Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection
- Experimental studies comparing at least one control group with a treatment group;
- Studies presenting the physicochemical characteristics of biochar;
- Studies presenting country and climate zones;
- Studies presenting standard deviation or standard errors;
- Studies presenting the physicochemical characteristics of soil.
2.2. Meta-Analysis
2.3. Statistical Analysis
3. Results
3.1. Effects of Biochar Application on CH4 Emissions, SOC Content, and Crop Yield
3.2. Effects of Experimental Conditions
3.3. Effects of Biochar Characteristics
3.4. Effects of Soil Properties
3.5. Correlation Analysis
4. Discussion
4.1. Effect of Biochar on CH4 Emissions
4.2. Effect of Biochar on SOC Content
4.3. Effect of Biochar on Crop Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil Science and the Carbon Civilization. Soil Sci. Soc. Am. J. 2007, 71, 1425–1437. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Song, Y.; Wu, Z.; Yan, X.; Gunina, A.; Kuzyakov, Y.; Xiong, Z. Effects of Six-Year Biochar Amendment on Soil Aggregation, Crop Growth, and Nitrogen and Phosphorus Use Efficiencies in a Rice-Wheat Rotation. J. Clean. Prod. 2020, 242, 118435. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Zou, J.; Zhang, D.; Chen, W.; Liu, Y.; Chen, Y.; Wang, X. Response of Surface Albedo and Soil Carbon Dioxide Fluxes to Biochar Amendment in Farmland. J. Soils Sediments 2018, 18, 1590–1601. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, G.; Yue, S.; Wu, L.; Zhang, W.; Zhang, F.; Chen, X. Closing the N Use Efficiency Gap to Achieve Food and Environmental Security. Environ. Sci. Technol. 2014, 48, 5780–5787. [Google Scholar] [CrossRef]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Stott, A.W.; Grant, H.K.; Whitaker, J. Biochar Suppresses N2O Emissions While Maintaining N Availability in a Sandy Loam Soil. Soil Biol. Biochem. 2015, 81, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C. Policy and Technological Constraints to Implementation of Greenhouse Gas Mitigation Options in Agriculture. Agric. Ecosyst. Environ. 2007, 118, 6–28. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; ISBN 9789291691432. [Google Scholar]
- Wang, J.; Chen, Z.; Ma, Y.; Sun, L.; Xiong, Z.; Huang, Q.; Sheng, Q. Methane and Nitrous Oxide Emissions as Affected by Organic-Inorganic Mixed Fertilizer from a Rice Paddy in Southeast China. J. Soils Sediments 2013, 13, 1408–1417. [Google Scholar] [CrossRef]
- Chaudhary, V.P.; Singh, K.K.; Pratibha, G.; Bhattacharyya, R.; Shamim, M.; Srinivas, I.; Patel, A. Energy Conservation and Greenhouse Gas Mitigation under Different Production Systems in Rice Cultivation. Energy 2017, 130, 307–317. [Google Scholar] [CrossRef]
- Papademetriou, M.K.; Dent, F.J.; Herath, E.M. Bridging the Rice Yield Gap in the Asia-Pacific Region; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2000. [Google Scholar]
- Liu, X.; Zhou, T.; Liu, Y.; Zhang, X.; Li, L.; Pan, G. Effect of Mid-Season Drainage on CH4 and N2O Emission and Grain Yield in Rice Ecosystem: A Meta-Analysis. Agric. Water Manag. 2019, 213, 1028–1035. [Google Scholar] [CrossRef]
- Xia, X.; Yang, Z.; Xue, Y.; Shao, X.; Yu, T.; Hou, Q. Spatial Analysis of Land Use Change Effect on Soil Organic Carbon Stocks in the Eastern Regions of China between 1980 and 2000. Geosci. Front. 2017, 8, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of Biochar, Compost and Biochar-Compost for Soil Quality, Maize Yield and Greenhouse Gas Emissions in a Tropical Agricultural Soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Song, Y.; Shen, H.; Jiang, X.; Li, B.; Xiong, Z. Biochar Can Mitigate Methane Emissions by Improving Methanotrophs for Prolonged Period in Fertilized Paddy Soils. Environ. Pollut. 