The Impact of Digital Enterprise Agglomeration on Carbon Intensity: A Study Based on the Extended Spatial STIRPAT Model
Abstract
:1. Introduction
2. Literature Review
2.1. Digital Economy and Carbon Intensity
2.2. Economic Agglomeration and Carbon Intensity
3. Theoretical Analysis and Hypothesis Development
3.1. The Direct Impact of Digital Enterprise Agglomeration on Carbon Intensity
3.2. The Mediating Mechanism of Green Technology Innovation
3.3. The Mediating Mechanism of Industrial Structure Rationalization
3.4. The Mediating Mechanism of Industrial Structure Advancement
3.5. The Moderating Impact of Human Capital
3.6. The Moderating Impact of Government Intervention
4. Model and Data
4.1. Model Specification
4.1.1. STIRPAT Model
4.1.2. Extended Spatial STIRPAT Model
4.1.3. Mediating Effect Model
4.1.4. Moderating Models
4.2. Data
4.2.1. Measure of Digital Enterprise Agglomeration
4.2.2. Carbon Intensity
4.2.3. Control Variable
4.2.4. Mediator and Moderator
4.3. Research Sample and Data Source
5. Empirical Analysis
5.1. Temporal–Spatial Distribution Characteristics of Digital Enterprise Agglomeration and Carbon Intensity
5.2. The Direct Impact of Digital Enterprise Agglomeration on Carbon Intensity
5.2.1. Panel Unit Root Test
5.2.2. Spatial Autocorrelation Test
5.2.3. Model Selection
5.2.4. Spatial Econometric Regression Results
5.3. Spatial Spillover Effect Analysis
5.4. Robustness Test
5.4.1. Replacing Spatial Weighted Matrix
5.4.2. Removing Municipalities
5.4.3. Adding Control Variables
5.5. Heterogeneity Analysis
5.5.1. Spatial Heterogeneity
5.5.2. Resource Heterogeneity
5.5.3. Industry Heterogeneity
5.5.4. Finance Heterogeneity
6. Mechanism Identification
6.1. Mediating Effect Identification
6.2. Moderating Effect Identification
7. Conclusions and Further Discussions
7.1. Conclusions
7.2. Theoretical Implications
7.3. Policy Recommendations
7.4. Critical Analysis and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azam, A.; Rafiq, M.; Shafique, M.; Yuan, J. An empirical analysis of the non-linear effects of natural gas, nuclear energy, renewable energy and ICT-Trade in leading CO2 emitter countries: Policy towards CO2 mitigation and economic sustainability. J. Environ. Manag. 2021, 286, 112232. [Google Scholar] [CrossRef] [PubMed]
- Nejati, M.; Shah, M.I. How does ICT trade shape environmental impacts across the north-south regions? Intra-regional and Inter-regional perspective from dynamic CGE model. Technol. Forecast. Soc. Chang. 2023, 186, 122168. [Google Scholar] [CrossRef]
- Masum, M.F.H.; Dwivedi, P.; Anderson, W.F. Estimating unit production cost, carbon intensity, and carbon abatement cost of electricity generation from bioenergy feedstocks in Georgia, United States. Renew. Sustain. Energy Rev. 2020, 117, 109514. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, W.; Han, Q.; Qi, L.; Cui, Y.; Chen, Y. Digitalization and carbon emissions: How does digital city construction affect china’s carbon emission reduction? Sustain. Cities Soc. 2022, 87, 104201. [Google Scholar] [CrossRef]
- Ndri, L.M.; Islam, M.; Kakinaka, M. ICT and environmental sustainability: Any differences in developing countries? J. Clean. Prod. 2021, 297, 126642. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, J. The role of population agglomeration played in China’s carbon intensity: A city-level analysis. Energy Econ. 2022, 114, 106276. [Google Scholar] [CrossRef]
