panel Investigation. J. Bus. Logist. 2019, 40, 204–228. [Google Scholar] [CrossRef]
- Roth, A.; Tucker, A.L.; Venkataraman, S.; Chilingerian, J. Being on the Productivity Frontier: Identifying “Triple Aim Performance” Hospitals. Prod. Oper. Manag. 2019, 28, 2165–2183. [Google Scholar] [CrossRef]
- Bowlin, W.F. Measuring Performance: An Introduction to Data Envelopment Analysis (DEA). J. Cost Anal. 1998, 15, 3–27. [Google Scholar] [CrossRef]
- Haans, R.F.J.; Pieters, C.; He, Z.-L. Thinking about U: Theorizing and Testing U- and Inverted U-Shaped Relationships in Strategy Research. Strateg. Manag. J. 2016, 37, 1177–1195. [Google Scholar] [CrossRef]
- Wagner, H.M. Global Sensitivity Analysis. Oper. Res. 1995, 43, 948–969. [Google Scholar] [CrossRef]
- Ferguson, M.; Guide, V.D.; Koca, E.; Souza, G.C. The Value of Quality Grading in Remanufacturing. Prod. Oper. Manag. 2009, 18, 300–314. [Google Scholar] [CrossRef]
- Souza, G.C.; Bayus, B.L.; Wagner, H.M. New-Product Strategy and Industry Clockspeed. Manag. Sci. 2004, 50, 537–549. [Google Scholar] [CrossRef]
- Jacobs, B.W.; Kraude, R.; Narayanan, S. Operational Productivity, Corporate Social Performance, Financial Performance, and Risk in Manufacturing Firms. Prod. Oper. Manag. 2016, 25, 2065–2085. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010; ISBN 0-262-29679-9. [Google Scholar]
- Correia, S. REGHDFE: Stata Module to Perform Linear or Instrumental-Variable Regression Absorbing Any Number of High-Dimensional Fixed Effects. Statistical Software Components. 2019. Available online: https://ideas.repec.org/c/boc/bocode/s457874.html (accessed on 14 April 2023).
- Zeger, S.L.; Liang, K.-Y. Longitudinal Data Analysis for Discrete and Continuous Outcomes. Biometrics 1986, 42, 121–130. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Barnett, M.L.; Salomon, R.M. Beyond Dichotomy: The Curvilinear Relationship between Social Responsibility and Financial Performance. Strateg. Manag. J. 2006, 27, 1101–1122. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity Changes in Swedish Pharamacies 1980–1989: A Non-Parametric Malmquist Approach. J. Prod. Anal. 1992, 3, 85–101. [Google Scholar] [CrossRef]
- Peykani, P.; Farzipoor Saen, R.; Seyed Esmaeili, F.S.; Gheidar-Kheljani, J. Window Data Envelopment Analysis Approach: A Review and Bibliometric Analysis. Expert Syst. 2021, 38, e12721. [Google Scholar] [CrossRef]
- Jones, D.A.; Willness, C.R.; Madey, S. Why Are Job Seekers Attracted by Corporate Social Performance? Experimental and Field Tests of Three Signal-Based Mechanisms. AMJ 2014, 57, 383–404. [Google Scholar] [CrossRef]
- Rodrigo, P.; Arenas, D. Do Employees Care About CSR Programs? A Typology of Employees According to Their Attitudes. J. Bus. Ethics 2008, 83, 265–283. [Google Scholar] [CrossRef]
- Jan, A.A.; Lai, F.-W.; Asif, M.; Akhtar, S.; Ullah, S. Embedding Sustainability into Bank Strategy: Implications for Sustainable Development Goals Reporting. Int. J. Sustain. Dev. World Ecol. 2023, 30, 229–243. [Google Scholar] [CrossRef]
- Kabongo, J.D.; Boiral, O. Doing More with Less: Building Dynamic Capabilities for Eco-Efficiency. Bus. Strategy Environ. 2017, 26, 956–971. [Google Scholar] [CrossRef]
- Mueller, C.; Seber, S.; Shulman, J.; Stover, K. Operations-Driven Sustainability. Available online: https://www.mckinsey.com/business-functions/operations/our-insights/operations-driven-sustainability# (accessed on 7 October 2020).