2019, 253, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Yin, X.; Peñuelas, J.; Sardans, J.; Xu, X.; Chen, Y.; Fang, Y.; Wu, L.; Singh, B.P.; Tavakkoli, E.; Wang, W. Effects of Nitrogen-Enriched Biochar on Rice Growth and Yield, Iron Dynamics, and Soil Carbon Storage and Emissions: A Tool to Improve Sustainable Rice Cultivation. Environ. Pollut. 2021, 287, 117565. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahzad, S.M.; Chatterjee, N.; Arif, M.S.; Farooq, T.H.; Altaf, M.M.; Tufail, M.A.; Dar, A.A.; Mehmood, T. Nitrous Oxide Emission from Agricultural Soils: Application of Animal Manure or Biochar? A Global Meta-Analysis. J. Environ. Manag. 2021, 285, 112170. [Google Scholar] [CrossRef]
- Freeman, P.R.; Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis. Biometrics 1986, 42, 454. [Google Scholar] [CrossRef]
- Cayuela, M.L.; van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s Role in Mitigating Soil Nitrous Oxide Emissions: A Review and Meta-Analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Xu, H.; Cai, A.; Wu, D.; Liang, G.; Xiao, J.; Xu, M.; Colinet, G.; Zhang, W. Effects of Biochar Application on Crop Productivity, Soil Carbon Sequestration, and Global Warming Potential Controlled by Biochar C:N Ratio and Soil pH: A Global Meta-Analysis. Soil Tillage Res. 2021, 213, 105125. [Google Scholar] [CrossRef]
- Das, S.; Chatterjee, S.; Rajbanshi, J. Responses of Soil Organic Carbon to Conservation Practices Including Climate-Smart Agriculture in Tropical and Subtropical Regions: A Meta-Analysis. Sci. Total Environ. 2022, 805, 150428. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; Kammann, C.; Abalos, D. Biochar Effects on Methane Emissions from Soils: A Meta-Analysis. Soil Biol. Biochem. 2016, 101, 251–258. [Google Scholar] [CrossRef]
- He, Y.; Zhou, X.; Jiang, L.; Li, M.; Du, Z.; Zhou, G.; Shao, J.; Wang, X.; Xu, Z.; Hosseini Bai, S.; et al. Effects of Biochar Application on Soil Greenhouse Gas Fluxes: A Meta-Analysis. GCB Bioenergy 2017, 9, 743–755. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Xue, J.; Zhang, L. Quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis. Sustainability 2020, 12, 3436. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Mao, P.; Li, L.; Ma, J. Impact of Biochar Application on Yield-Scaled Greenhouse Gas Intensity: A Meta-Analysis. Sci. Total Environ. 2019, 656, 969–976. [Google Scholar] [CrossRef]
- Shakoor, A.; Arif, M.S.; Shahzad, S.M.; Farooq, T.H.; Ashraf, F.; Altaf, M.M.; Ahmed, W.; Tufail, M.A.; Ashraf, M. Does Biochar Accelerate the Mitigation of Greenhouse Gaseous Emissions from Agricultural Soil?—A Global Meta-Analysis. Environ. Res. 2021, 202, 111789. [Google Scholar] [CrossRef]
- Chen, D.; Wang, C.; Shen, J.; Li, Y.; Wu, J. Response of CH4 Emissions to Straw and Biochar Applications in Double-Rice Cropping Systems: Insights from Observations and Modeling. Environ. Pollut. 2018, 235, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.F.; Meng, J.; Wang, Q.X.; Zhang, W.M.; Cheng, X.Y.; Chen, W.F. Effects of Straw and Biochar Addition on Soil Nitrogen, Carbon, and Super Rice Yield in Cold Waterlogged Paddy Soils of North China. J. Integr. Agric. 2017, 16, 1064–1074. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, Y.; Yu, Y.; Xie, Z.; Lin, X. Mechanisms of Biochar Decreasing Methane Emission from Chinese Paddy Soils. Soil Biol. Biochem. 2012, 46, 80–88. [Google Scholar] [CrossRef]
- Han, L.; Chen, L.; Li, D.; Ji, Y.; Feng, Y.; Feng, Y.; Yang, Z. Influence of Polyethylene Terephthalate Microplastic and Biochar Co-Existence on Paddy Soil Bacterial Community Structure and Greenhouse Gas Emission. Environ. Pollut. 2022, 292, 118386. [Google Scholar] [CrossRef]
