Sustainable Water Harvesting for Improving Food Security and Livelihoods of Smallholders under Different Climatic Conditions of India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climatic Conditions of Study Sites and Details of Water Harvesting-Cum-Irrigation Systems
2.1.1. Northwestern Himalayan Region
2.1.2. Western Hot Arid Region
2.1.3. Western Semi-Arid Region
2.1.4. Humid Region
2.1.5. Western Ghats Mountainous Region
2.1.6. Central or Bundelkhand Region
2.2. Recording Observations and Data Analysis
2.2.1. Crop Production and Diversification Indices
2.2.2. Economic Evaluation Criteria
2.2.3. Evaluating Significance of Water Harvesting Intervention
2.3. Scope of Extending Water Harvesting Interventions at Large Scale
3. Results
3.1. Impact of Water Harvesting on Crop Production
3.1.1. Northwestern Himalayan Region
3.1.2. Western Hot Arid Region
3.1.3. Western Semi-Arid Region
3.1.4. Humid Region
3.1.5. Western Ghats Mountainous Region
3.1.6. Central or Bundelkhand Region
3.2. Statistical Significance of Water Harvesting Intervention
3.3. Up-Scaling Potential
3.3.1. Northwestern Himalayan Region
3.3.2. Western Hot Arid Region
3.3.3. Western Semi-Arid Region
3.3.4. Humid Region
3.3.5. Western Ghats Mountainous Region
3.3.6. Bundelkhand or Central Region
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jana, N.C.; Singh, A.; Singh, R.B. Livelihood Enhancement Through Agriculture, Tourism and Health; Springer: Singapore, 2022; 529p. [Google Scholar]
- Christoforidou, M.; Borghuis, G.; Seijger, C.; van Halsema, G.E.; Hellegers, P. Food security under water scarcity: A comparative analysis of Egypt and Jordan. Food Secur. 2023, 15, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO); Ihe Delft. Water Accounting in the Nile River Basin; FAO WaPOR Water Accounting Reports; Food and Agriculture Organization (FAO): Rome, Italy, 2020. [Google Scholar]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Das, A.; Singh, R.K.; Ramkrushna, G.I.; Layek, J.; Tripathi, A.K.; Ngachan, S.V.; Choudhury, B.U.; Patel, D.P.; Rajkhowa, D.J.; Chakroborty, D.; et al. Roof water harvesting in hills–Innovatinos for farm diversification and livelihood improvement. Curr. Sci. 2017, 113, 292–298. [Google Scholar] [CrossRef]
- Das, A.; Mohapatra, K.P.; Ngachan, S.V.; Debnath, A.; Chowdhury, S.; Datta, D. Water Resource Development for Multiple Livelihood Opportunities in Eastern Himalaya; ICAR-Research Complex for NEH Region: Umiam, Meghalaya, India, 2014; p. 36. [Google Scholar]
- Confalonieri, U.; Menne, B.; Akhtar, R.; Ebi, K.L.; Hauengue, M.; Kovats, R.S.; Revich, B.; Woodward, A. Human health. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 391–431. [Google Scholar]
- Intelligence Community Assessment (ICA). Global Water Security; IC-coordinated paper; Intelligence Community Assessment: Washington, DC, USA, 2012. [Google Scholar]
- Reddy, K.S.; Kumar, M.; Rao, K.V.; Maruthi, V.; Reddy, B.M.K.; Umesh, B.; Ganesh Babu, R.; Reddy, K.S.; Vijayalakshmi; Venkateswarlu, B. Farm Ponds: A Climate Resilient Technology for Rainfed Agriculture; Planning, Design and Construction; Central Research Institute for Dryland Agriculture: Hyderabad, India, 2012; p. 60. [Google Scholar]
- Jinger, D. Problems and prospects of rainfed agriculture in Rajasthan. Agric. World 2017, 3, 26–34. [Google Scholar]
- Kumawat, A.; Sepat, S.; Kumar, D.; Kaur, R.; Jinger, D. Effect of irrigation scheduling and nitrogen application on yield and economics of direct-seeded rice. Indian. J. Agron. 2016, 61, 506–508. [Google Scholar]