- Zhou, P.; Ang, B.W.; Poh, K.L. Measuring Environmental Performance under Different Environmental DEA Technologies. Energy Econ. 2008, 30, 1–14. [Google Scholar] [CrossRef]
- Belu, C. Ranking Corporations Based on Sustainable and Socially Responsible Practices. A Data Envelopment Analysis (DEA) Approach. Sustain. Dev. 2009, 17, 257–268. [Google Scholar] [CrossRef]
- Chen, C.-M.; Delmas, M. Measuring Corporate Social Performance: An Efficiency Perspective: Measuring Corporate Social Performance with DEA. Prod. Oper. Manag. 2011, 20, 789–804. [Google Scholar] [CrossRef]
- Schoenherr, T.; Talluri, S. Environmental Sustainability Initiatives: A Comparative Analysis of Plant Efficiencies in Europe and the U.S. IEEE Trans. Eng. Manag. 2013, 60, 353–365. [Google Scholar] [CrossRef]
- Chen, J.; Song, M.; Xu, L. Evaluation of Environmental Efficiency in China Using Data Envelopment Analysis. Ecol. Indic. 2015, 52, 577–583. [Google Scholar] [CrossRef]
- Wang, D.; Li, S.; Sueyoshi, T. DEA Environmental Assessment on U.S. Industrial Sectors: Investment for Improvement in Operational and Environmental Performance to Attain Corporate Sustainability. Energy Econ. 2014, 45, 254–267. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K. Energy Efficiency of China’s Industry Sector: An Adjusted Network DEA (Data Envelopment Analysis)-Based Decomposition Analysis. Energy 2015, 93, 1328–1337. [Google Scholar] [CrossRef]
- Wu, T.; Wu, Y.J.; Tsai, H.; Li, Y. Top Management Teams’ Characteristics and Strategic Decision-Making: A Mediation of Risk Perceptions and Mental Models. Sustainability 2017, 9, 2265. [Google Scholar] [CrossRef]
- Jiang, H.; Hua, M.; Zhang, J.; Cheng, P.; Ye, Z.; Huang, M.; Jin, Q. Sustainability Efficiency Assessment of Wastewater Treatment Plants in China: A Data Envelopment Analysis Based on Cluster Benchmarking. J. Clean. Prod. 2020, 244, 118729. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.; Jin, Q. Sustainability Efficiency Assessment of Listed Companies in China: A Super-Efficiency SBM-DEA Model Considering Undesirable Output. Environ. Sci. Pollut. Res. 2021, 28, 47588–47604. [Google Scholar] [CrossRef]
- Lozano-Ramírez, J.; Arana-Jiménez, M.; Lozano, S. A Pre-Pandemic Data Envelopment Analysis of the Sustainability Efficiency of Tourism in EU-27 Countries. Curr. Issues Tour. 2022, 1669–1687. [Google Scholar] [CrossRef]
- Sharfman, M. The Construct Validity of the Kinder, Lydenberg & Domini Social Performance Ratings Data. J. Bus. Ethics 1996, 15, 287–296. [Google Scholar]
- Harrison, J.S.; Freeman, R.E. Stakeholders, Social Responsibility, and Performance: Empirical Evidence and Theoretical Perspectives. AMJ 1999, 42, 479–485. [Google Scholar] [CrossRef]
- McWilliams, A.; Siegel, D. Corporate Social Responsibility and Financial Performance: Correlation or Misspecification? Strateg. Manag. J. 2000, 21, 603–609. [Google Scholar] [CrossRef]
- Bu, M.; Liu, Z.; Wagner, M.; Yu, X. Corporate Social Responsibility and the Pollution Haven Hypothesis: Evidence from Multinationals’ Investment Decision in China. Asia-Pac. J. Account. Econ. 2013, 20, 85–99. [Google Scholar] [CrossRef]