- He, L.; Xu, Y.; Li, J.; Zhang, Y.; Liu, Y.; Lyu, H.; Wang, Y.; Tang, X.; Wang, S.; Zhao, X.; et al. Biochar Mitigated More N-Related Global Warming Potential in Rice Season than That in Wheat Season: An Investigation from Ten-Year Biochar-Amended Rice-Wheat Cropping System of China. Sci. Total Environ. 2022, 821, 153344. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, C.; Lin, C.; Zhang, Y.; Chen, X.; Tang, L.; Liu, C.; Chen, Q.; Onwuka, M.I.; Song, T. Methane and Nitrous Oxide Flux after Biochar Application in Subtropical Acidic Paddy Soils under Tobacco-Rice Rotation. Sci. Rep. 2019, 9, 17277. [Google Scholar] [CrossRef] [Green Version]
- Kimani, S.M.; Bimantara, P.O.; Hattori, S.; Tawaraya, K.; Sudo, S.; Xu, X.; Cheng, W. Co-Application of Poultry-Litter Biochar with Azolla Has Synergistic Effects on CH4 and N2O Emissions from Rice Paddy Soils. Heliyon 2020, 6, e05042. [Google Scholar] [CrossRef]
- Koyama, S.; Inazaki, F.; Minamikawa, K.; Kato, M.; Hayashi, H. Increase in Soil Carbon Sequestration Using Rice Husk Charcoal without Stimulating CH4 and N2O Emissions in an Andosol Paddy Field in Japan. Soil Sci. Plant Nutr. 2015, 61, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Yin, X.; Yang, X.; Wang, W.; Wang, C.; Sardans, J.; Tariq, A.; Zeng, F.; Alrefaei, A.F.; Peñuelas, J. Effects of Combined Applications of Straw with Industrial and Agricultural Wastes on Greenhouse Gases Emissions, Temperature Sensitivity, and Rice Yield in a Subtropical Paddy Field. Sci. Total Environ. 2022, 840, 156674. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, H.; Wang, C.; Shen, J.; Zhang, W.; Cai, J.; Tang, H.; Wu, J. Effects of Biochar Amendment on Greenhouse Gas Emission in Two Paddy Soils with Different Textures. Paddy Water Environ. 2021, 19, 87–98. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, D.L.; Schwenke, G.; Yang, B. The Global Warming Potential of Straw-Return Can Be Reduced by Application of Straw-Decomposing Microbial Inoculants and Biochar in Rice-Wheat Production Systems. Environ. Pollut. 2019, 252, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Nan, Q.; Wang, C.; Yi, Q.; Zhang, L.; Ping, F.; Thies, J.E.; Wu, W. Biochar Amendment Pyrolysed with Rice Straw Increases Rice Production and Mitigates Methane Emission over Successive Three Years. Waste Manag. 2020, 118, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nan, Q.; Wang, C.; Wang, H.; Yi, Q.; Wu, W. Mitigating Methane Emission via Annual Biochar Amendment Pyrolyzed with Rice Straw from the Same Paddy Field. Sci. Total Environ. 2020, 746, 141351. [Google Scholar] [CrossRef]
- Oomori, S.; Toma, Y.; Nagata, O.; Ueno, H. Effects of Bamboo Biochar Application on Global Warming in Paddy Fields in Ehime Prefecture, Southern Japan. Soil Sci. Plant Nutr. 2016, 62, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Pei, J.; Zhuang, S.; Cui, J.; Li, J.; Li, B.; Wu, J.; Fang, C. Biochar Decreased the Temperature Sensitivity of Soil Carbon Decomposition in a Paddy Field. Agric. Ecosyst. Environ. 2017, 249, 156–164. [Google Scholar] [CrossRef]
- Qi, L.; Pokharel, P.; Chang, S.X.; Zhou, P.; Niu, H.; He, X.; Wang, Z.; Gao, M. Biochar Application Increased Methane Emission, Soil Carbon Storage and Net Ecosystem Carbon Budget in a 2-Year Vegetable–Rice Rotation. Agric. Ecosyst. Environ. 2020, 292, 106831. [Google Scholar] [CrossRef]
- Qi, L.; Pokharel, P.; Ni, C.; Gong, X.; Zhou, P.; Niu, H.; Wang, Z.; Gao, M. Biochar Changes Thermal Activation of Greenhouse Gas Emissions in a Rice–Lettuce Rotation Microcosm Experiment. J. Clean. Prod. 2020, 247, 119148. [Google Scholar] [CrossRef]