- Xu, L.; Fan, M.; Yang, L.; Shao, S. Heterogeneous green innovations and carbon emission performance: Evidence at China’s city level. Energy Econ. 2021, 99, 105269. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Ren, S.; Li, L.; Han, Y.; Hao, Y.; Wu, H. The emerging driving force of inclusive green growth: Does digital economy agglomeration work? Bus. Strategy Environ. 2022, 31, 1656–1678. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Wang, J.; Jiang, J. The impact of the urban digital economy on China’s carbon intensity: Spatial spillover and mediating effect. Resour. Conserv. Recycl. 2023, 189, 106762. [Google Scholar] [CrossRef]
- Lee, C.-C.; Wang, F. How does digital inclusive finance affect carbon intensity? Econ. Anal. Policy 2022, 75, 174–190. [Google Scholar] [CrossRef]
- Creutzig, F.; Acemoglu, D.; Bai, X.; Edwards, P.N.; Hintz, M.J.; Kaack, L.H.; Kilkis, S.; Kunkel, S.; Luers, A.; Milojevic-Dupont, N. Digitalization and the Anthropocene. Annu. Rev. Environ. Resour. 2022, 47, 479–509. [Google Scholar] [CrossRef]
- Awan, A.; Abbasi, K.R.; Rej, S.; Bandyopadhyay, A.; Lv, K. The impact of renewable energy, internet use and foreign direct investment on carbon dioxide emissions: A method of moments quantile analysis. Renew. Energy 2022, 189, 454–466. [Google Scholar] [CrossRef]
- Haldar, A.; Sucharita, S.; Dash, D.P.; Sethi, N.; Padhan, P.C. The effects of ICT, electricity consumption, innovation and renewable power generation on economic growth: An income level analysis for the emerging economies. J. Clean. Prod. 2022, 384, 135607. [Google Scholar] [CrossRef]
- Alcácer, J.; Cantwell, J.; Piscitello, L. Internationalization in the information age: A new era for places, firms, and international business networks? J. Int. Bus. Stud. 2016, 47, 499–512. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Jiang, C.; Hussain, T.; Zhang, X.; Huo, Q. Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries. Int. J. Environ. Res. Public Health 2022, 19, 12855. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Vélez-Henao, J.-A.; Vivanco, D.F.; Hernández-Riveros, J.-A. Technological change and the rebound effect in the STIRPAT model: A critical view. Energy Policy 2019, 129, 1372–1381. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Yousefi, Z. Centralization or decentralization? A review on the effects of information and communication technology on urban spatial structure. Cities 2018, 78, 194–205. [Google Scholar] [CrossRef]
- Angel, S.; Blei, A.M. The spatial structure of American cities: The great majority of workplaces are no longer in CBDs, employment sub-centers, or live-work communities. Cities 2016, 51, 21–35. [Google Scholar] [CrossRef]
- Leamer, E.E. A flat world, a level playing field, a small world after all, or none of the above? A review of Thomas L Friedman’s The World is Flat. J. Econ. Lit. 2007, 45, 83–126. [Google Scholar] [CrossRef] [Green Version]
- DeStefano, T.; Kneller, R.; Timmis, J. The (fuzzy) digital divide: The effect of universal broadband on firm performance. J. Econ. Geogr. 2022, 23, 139–177. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, J. The spatial analysis of digital economy and urban development: A case study in Hangzhou, China. Cities 2022, 123, 103563. [Google Scholar] [CrossRef]
- Forman, C.; Goldfarb, A.; Greenstein, S. Agglomeration of invention in the Bay Area: Not just ICT. Am. Econ. Rev. 2016, 106, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Webber, M.J.; Industrial location. Wholbk. 1985. Available online: https://researchrepository.wvu.edu/rri-web-book/9/ (accessed on 22 January 2023).