- Cheng, B.; Ioannou, I.; Serafeim, G. Corporate Social Responsibility and Access to Finance. Strateg. Manag. J. 2014, 35, 1–23. [Google Scholar] [CrossRef]
- Khatri, I. Board Gender Diversity and Sustainability Performance: Nordic Evidence. Corp. Soc. Responsib. Environ. Manag. 2022. [Google Scholar] [CrossRef]
- Cohen, L.; Gurun, U.G.; Nguyen, Q.H. The ESG-Innovation Disconnect: Evidence from Green Patenting; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Sancha, C.; Gutierrez-Gutierrez, L.; Tamayo-Torres, I.; Gimenez Thomsen, C. From Corporate Governance to Sustainability Outcomes: The Key Role of Operations Management. Int. J. Oper. Prod. Manag. 2022, 43, 27–49. [Google Scholar] [CrossRef]
Industry | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 20 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 33 | 34 | 35 | 36 | 37 | 38 | Mean |
2010 | 52.1 | NA | NA | NA | NA | NA | 52.3 | NA | NA | NA | 47.2 | 50.2 | 48.7 | 52.8 | 47.1 | 50.1 |
2011 | 52.4 | NA | NA | NA | NA | NA | 51.3 | NA | NA | NA | 48.3 | 49.5 | 48.0 | 50.8 | 48.6 | 49.8 |
2012 | 49.8 | 51.2 | NA | NA | NA | NA | 49.4 | NA | NA | 46.3 | 46.6 | 48.4 | 46.4 | 49.9 | 46.7 | 48.3 |
2013 | 52.3 | 52.9 | NA | NA | 52.7 | NA | 52.7 | 51.5 | NA | 48.5 | 49.5 | 51.6 | 51.1 | 52.5 | 50.5 | 51.4 |
2014 | 55.1 | 55.3 | 56.6 | 55.3 | 57.8 | 56.2 | 57.5 | 54.2 | NA | 53.6 | 54.2 | 55.2 | 54.9 | 54.9 | 53.8 | 55.3 |
2015 | 55.5 | 55.9 | 57.5 | 56.0 | 57.6 | 55.2 | 56.5 | 54.4 | 56.8 | 55.0 | 55.0 | 55.9 | 54.9 | 55.3 | 54.8 | 55.8 |
2016 | 53.0 | 51.8 | 52.8 | 51.5 | 54.5 | 50.5 | 51.6 | 52.2 | 52.7 | 51.2 | 51.0 | 52.5 | 51.4 | 51.3 | 51.9 | 52.0 |
2017 | 52.3 | 49.5 | 49.2 | 50.6 | 53.1 | 46.9 | 49.7 | 52.2 | 51.3 | 49.7 | 48.9 | 50.8 | 50.3 | 50.3 | 49.6 | 50.3 |
2018 | 51.5 | 49.2 | NA | 48.2 | 51.6 | 47.1 | 48.2 | 51.5 | 49.4 | 47.3 | 48.6 | 49.8 | 49.5 | 49.1 | 48.9 | 49.3 |
Mean | 52.7 | 52.3 | 54.0 | 52.3 | 54.6 | 51.2 | 52.1 | 52.7 | 52.6 | 50.2 | 49.9 | 51.6 | 50.6 | 51.9 | 50.2 |
Inputs and Outputs | Definition | Types of Firm Resources (for Input Variables) |
---|---|---|
Total assets | Total amount of assets in the firm’s balance sheet | Capital resources |
Employees | Numbers of employees. | Labor resources |
COGS | COGS includes the direct costs that could be trackable to the production of the goods. | Material resources |
CSRHub score | The aggregated score of four dimensions including community, environment, employees, and governance. | - |
ROA | Return on assets. | - |
Industry | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 20 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 33 | 34 | 35 | 36 | 37 | 38 | Mean |
2010 | 0.40 | NA | NA | NA | NA | NA | 0.44 | NA | NA | NA | 0.32 | 0.45 | 0.51 | 0.45 | 0.34 | 0.42 |
2011 | 0.40 | NA | NA | NA | NA | NA | 0.38 | NA | NA | NA | 0.35 | 0.31 | 0.48 | 0.40 | 0.40 | 0.39 |
2012 | 0.33 | 0.61 | NA | NA | NA | NA | 0.30 | NA | NA | 0.63 | 0.31 | 0.31 | 0.43 | 0.33 | 0.29 | 0.39 |
2013 | 0.37 | 0.61 | NA | NA | 0.60 | NA | 0.28 | 0.45 | NA | 0.42 | 0.34 | 0.24 | 0.25 | 0.35 | 0.32 | 0.38 |
2014 | 0.32 | 0.48 | 0.54 | 0.52 | 0.58 | 0.75 | 0.33 | 0.44 | NA | 0.49 | 0.33 | 0.22 | 0.28 | 0.34 | 0.27 | 0.42 |