- Qi, L.; Ma, Z.; Chang, S.X.; Zhou, P.; Huang, R.; Wang, Y.; Wang, Z.; Gao, M. Biochar Decreases Methanogenic Archaea Abundance and Methane Emissions in a Flooded Paddy Soil. Sci. Total Environ. 2021, 752, 141958. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Tang, H.; Liu, J.; Wang, C.; Li, Y.; Ge, T.; Jones, D.L.; Wu, J. Contrasting Effects of Straw and Straw-Derived Biochar Amendments on Greenhouse Gas Emissions within Double Rice Cropping Systems. Agric. Ecosyst. Environ. 2014, 188, 264–274. [Google Scholar] [CrossRef]
- Singla, A.; Inubushi, K. Effect of Biogas Digested Liquid on CH4 and N2O Flux in Paddy Ecosystem. J. Integr. Agric. 2014, 13, 635–640. [Google Scholar] [CrossRef]
- Sui, Y.; Gao, J.; Liu, C.; Zhang, W.; Lan, Y.; Li, S.; Meng, J.; Xu, Z.; Tang, L. Interactive Effects of Straw-Derived Biochar and N Fertilization on Soil C Storage and Rice Productivity in Rice Paddies of Northeast China. Sci. Total Environ. 2016, 544, 203–210. [Google Scholar] [CrossRef]
- Sun, H.; A, D.; Feng, Y.; Vithanage, M.; Mandal, S.; Shaheen, S.M.; Rinklebe, J.; Shi, W.; Wang, H. Floating Duckweed Mitigated Ammonia Volatilization and Increased Grain Yield and Nitrogen Use Efficiency of Rice in Biochar Amended Paddy Soils. Chemosphere 2019, 237, 124532. [Google Scholar] [CrossRef]
- Sun, L.; Deng, J.; Fan, C.; Li, J.; Liu, Y. Combined Effects of Nitrogen Fertilizer and Biochar on Greenhouse Gas Emissions and Net Ecosystem Economic Budget from a Coastal Saline Rice Field in Southeastern China. Environ. Sci. Pollut. Res. 2020, 27, 17013–17022. [Google Scholar] [CrossRef]
- Tian, J.; Wang, J.; Dippold, M.; Gao, Y.; Blagodatskaya, E.; Kuzyakov, Y. Biochar Affects Soil Organic Matter Cycling and Microbial Functions but Does Not Alter Microbial Community Structure in a Paddy Soil. Sci. Total Environ. 2016, 556, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, C.; Lan, X.; Abid, A.A.; Xu, X.; Singla, A.; Sardans, J.; Llusià, J.; Peñuelas, J.; Wang, W. Coupled Steel Slag and Biochar Amendment Correlated with Higher Methanotrophic Abundance and Lower CH4 Emission in Subtropical Paddies. Environ. Geochem. Health 2020, 42, 483–497. [Google Scholar] [CrossRef]
- Wang, S.; Ma, S.; Shan, J.; Xia, Y.; Lin, J.; Yan, X. A 2-Year Study on the Effect of Biochar on Methane and Nitrous Oxide Emissions in an Intensive Rice–Wheat Cropping System. Biochar 2019, 1, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, J.; Shen, J.; Chen, D.; Li, Y.; Jiang, B.; Wu, J. Effects of Biochar Amendment on Net Greenhouse Gas Emissions and Soil Fertility in a Double Rice Cropping System: A 4-Year Field Experiment. Agric. Ecosyst. Environ. 2018, 262, 83–96. [Google Scholar] [CrossRef]
- Wang, W.; Neogi, S.; Lai, D.Y.F.; Zeng, C.; Wang, C.; Zeng, D. Effects of Industrial and Agricultural Waste Amendment on Soil Greenhouse Gas Production in a Paddy Field in Southeastern China. Atmos. Environ. 2017, 164, 239–249. [Google Scholar] [CrossRef]
- Wang, C.; Wang, W.; Sardans, J.; Singla, A.; Zeng, C.; Lai, D.Y.F.; Peñuelas, J. Effects of Steel Slag and Biochar Amendments on CO2, CH4, and N2O Flux, and Rice Productivity in a Subtropical Chinese Paddy Field. Environ. Geochem. Health 2019, 41, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Bai, R.; Di, H.J.; Mo, L.Y.; Han, B.; Zhang, L.M.; He, J.Z. Differentiated Mechanisms of Biochar Mitigating Straw-Induced Greenhouse Gas Emissions in Two Contrasting Paddy Soils. Front. Microbiol. 2018, 9, 2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Lan, X.; Xu, X.; Fang, Y.; Singh, B.P.; Sardans, J.; Romero, E.; Peñuelas, J.; Wang, W. Steel Slag and Biochar Amendments Decreased CO2 Emissions by Altering Soil Chemical Properties and Bacterial Community Structure over Two-Year in a Subtropical Paddy Field. Sci. Total Environ. 