- Wu, J.; Xu, H.; Tang, K. Industrial agglomeration, CO2 emissions and regional development programs: A decomposition analysis based on 286 Chinese cities. Energy 2021, 225, 120239. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Dong, K. How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China. Energy Econ. 2022, 111, 106107. [Google Scholar] [CrossRef]
- Yu, Q.; Li, M.; Li, Q.; Wang, Y.; Chen, W. Economic agglomeration and emissions reduction: Does high agglomeration in China’s urban clusters lead to higher carbon intensity? Urban Clim. 2022, 43, 101174. [Google Scholar] [CrossRef]
- Ciccone, A. Agglomeration effects in Europe. Eur. Econ. Rev. 2002, 46, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Dong, X.; Dong, K. How does producer services’ agglomeration promote carbon reduction?: The case of China. Econ. Model. 2021, 104, 105624. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, W.; Ma, D.; Zhang, C. Carbon emissions and optimal scale of China’s manufacturing agglomeration under heterogeneous environmental regulation. J. Clean. Prod. 2018, 176, 140–150. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duranton, G.; Overman, H.G. Testing for localization using micro-geographic data. Rev. Econ. Stud. 2005, 72, 1077–1106. [Google Scholar] [CrossRef] [Green Version]
- Moyer, J.D.; Hughes, B.B. ICTs: Do they contribute to increased carbon emissions? Technol. Forecast. Soc. Chang. 2012, 79, 919–931. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, Y.; Li, N.; Liu, D.; Li, H. How does digital finance affect carbon emissions? Evidence from an emerging market. Sustainability 2021, 13, 12303. [Google Scholar] [CrossRef]
- Zhou, J.; Yin, Z.; Yue, P. The impact of access to credit on energy efficiency. Financ. Res. Lett. 2023, 51, 103472. [Google Scholar] [CrossRef]
- Yue, P.; Korkmaz, A.G.; Yin, Z.; Zhou, H. The rise of digital finance: Financial inclusion or debt trap? Financ. Res. Lett. 2022, 47, 102604. [Google Scholar] [CrossRef]
- Le, T.-H.; Le, H.-C.; Taghizadeh-Hesary, F. Does financial inclusion impact CO2 emissions? Evidence from Asia. Financ. Res. Lett. 2020, 34, 101451. [Google Scholar] [CrossRef]
- Berkhout, F.; Hertin, J. De-materialising and re-materialising: Digital technologies and the environment. Futures 2004, 36, 903–920. [Google Scholar] [CrossRef]
- Asongu, S.A.; Nwachukwu, J.C. The mobile phone in the diffusion of knowledge for institutional quality in sub-Saharan Africa. World Dev. 2016, 86, 133–147. [Google Scholar] [CrossRef]
- Chen, D.; Chen, S.; Jin, H. Industrial agglomeration and CO2 emissions: Evidence from 187 Chinese prefecture-level cities over 2005–2013. J. Clean. Prod. 2018, 172, 993–1003. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Xu, J. Assessing the Role of Digital Economy Agglomeration in Energy Conservation and Emission Reduction: Evidence from China. Available SSRN 4196773. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4196773 (accessed on 22 January 2023).
- Gaigné, C.; Riou, S.; Thisse, J.-F. Are compact cities environmentally friendly? J. Urban Econ. 2012, 72, 123–136. [Google Scholar] [CrossRef]
- Higgins, C.D.; Adams, M.D.; Réquia, W.J.; Mohamed, M. Accessibility, air pollution, and congestion: Capturing spatial trade-offs from agglomeration in the property market. Land Use Policy 2019, 84, 177–191. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, S.H.; Fan, H.; Fareed, Z.; Shahzad, F. Asymmetric nexus between urban agglomerations and environmental pollution in top ten urban agglomerated countries using quantile methods. Environ. Sci. Pollut. Res. 2021, 28, 13404–13424. [Google Scholar] [CrossRef]
- Magazzino, C.; Porrini, D.; Fusco, G.; Schneider, N. Investigating the link among ICT, electricity consumption, air pollution, and economic growth in EU countries. Energy Sources Part B Econ. Plan. Policy 2021, 16, 976–998. [Google Scholar] [CrossRef]
- Allcott, H.; Gentzkow, M.; Song, L. Digital addiction. Am. Econ. Rev. 2022, 112, 2424–2463. [Google Scholar] [CrossRef]
- Porter, M.E. Location, competition, and economic development: Local clusters in a global economy. Econ. Dev. Q. 2000, 14, 15–34. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A. Principles of Economics: Unabridged Eighth Edition; Cosimo, Inc.: New York, NY, USA, 2009. [Google Scholar]