- Jinger, D.; Sharma, R.; Tomer, B.S. Moisture conservation practices for enhancing productivity in rainfed agriculture. Indian Farm. 2017, 67, 6–10. [Google Scholar]
- Government of India (GOI). Agro-Climatic Zones of India; Planning Commission of India, Government of India: New Delhi, India, 1989; pp. 1985–1990. [Google Scholar]
- Pathak, P.; Mishra, P.K.; Rao, K.V.; Wani, S.P.; Sudi, R. Best options on soil and water conservation. In Best Bet Options for Integrated Watershed Management, Proceedings of the Comprehensive Assessment of Watershed Programs in India, Andhra Pradesh, India, 23–27 July 2009; Wani, S.P., Venkateshwarlu, B., Sahrawat, K.L., Rao, K.V., Ramakrishna, Y.S., Eds.; ICRISAT: Pantancheru, India, 2009; pp. 75–94. [Google Scholar]
- Sontakke, N.A.; Singh, H.N.; Singh, N. Monitoring physiographic rainfall variation for sustainable management of water bodies in India. In Natural and Anthropogenic Disasters: Vulnerability, Preparedness and Mitigation; Jha, M.K., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 293–331. [Google Scholar]
- Panwar, P.; Pal, S.; Loria, N.; Verma, M.R.; Alam, N.M.; Bhatt, V.K.; Sharma, N.K.; Mishra, P.K. Variability and time series trends of rainfall and temperature in Indian Himalaya. J. Agrometeorol. 2019, 21, 220–223. [Google Scholar] [CrossRef]
- Bharti, N.; Khandekar, N.; Sengupta, P.; Bhadwal, S.; Kochhar, I. Dynamics of urban water supply management of two Himalayan towns in India. Water Policy 2020, 22, 65–89. [Google Scholar] [CrossRef]
- Sharma, B. Sustainable drinking water resources in difficult topography of hilly state Uttarakhand, India. Am. J. Water Resour. 2016, 4, 16–21. [Google Scholar]
- Dadhwal, K.S.; Tomar, J.M.S.; Muruganandam, M.; Kaushal, R.; Chaturvedi, O.P. Integrated farming systems for food and nutritional security in north western Himalayas. Indian For. 2012, 138, 689–696. [Google Scholar]
- Critchley, W.R.S.; Reij, C.; Willcocks, T.J. Indigenous soil and water conservation: A review of the state of knowledge and prospects for building on traditions. Land Degrad. Dev. 1994, 5, 293–314. [Google Scholar] [CrossRef]
- Pisharoty, P.R. Characteristics of Indian Rainfall, Monograph; Physical Research Laboratories: Ahmedabad, Gujarat, India, 1990; p. 10. [Google Scholar]
- Machiwal, D.; Kumar, S.; Dayal, D. Characterizing rainfall of hot arid region by using time series modeling and sustainability approaches: A case study from Gujarat, India. Theor. Appl. Climatol. 2016, 124, 593–607. [Google Scholar] [CrossRef]
- Machiwal, D.; Kumar, S.; Dayal, D. Evaluating cost-effectiveness of rainwater harvesting for irrigation in arid climate of Gujarat, India. Water Conserv. Sci. Eng. 2018, 3, 289–303. [Google Scholar] [CrossRef]
- Machiwal, D.; Dayal, D.; Kumar, S. Assessment of reservoir sedimentation in arid region watershed of Gujarat. J. Agric. Eng. 2015, 52, 40–49. [Google Scholar]
- Kumar, S.; Machiwal, D.; Tetarwal, A.S.; Ramniwas; Vaishnav, M. Managing irrigation supplies effectively under interrupted electricity supply: Lesson from an arid region of India. Agric. Water Manag. 2022, 263, 107465. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Kumar, S.B.L.; Menon, P.; Prasad, A.K.; Sangwan, N.; Advani, S.C. Observed Rainfall Variability and Changes over Tripura State; Meteorological Department: Pune, India, 2020; p. 10. [Google Scholar]
- Central Statistical Organisation (CSO). National Income Statistics and Economic Survey 2009–10; Central Statistical Organisation: Delhi, India, 2010; p. 20. [Google Scholar]