2020, 740, 140403. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, X.; Liu, Y.; Zhang, X.; Xiong, Z. Effects of Biochar Amendment in Two Soils on Greenhouse Gas Emissions and Crop Production. Plant Soil 2012, 360, 287–298. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Liu, R.; Zhang, A.; Yang, S.; Liu, H.; Zhou, Y.; Yang, Z. Biochar Amendment Reduces Paddy Soil Nitrogen Leaching but Increases Net Global Warming Potential in Ningxia Irrigation, China. Sci. Rep. 2017, 7, 1592. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhang, X.; Dong, Y.; Li, B.; Xiong, Z. Biochar Amendment Reduced Greenhouse Gas Intensities in the Rice-Wheat Rotation System: Six-Year Field Observation and Meta-Analysis. Agric. For. Meteorol. 2019, 278, 107625. [Google Scholar] [CrossRef]
- Yan, S.; Niu, Z.; Zhang, A.; Yan, H.; Zhang, H.; He, K.; Xiao, X.; Wang, N.; Guan, C.; Liu, G. Biochar Application on Paddy and Purple Soils in Southern China: Soil Carbon and Biotic Activity. R. Soc. Open Sci. 2019, 6, 181499. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Bian, R.; Li, L.; Wang, X.; Zhao, Y.; Hussain, Q.; Pan, G. Enhanced Rice Production but Greatly Reduced Carbon Emission Following Biochar Amendment in a Metal-Polluted Rice Paddy. Environ. Sci. Pollut. Res. 2015, 22, 18977–18986. [Google Scholar] [CrossRef]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of Biochar Amendment on Yield and Methane and Nitrous Oxide Emissions from a Rice Paddy from Tai Lake Plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Hussain, Q.; Li, L.; Pan, G.; Zheng, J.; Zhang, X.; Zheng, J. Change in Net Global Warming Potential of a Rice-Wheat Cropping System with Biochar Soil Amendment in a Rice Paddy from China. Agric. Ecosyst. Environ. 2013, 173, 37–45. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of Biochar Amendment on Soil Quality, Crop Yield and Greenhouse Gas Emission in a Chinese Rice Paddy: A Field Study of 2 Consecutive Rice Growing Cycles. Field Crop. Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Nachtergaele, F. USDA Soil Taxonomy—A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Geoderma 1999, 99, 336–337. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The Meta-Analysis of Response Ratios in Experimental Ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Tran Sy, N.; Huynh Van, T.; Chiem, N.H.; Nguyen Van, C.; Mitsunori, T. Rice Husk and Melaleuca Biochar Additions Reduce Soil CH4 and N2O Emissions and Increase Soil Organic Matter and Nutrient Availability. F1000Research 2021, 10, 1128. [Google Scholar] [CrossRef]
- Ameloot, N.; De Neve, S.; Jegajeevagan, K.; Yildiz, G.; Buchan, D.; Funkuin, Y.N.; Prins, W.; Bouckaert, L.; Sleutel, S. Short-Term CO2 and N2O Emissions and Microbial Properties of Biochar Amended Sandy Loam Soils. Soil Biol. Biochem. 2013, 57, 401–410. [Google Scholar] [CrossRef]
- Bai, S.H.; Reverchon, F.; Xu, C.Y.; Xu, Z.; Blumfield, T.J.; Zhao, H.; Van Zwieten, L.; Wallace, H.M. Wood Biochar Increases Nitrogen Retention in Field Settings Mainly through Abiotic Processes. Soil Biol. Biochem. 2015, 90, 232–240. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Trinh, N.N.; Bach, Q.V. Methane Emissions and Associated Microbial Activities from Paddy Salt-Affected Soil as Influenced by Biochar and Cow Manure Addition. Appl. Soil Ecol. 2020, 152, 103531. [Google Scholar] [CrossRef]
- Subedi, R.; Taupe, N.; Pelissetti, S.; Petruzzelli, L.; Bertora, C.; Leahy, J.J.; Grignani, C. Greenhouse Gas Emissions and Soil Properties Following Amendment with Manure-Derived Biochars: Influence of Pyrolysis Temperature and Feedstock Type. J. Environ. Manag. 2016, 166, 73–83. [Google Scholar] [CrossRef]