2015 | 0.30 | 0.59 | 0.49 | 0.58 | 0.54 | 0.72 | 0.28 | 0.51 | 0.58 | 0.53 | 0.34 | 0.18 | 0.27 | 0.39 | 0.32 | 0.44 |
2016 | 0.33 | 0.55 | 0.53 | 0.61 | 0.53 | 0.58 | 0.27 | 0.42 | 0.65 | 0.52 | 0.26 | 0.18 | 0.24 | 0.42 | 0.31 | 0.43 |
2017 | 0.32 | 0.35 | 0.57 | 0.55 | 0.66 | 0.46 | 0.25 | 0.44 | 0.75 | 0.50 | 0.18 | 0.18 | 0.20 | 0.34 | 0.31 | 0.40 |
2018 | 0.37 | 0.72 | NA | 0.57 | 0.70 | 0.41 | 0.17 | 0.41 | 0.68 | 0.44 | 0.22 | 0.19 | 0.20 | 0.30 | 0.30 | 0.41 |
Mean | 0.35 | 0.56 | 0.53 | 0.57 | 0.60 | 0.58 | 0.30 | 0.45 | 0.67 | 0.50 | 0.29 | 0.25 | 0.32 | 0.37 | 0.32 |
SE | Assets | Employees | COGS | CSRHub Score | ROA | |
---|---|---|---|---|---|---|
Assets (log) | −0.558 *** | |||||
Employees (log) | −0.461 *** | 0.882 *** | ||||
COGS (log) | −0.453 *** | 0.868 *** | 0.896 *** | |||
CSRHub score (log) | 0.164 *** | 0.227 *** | 0.207 *** | 0.207 *** | ||
ROA | −0.119 *** | 0.491 *** | 0.563 *** | 0.514 *** | 0.064 *** | |
Mean | −1.991 | 7.288 | 1.031 | 6.336 | 51.582 | −0.030 |
S.D. | 1.516 | 1.788 | 1.985 | 2.119 | 6.146 | 0.242 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | OLS with Two-Way Clustering | GEE | OLS with Two-Way Clustering (Quadratic) | GEE (Quadratic) |
Assets | −0.360 *** | −0.404 *** | −1.006 *** | −0.990 *** |
(0.044) | (0.022) | (0.128) | (0.069) | |
Assets2 | 0.043 *** | 0.041 *** | ||
(0.006) | (0.005) | |||
Employees | −0.262 *** | −0.268 *** | −0.245 *** | −0.257 *** |
(0.049) | (0.023) | (0.036) | (0.020) | |
Employees2 | −0.005 | −0.004 | ||
(0.011) | (0.004) | |||
COGS | −0.146 *** | −0.116 *** | −0.062 *** | −0.081 *** |
(0.016) | (0.016) | (0.021) | (0.026) | |
COGS2 | −0.010 ** | −0.006 ** | ||
(0.004) | (0.003) | |||
ROA | 0.983 *** | 0.946 *** | 2.317 *** | 2.229 *** |
(0.223) | (0.061) | (0.259) | (0.095) | |
ROA2 | 1.499 *** | 1.399 *** | ||
(0.338) | (0.100) | |||
CSRHub score | 0.107 *** | 0.096 *** | −0.556 *** | −0.489 *** |
(0.016) | (0.002) | (0.131) | (0.021) | |
CSRHub score2 | 0.006 *** | 0.006 *** | ||
(0.001) | (0.000) | |||
Constant | −3.653 *** | −0.963 *** | 15.846 *** | 15.687 *** |
(1.000) | (0.198) | (3.047) | (0.596) | |
Industry-fixed effect | Yes | Yes | Yes | Yes |
Year-fixed effect | Yes | Yes | Yes | Yes |
# of observations | 6483 | 6483 | 6483 | 6483 |
R2 | 0.702 | 0.764 | ||
Adjusted R2 | 0.701 | 0.762 | ||
Wald chi-square | 9642 *** | 14,267 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, Y.; Denizel, M.; Montabon, F. Examining Firms’ Sustainability Frontier: Efficiency in Reaching the Triple Bottom Line. Sustainability 2023, 15, 8871. https://doi.org/10.3390/su15118871
Zhuang Y, Denizel M, Montabon F. Examining Firms’ Sustainability Frontier: Efficiency in Reaching the Triple Bottom Line. Sustainability. 2023; 15(11):8871. https://doi.org/10.3390/su15118871
Chicago/Turabian StyleZhuang, Yiming, Meltem Denizel, and Frank Montabon. 2023. "Examining Firms’ Sustainability Frontier: Efficiency in Reaching the Triple Bottom Line" Sustainability 15, no. 11: 8871. https://doi.org/10.3390/su15118871
APA StyleZhuang, Y., Denizel, M., & Montabon, F. (2023). Examining Firms’ Sustainability Frontier: Efficiency in Reaching the Triple Bottom Line. Sustainability, 15(11), 8871. https://doi.org/10.3390/su15118871