- Planning Commission. Report of the Expert Group to Review the Methodology for Estimation of Poverty; Planning Commission, Government of India: New Delhi, India, 2009; p. 92. [Google Scholar]
- Samra, J.S. Report on Drought Mitigation Strategy for Bundelkhand Region of Uttar Pradesh and Madhya Pradesh; Inter-Ministerial Central Team: New Delhi, India, 2008; p. 133. [Google Scholar]
- The Energy and Resources Institute (TERI). Study of Impact of Special Package for Drought Mitigation Implemented in Bundelkhand Region; The Energy and Resources Institute: New Delhi, India, 2018; p. 26. [Google Scholar]
- Garg, K.K.; Singh, R.; Anantha, K.H.; Singh, A.K.; Akurajua, V.R.; Barron, J.; Dev, I.; Tewari, R.K.; Wani, S.P.; Dhyani, S.K.; et al. Building climate resilience in degraded agricultural landscapes through water management: A case study of Bundelkhand region, Central India. J. Hydrol. 2020, 591, 125592. [Google Scholar] [CrossRef]
- Kumar, S. Water management and water use efficiency: The need of future in bundelkhand. Bundelkhand Connect. 2019, 4, 2–3. [Google Scholar]
- Panwar, P.; Pal, S.; Loria, N.; Verma, M.R.; Alam, N.M.; Bhatt, V.K.; Sharma, N.K. Spatio-temporal variability of climatic parameters across different altitudes of North-Western Himalaya. J. Agrometeorl. 2019, 21, 297–306. [Google Scholar] [CrossRef]
- Mangalassery, S.; Dayal, D.; Meena, S.L.; Ram, B. Carbon sequestration in agroforestry and pasture systems in arid northwestern India. Curr. Sci. 2014, 107, 1290–1293. [Google Scholar]
- Sharda, V.N.; Dogra, P.; Dhyani, B.L. Indicators for assessing the impacts of watershed development programmes in different regions of India. Indian J. Soil Conserv. 2012, 40, 1–12. [Google Scholar]
- Government of India (GOI). Guidelines for New Generation Watershed Development Projects; Department of Land Resources, Ministry of Rural Development, Government of India: New Delhi, India, 2021; p. 91. [Google Scholar]
- Brooks, K.N.; Ffolliott, P.F.; Gregersen, H.M.; De Bano, L.F. Hydrology and the Management of Watersheds; Panima Publishing Corporation: New Delhi, India, 1998; p. 502. [Google Scholar]
- Yuan, T.; Fengmin, L.; Puhai, L. Economic analysis of rainwater harvesting and irrigation methods, with an example from China. Agric. Water Manag. 2003, 60, 217–226. [Google Scholar] [CrossRef]
- Thorsten, D. Theory of Nonparametric Tests; Springer: Berlin, Germany, 2018; p. 128. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; p. 2673. [Google Scholar]
- Handbook of Agriculture. Facts and Figures for Farmers, Students and All Interested in Farming; Directorate of Knowledge Management in Agriculture: New Delhi, India, 2016; p. 1583. [Google Scholar]
- Statistical Abstract. Statistical Abstract of Himachal Pradesh 2019–20; Department of Economic and Statistics, Government of Himachal Pradesh: Shimla, India, 2020; p. 167. [Google Scholar]
- Watershed Management Directorate. Uttarakhand State Perspective and Strategic Plan 2009–2027; Watershed Management Directorate: Dehradun, India, 2009; p. 288. [Google Scholar]
- Kar, A.; Garg, B.K.; Singh, M.P.; Kathju, S. Trends in Arid Zone Research in India; Central Arid Zone Research Institute: Jodhpur, India, 2009; p. 481. [Google Scholar]
- Indian Environment Law Offices. Nagaland Water Policy; Department of Soil and Water Conservation, Government of Nagaland: Kohima, India, 2016; p. 19. [Google Scholar]
- ISFR. India State of Forest Report 2021; Forest Survey of India: Dehradun, Uttarakhand, India, 2021; Available online: https://fsi.nic.in/forest-report-2021-details (accessed on 18 July 2022).