- Gross, C.D.; Bork, E.W.; Carlyle, C.N.; Chang, S.X. Biochar and Its Manure-Based Feedstock Have Divergent Effects on Soil Organic Carbon and Greenhouse Gas Emissions in Croplands. Sci. Total Environ. 2022, 806, 151337. [Google Scholar] [CrossRef] [PubMed]
- van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of Biochar from Slow Pyrolysis of Papermill Waste on Agronomic Performance and Soil Fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Ji, M.; Zhou, L.; Zhang, S.; Luo, G.; Sang, W. Effects of Biochar on Methane Emission from Paddy Soil: Focusing on DOM and Microbial Communities. Sci. Total Environ. 2020, 743, 140725. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, Y.; Liu, Q.; Chen, S.; Hou, P.; Poinern, G.; Jiang, Z.; Fawcett, D.; Xue, L.; Lam, S.S.; et al. How Does Biochar Aging Affect NH3 Volatilization and GHGs Emissions from Agricultural Soils? Environ. Pollut. 2022, 294, 118598. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sánchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and Denitrification in Soils: When, How Much and Why Does Biochar Reduce N2O Emissions? Sci. Rep. 2013, 3, 1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Z.; Xiong, X.; Zhu, H.; Xu, H.; Leng, P.; Li, J.; Tang, C.; Xu, J. Association of Biochar Properties with Changes in Soil Bacterial, Fungal and Fauna Communities and Nutrient Cycling Processes. Biochar 2021, 3, 239–254. [Google Scholar] [CrossRef]
- Rittl, T.F.; Butterbach-Bahl, K.; Basile, C.M.; Pereira, L.A.; Alms, V.; Dannenmann, M.; Couto, E.G.; Cerri, C.E.P. Greenhouse Gas Emissions from Soil Amended with Agricultural Residue Biochars: Effects of Feedstock Type, Production Temperature and Soil Moisture. Biomass Bioenergy 2018, 117, 1–9. [Google Scholar] [CrossRef]
- Lee, J.-M.; Park, D.-G.; Kang, S.-S.; Choi, E.-J.; Gwon, H.-S.; Lee, H.-S.; Lee, S. Short-Term Effect of Biochar on Soil Organic Carbon Improvement and Nitrous Oxide Emission Reduction According to Different Soil Characteristics in Agricultural Land: A Laboratory Experiment. Agronomy 2022, 12, 1879. [Google Scholar] [CrossRef]
- Lehmann, J. A Handful of Carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of Soil Carbon Dioxide Fluxes, Soil Organic Carbon and Microbial Biomass Carbon to Biochar Amendment: A Meta-Analysis. GCB Bioenergy 2016, 8, 392–406. [Google Scholar] [CrossRef]
- Amoakwah, E.; Arthur, E.; Frimpong, K.A.; Parikh, S.J.; Islam, R. Soil Organic Carbon Storage and Quality Are Impacted by Corn Cob Biochar Application on a Tropical Sandy Loam. J. Soils Sediments 2020, 20, 1960–1969. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhu, L. Biochar Alters Microbial Community and Carbon Sequestration Potential across Different Soil pH. Sci. Total Environ. 2018, 622–623, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Bu, F.; Nan, Q.; Li, W.; Bolan, N.; Sarkar, B.; Meng, J.; Wang, H. Meta-Analysis for Quantifying Carbon Sequestration and Greenhouse Gas Emission in Paddy Soils One Year after Biochar Application. Agronomy 2022, 12, 3065. [Google Scholar] [CrossRef]
- Ghorbani, M.; Neugschwandtner, R.W.; Konvalina, P.; Asadi, H.; Kopecký, M. Comparative Effects of Biochar and Compost Applications on Water Holding Capacity and Crop Yield of Rice under Evaporation Stress: A Two-Years Field Study. Paddy Water Environ. 2023, 21, 47–58. [Google Scholar] [CrossRef]
- Bednik, M.; Medyńska-Juraszek, A.; Ćwieląg-Piasecka, I. Effect of Six Different Feedstocks on Biochar’s Properties and Expected Stability. Agronomy 2022, 12, 1525. [Google Scholar] [CrossRef]
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of Fertilization on Crop Production and Nutrient-Supplying Capacity under Rice-Oilseed Rape Rotation System. Sci. Rep. 2017, 7, 1270. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.I.; Park, H.J.; Jeong, Y.J.; Seo, B.S.; Kwak, J.H.; Yang, H.I.; Xu, X.; Tang, S.; Cheng, W.; Lim, S.S.; et al. Biochar-Induced Reduction of N2O Emission from East Asian Soils under Aerobic Conditions: Review and Data Analysis. Environ. Pollut. 2021, 291, 118154. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of Biochar Effects on Soil Hydrological Properties Using Meta-Analysis of Literature Data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Phan, B.T.; Nguyen, T.X.; Nguyen, V.N.; Van Tran, T.; Bach, Q.V. Contrastive Nutrient Leaching from Two Differently Textured Paddy Soils as Influenced by Biochar Addition. J. Soils Sediments 2020, 20, 297–307. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, Soil and Land-Use Interactions That Reduce Nitrate Leaching and N2O Emissions: A Meta-Analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
Author | Year | Country | Experimental Method | Crop | Study Duration (Days) | Feedstock | Pyrolysis Temperature (°C) | Biochar C/N | Biochar PH | Biochar Application Rate (t ha−1) | Soil pH | Soil C/N |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[27] | 2018 | China | Field | Rice | >2 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤30 | Acidic | ≤10 |
[28] | 2017 | China | Field | Rice | >2 | Herbaceous | ≤500 | ≤50 | Alkaline | ≤10 | Acidic | ≤10 |
[29] | 2012 | China | Pot | None | ≤0.5 | Herbaceous | ≤400 | ≤50 | Alkaline | ≤30 | Alkaline | ≤10 |
[30] | 2022 | China | Field | Rice | ≤0.5 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤10 | Alkaline | ≤10 |
[31] | 2022 | China | Field | Rice | ≤2 | Herbaceous | ≤500 | ≤50 | Alkaline | ≤10 | Acidic | ≤10 |
[32]. | 2019 | China | Field | Rice | ≤0.5 | Herbaceous | ≤500 | ≤50 | Alkaline | >40 | Acidic | >10 |
[33] | 2020 | Japan | Pot | Rice | ≤0.5 | Manure | ≤500 | ≤50 | Alkaline | ≤20 | Acidic | >10 |
[34] | 2015 | Japan | Field | Rice | ≤0.5 | Herbaceous | ≤400 | ≤150 | Alkaline | ≤10 | Neutral | >10 |
[35] | 2022 | China | Field | Rice | ≤0.5 | Herbaceous | ≤600 | - | - | - | Acidic | >10 |
[36] | 2021 | China | Incubation | Rice | ≤0.5 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤10 | Acidic | ≤10 |
[37] | 2019 | China | Field | Rotation | ≤2 | Herbaceous | ≤500 | ≤50 | Alkaline | ≤20 | Alkaline | ≤10 |
[38] | 2020 | China | Field | Rice | ≤0.5 | Herbaceous | - | ≤50 | Alkaline | ≤10 | Acidic | >10 |
[39] | 2020 | China | Field | Rice | ≤1 | Herbaceous | ≤500 | ≤50 | - | ≤10 | Acidic | >10 |
[40] | 2016 | Japan | Field | Rice | ≤1 | Herbaceous | >600 | ≤150 | Alkaline | ≤10 | Acidic | ≤10 |
[41] | 2017 | China | Field | Rice | ≤0.5 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤40 | Alkaline | ≤10 |
[42] | 2020 | China | Field | Rice | ≤0.5 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤10 | Acidic | >10 |
[43] | 2020 | China | Pot | Rice | ≤1 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤10 | Alkaline | >10 |
[44] | 2021 | China | Pot | Rice | ≤0.5 | Herbaceous | ≤500 | ≤50 | Alkaline | ≤10 | Alkaline | >10 |
[45] | 2014 | China | Field | Rice | ≤0.5 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤10 | Acidic | ≤10 |
[46] | 2014 | Japan | Pot | Rice | ≤0.5 | Herbaceous | ≤400 | ≤50 | Alkaline | ≤10 | Acidic | >10 |
[47] | 2016 | China | Field | Rice | >2 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤10 | Neutral | ≤10 |
[48] | 2019 | China | Field | Rice | ≤0.5 | Herbaceous | ≤500 | ≤50 | Alkaline | ≤20 | Acidic | - |
[49] | 2020 | China | Field | Rice | ≤0.5 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤20 | Alkaline | >10 |