- Dikshit, K.R.; Dikshit, J.K. North-East India: Land, People and Economy. InWeather and Climate of North-East India; Dikshit, K.R., Dikshit, J.K., Eds.; Springer: Dordrecht, Netherlands, 2014; pp. 149–173. [Google Scholar]
- Singh, R.K.; Lama, T.D.; Saikia, U.S.; Satapathy, K.K. Economics of rainwater harvesting and recycling for winter vegetable production in mid hills of Maghalaya. J. Agric. Eng. 2006, 43, 33–36. [Google Scholar]
- Omar, M.; Majoro, F.; Hagenimana, E.; Usabyisa, W. Impact assessment of hillside rainwater harvesting ponds on agriculture income: Case study of Ntarama sector in Rwanda. J. Water Resource Prot. 2016, 8, 844–854. [Google Scholar]
- Gowda, R.D.; Dolli, S.S. Utilization of farm pond and its impact on productivity under Krishi Bhagya Yojana. Int. J. Curr. Microbiol. App. Sci. 2021, 10, 426–433. [Google Scholar] [CrossRef]
- Rao, C.S.; Rejani, R.; Rama Rao, C.A.; Rao, K.V.; Osman, M.; Reddy, K.S.; Kumar, M.; Kumar, P. Farm ponds for climate-resilient rainfed agriculture. Curr. Sci. 2017, 112, 471–477. [Google Scholar]
- Sen, P.; Linthoingambi Devi, N.; Singha, D. Understanding indigenous irrigation systems in North East India. Eco Whisper 2015, 2, 8–15. [Google Scholar]
- Naik, S.K.; Mali, S.S.; Das, B.; Bhatnagar, P.R.; Kumar, S.; Sikka, A.K. Rainwater harvesting using plastic-lined doba technology for orchard establishment in the eastern plateau and hill region of India. Curr. Sci. 2016, 111, 1751–1753. [Google Scholar]
- Singh, L.K.; Singh, K.S.; Roma Devi, S. Jalkund an alternative potential rainwater harvesting structure in Wokha district, Nagaland -A case study. Eco. Env. Cons. 2018, 24, 226–234. [Google Scholar]
- Ray, S.K.; Chatterjee, D.; Rajkhowa, D.J.; Baishya, S.K.; Hazarika, S.; Paul, S. Effects of integrated farming system and rainwater harvesting on livelihood improvement in North-Eastern region of India compared to traditional shifting cultivation: Evidence from an action research. Agrofor. Syst. 2019, 94, 451–464. [Google Scholar] [CrossRef]
S. No. | Name of Index/Indicator | Expression | Reference |
---|---|---|---|
1 | Cropping Intensity (CI) | Sharda et al. [35] GoI [36] | |
2 | Cultivated Land Utilization Index (CLUI) | ||
3 | Crop Productivity Index (CPI) | ||
4 | Crop Diversification Index (CDI) | ||
5 | Conserved Water Productivity Index (CWPI) | ||
6 | Crop Fertilization Index (CFI) | ||
7 | Storage Efficiency (SE) | ||
8 | Benefit–Cost Ratio (BCR) | Brooks et al. [37] | |
9 | Net Present Value (NPV) | ||
10 | Internal Rate of Return (IRR) | Yuan et al. [38] |
Name of Crop Component | Area (ha) | Production (tha−1) | Gross Income (INRha−1) | Net Income (INRha−1) |
---|---|---|---|---|
Tomato (Cv. Himsona) | 0.24 | 4.5 | 74,250 | 57,375 |
Cucumber (Cv. Malini) | 0.12 | 2.26 | 27,180 | 14,242 |
Onion (Cv. Agri-Found Light Red) | 0.12 | 3.30 | 26,400 | 18,460 |
Green Pea (Cv. Golden GS-10) | 0.20 | 2.26 | 57,051 | 36,433 |
Paddy | 0.16 | 0.75 | 6750 | 3730 |
Toria (Cv. Hill-1) | 0.20 | 0.11 | 8100 | 3100 |
Fellow Land (Fruit Trees) | 0.16 | At present in juvenile phase | - | - |
Total | 1.20 | 13.19 | 199,731 | 133,340 |
Item | Existing Practice of Over-Irrigation | Water-Efficient Irrigation System |
---|---|---|
Present worth of incremental return(INR) | 1,140,855 | 1,130,762 |
Present worth of total cost @ 10% (INR) | 2,461,320 | 1,130,762 |
Benefit–cost ratio | 1.01 | 2.18 |
Net present value (INR) | 10,093 | 1,330,558 |
Internal rate of return (%) | 10.12 | 24.23 |
S. No. | Parameter | Value | |
---|---|---|---|
Before Project | After Project | ||
1 | Crop yield (t ha–1) | ||
Cotton | 1.0 | 1.25 | |
Maize | 2.5 | 3.08 | |
Pigeon pea | 1.2 | 1.44 | |
Mango | – | 4.5 | |
2 | Cropping intensity (%) | 200 | 400 |
3 | Water use efficiency (kg ha–1 mm) | ||
Cotton | 5.0 | 5.7 | |
Maize | 7.0 | 8.4 | |
Pigeon pea | 6.7 | 8.3 |