[50] | 2016 | China | Field | Rice | >2 | Wood | ≤500 | ≤50 | - | ≤10 | Acidic | ≤10 |
[51] | 2020 | China | Field | Rice | ≤1 | Herbaceous | ≤600 | ≤50 | Alkaline | ≤10 | Acidic | ≤10 |
[52] | 2019 | China | Field | Rice | ≤1 | Lignocellulosic waste | ≤500 | ≤300 | Alkaline | ≤30 | Neutral | ≤10 |
[53] | 2018 | China | Field | Rice | >2 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤30 | Acidic | >10 |
[54] | 2017 | China | Field | Rice | ≤0.5 | Herbaceous | - | ≤50 | - | ≤10 | Acidic | >10 |
[55] | 2019 | China | Field | Rice | ≤1 | Herbaceous | ≤600 | ≤50 | - | ≤10 | Acidic | >10 |
[56] | 2018 | China | Field | Rice | ≤0.5 | Herbaceous | ≤500 | ≤150 | Alkaline | >40 | Acidic | >10 |
[57] | 2020 | China | Field | Rice | ≤0.5 | Herbaceous | ≤600 | ≤50 | - | ≤10 | Acidic | >10 |
[58] | 2012 | China | Field | Rice | ≤0.5 | Lignocellulosic waste | ≤500 | ≤150 | Alkaline | ≤30 | Neutral | >10 |
[59] | 2017 | China | Field | Rice | ≤1 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤10 | Alkaline | >10 |
[60] | 2019 | China | Field | Rotation | >2 | Herbaceous | ≤500 | ≤150 | Alkaline | ≤20 | Acidic | >10 |
[61] | 2019 | China | Field | Rotation | ≤1 | Herbaceous | ≤400 | ≤150 | Alkaline | ≤10 | Acidic | ≤10 |
[16] | 2021 | China | Field | Rice | ≤0.5 | Wood | ≤600 | ≤50 | - | ≤10 | Acidic | ≤10 |
[62] | 2015 | China | Field | Rice | ≤0.5 | Herbaceous | ≤600 | ≤150 | Alkaline | ≤10 | Acidic | >10 |
[63] | 2010 | China | Field | Rice | ≤0.5 | Herbaceous | ≤600 | ≤150 | Alkaline | ≤10 | Acidic | >10 |
[64] | 2013 | China | Field | Rice | ≤0.5 | Herbaceous | ≤600 | ≤150 | Alkaline | ≤10 | Acidic | >10 |
[65] | 2012 | China | Field | Rice | ≤0.5 | Herbaceous | ≤600 | ≤150 | Alkaline | ≤10 | Acidic | >10 |
Factor | Specific Conditions | Levels |
---|---|---|
Experimental conditions | Type of experiment | Field; pot; incubation |
Cropping system | Rice; rotation; none | |
Duration (year) | ≤0.5; ≤1; ≤2; >2 | |
Fertilizer (kg N ha−1) | ≤150; ≤300; ≤500; >500 | |
Biochar properties | Feedstock | Herbaceous; lignocellulosic waste; wood; manure |
Pyrolysis temperature (°C) | ≤400; ≤500; ≤600; >600 | |
Biochar pH | ≤6.5 (acidic); 6.6–7.3 (neutral); >7.3 (alkaline) | |
The application rate of biochar (ton ha−1) | ≤10; ≤20; ≤30; ≤40; >40 | |
Soil properties | Soil pH | ≤6.5 (acidic); 6.6–7.3 (neutral); >7.3 (alkaline) |
Soil C/N | ≤10; >10 | |
Soil texture | Fine; medium; coarse |
Division | M | SE | t | p | |
---|---|---|---|---|---|
CH4 (kg ha−1) | C | 154.4 | 14.7 | 4.445 *** | 0.000 |
T | 118.6 | 10.7 | |||
SOC (Mg ha−1) | C | 17.7 | 1.3 | −7.873 *** | 0.000 |
T | 24.2 | 1.7 | |||
Crop yield (Mg ha−1) | C | 9.9 | 0.9 | −6.077 *** | 0.000 |
T | 11.4 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-M.; Jeong, H.-C.; Gwon, H.-S.; Lee, H.-S.; Park, H.-R.; Kim, G.-S.; Park, D.-G.; Lee, S.-I. Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis. Sustainability 2023, 15, 9200. https://doi.org/10.3390/su15129200
Lee J-M, Jeong H-C, Gwon H-S, Lee H-S, Park H-R, Kim G-S, Park D-G, Lee S-I. Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis. Sustainability. 2023; 15(12):9200. https://doi.org/10.3390/su15129200
Chicago/Turabian StyleLee, Jong-Mun, Hyun-Cheol Jeong, Hyo-Suk Gwon, Hyoung-Seok Lee, Hye-Ran Park, Guen-Sik Kim, Do-Gyun Park, and Sun-Il Lee. 2023. "Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis" Sustainability 15, no. 12: 9200. https://doi.org/10.3390/su15129200
APA StyleLee, J.-M., Jeong, H.-C., Gwon, H.-S., Lee, H.-S., Park, H.-R., Kim, G.-S., Park, D.-G., & Lee, S.-I. (2023). Effects of Biochar on Methane Emissions and Crop Yields in East Asian Paddy Fields: A Regional Scale Meta-Analysis. Sustainability, 15(12), 9200. https://doi.org/10.3390/su15129200