S. No. | Crop Year | Gross Storage (m3) | Available Storage (m3) | Net Irrigated Area (ha) | Gross Irrigated Area (ha) | Irrigation Intensity (%) | Pumping Hours | Irrigation Water Utilized (m3) | Potential Gross Irrigated Area (ha) |
---|---|---|---|---|---|---|---|---|---|
1 | 2017–2018 | 58,468 | 40,928 | 19.0 | 42.5 | 224 | 658.8 | 19,125 | 91.0 |
2 | 2018–2019 | 55,776 | 39,043 | 15.3 | 35.8 | 234 | 536.7 | 16,101 | 86.8 |
3 | 2019–2020 | 53,468 | 37,428 | 12.0 | 29.0 | 241 | 438.0 | 14,500 | 74.9 |
4 | 2020–2021 | 51,545 | 36,082 | 12.5 | 29.2 | 234 | 421.9 | 14,600 | 72.2 |
5 | 2021–2022 | 50,007 | 35,005 | 13.0 | 29.5 | 227 | 413.4 | 13,880 | 74.5 |
Item | Irrigation through Farm Ponds Only |
---|---|
Present worth of incremental return (INR) | 17,680,012 |
Present worth of total cost @ 10% (INR) | 7,934,610 |
Benefit–cost ratio | 2.23 |
Net present value (INR) | 9,745,402 |
Internal rate of return (%) | 18.1 |
Region | Water Harvesting Intervention | Current Status | Up-Scaling Potential | Advantages |
---|---|---|---|---|
Northwestern Himalayan Region | Spring water storage in tanks and subsequent utilization for supplemental irrigation. | An area of 135,889 ha in Himachal Pradesh is under single cropping. |
|
|
Western Hot Arid Region | Rainwater harvesting pond for supplemental irrigation to rabi season crops. | Low agricultural productivity in 32 million ha hot arid lands; major part in Rajasthan and Gujarat. |
|
|
Western Semi-Arid Region | Jalkund (small plastic-lined water harvesting structure) and recharge filter attached with dug well. | In Gujarat, total cropped area in 12.8 million ha and net sown area in 10.1 million ha. However, only 34.4% of area is under irrigation. |
|
|
Humid Region | Artificial wetland for aquatic plants; stream-fed multipurpose pond; plastic-lined rainfed pond. | In Nagaland, net cropped area = 385×103 ha; 30% is irrigated.Total area in northeast India = 262,179 km2; forest land = 169,521 km2. |
|
|
Western Ghats Mountainous Region | Earthen and plastic-lined rainwater harvesting pond. | Total area is 160,000 km2 in a stretch of 1600 km parallel to Indian west coast. |
|
|
Bundelkhand or Central Region | Dugout-cum-embankment type of farm pond. | Total irrigated area is 13.7 × 106 ha, which is 66% of the total sown area. |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panwar, P.; Machiwal, D.; Kumari, V.; Kumar, S.; Dogra, P.; Manivannan, S.; Bhatnagar, P.R.; Tomar, J.M.S.; Kaushal, R.; Jinger, D.; et al. Sustainable Water Harvesting for Improving Food Security and Livelihoods of Smallholders under Different Climatic Conditions of India. Sustainability 2023, 15, 9230. https://doi.org/10.3390/su15129230
Panwar P, Machiwal D, Kumari V, Kumar S, Dogra P, Manivannan S, Bhatnagar PR, Tomar JMS, Kaushal R, Jinger D, et al. Sustainable Water Harvesting for Improving Food Security and Livelihoods of Smallholders under Different Climatic Conditions of India. Sustainability. 2023; 15(12):9230. https://doi.org/10.3390/su15129230
Chicago/Turabian StylePanwar, Pankaj, Deepesh Machiwal, Vandita Kumari, Sanjay Kumar, Pradeep Dogra, S. Manivannan, P. R. Bhatnagar, J. M. S. Tomar, Rajesh Kaushal, Dinesh Jinger, and et al. 2023. "Sustainable Water Harvesting for Improving Food Security and Livelihoods of Smallholders under Different Climatic Conditions of India" Sustainability 15, no. 12: 9230. https://doi.org/10.3390/su15129230
APA StylePanwar, P., Machiwal, D., Kumari, V., Kumar, S., Dogra, P., Manivannan, S., Bhatnagar, P. R., Tomar, J. M. S., Kaushal, R., Jinger, D., Sarkar, P. K., Baishya, L. K., Devi, N. P., Kakade, V., Singh, G., Singh, N. R., Singh, S. G., Patel, A., Renjith, P. S., ... Singh, B. K. (2023). Sustainable Water Harvesting for Improving Food Security and Livelihoods of Smallholders under Different Climatic Conditions of India. Sustainability, 15(12), 9230. https://doi.org/10.3390/su15129230