- Wurlod, J.-D.; Noailly, J. The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries. Energy Econ. 2018, 71, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Zhang, M.; Zhou, Y.; Wang, P.; Sheng, J.; He, K.; Wei, Y.-M.; Xie, R. Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach. Energy Policy 2019, 134, 110946. [Google Scholar] [CrossRef]
- Sturgeon, T.J. Upgrading strategies for the digital economy. Glob. Strategy J. 2021, 11, 34–57. [Google Scholar] [CrossRef]
- Kenney, M.; Zysman, J. The rise of the platform economy. Issues Sci. Technol. 2016, 32, 61. [Google Scholar]
- Rahman, M.M.; Sultana, N.; Velayutham, E. Renewable energy, energy intensity and carbon reduction: Experience of large emerging economies. Renew. Energy 2022, 184, 252–265. [Google Scholar] [CrossRef]
- Yuan, H.; Zou, L.; Luo, X.; Feng, Y. How Does Manufacturing Agglomeration Affect Green Development? A Spatial and Nonlinear Perspective. Int. J. Environ. Res. Public Health 2022, 19, 10404. [Google Scholar] [CrossRef] [PubMed]
- Nylén, D.; Holmström, J. Digital innovation strategy: A framework for diagnosing and improving digital product and service innovation. Bus. Horiz. 2015, 58, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Chen, Y. Will land transport infrastructure affect the energy and carbon dioxide emissions performance of China’s manufacturing industry? Appl. Energy 2020, 260, 114266. [Google Scholar] [CrossRef]
- Rosenthal, S.S.; Strange, W.C. The determinants of agglomeration. J. Urban Econ. 2001, 50, 191–229. [Google Scholar] [CrossRef] [Green Version]
- Li, L. China’s manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”. Technol. Forecast. Soc. Chang. 2018, 135, 66–74. [Google Scholar] [CrossRef]
- Sima, V.; Gheorghe, I.G.; Subić, J.; Nancu, D. Influences of the industry 4.0 revolution on the human capital development and consumer behavior: A systematic review. Sustainability 2020, 12, 4035. [Google Scholar] [CrossRef]
- Yan, J.; Yang, X.; Nie, C.; Su, X.; Zhao, J.; Ran, Q. Does government intervention affect CO2 emission reduction effect of producer service agglomeration? Empirical analysis based on spatial Durbin model and dynamic threshold model. Environ. Sci. Pollut. Res. 2022, 29, 61247–61264. [Google Scholar] [CrossRef]
- Zhao, X.; Nakonieczny, J.; Jabeen, F.; Shahzad, U.; Jia, W. Does green innovation induce green total factor productivity? Novel findings from Chinese city level data. Technol. Forecast. Soc. Chang. 2022, 185, 122021. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of Population Growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, H.; Huang, J.; Cui, Q.; Zhan, J. Industrial agglomeration measured by plants’ distance and CO2 emissions: Evidence from 268 Chinese prefecture-level cities. Technol. Forecast. Soc. Chang. 2022, 176, 121469. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, M.; Sanfilippo, M.; Sundaram, A. Trade liberalization, roads and firm productivity. J. Dev. Econ. 2021, 153, 102712. [Google Scholar] [CrossRef]
- Yang, G.; Zha, D.; Wang, X.; Chen, Q. Exploring the nonlinear association between environmental regulation and carbon intensity in China: The mediating effect of green technology. Ecol. Indic. 2020, 114, 106309. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, X.; Wang, W. Study on the effect of environmental regulations and industrial structure on haze pollution in China from the dual perspective of independence and linkage. J. Clean. Prod. 2020, 256, 120748. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H.; Ren, S.; Ran, Q.; Zhang, J. Does the development of the internet contribute to air pollution control in China? Mechanism discussion and empirical test. Struct. Chang. Econ. Dyn. 2021, 56, 207–224. [Google Scholar] [CrossRef]
- Yao, Y.; Ivanovski, K.; Inekwe, J.; Smyth, R. Human capital and energy consumption: Evidence from OECD countries. Energy Econ. 2019, 84, 104534. [Google Scholar] [CrossRef]
- Guo, Y.; Tong, L.; Mei, L. The effect of industrial agglomeration on green development efficiency in Northeast China since the revitalization. J. Clean. Prod. 2020, 258, 120584. [Google Scholar] [CrossRef]
- Wang, N.; Xu, J.; Pei, C.; Tang, R.; Zhou, D.; Chen, Y.; Li, M.; Deng, X.; Deng, T.; Huang, X. Air quality during COVID-19 lockdown in the Yangtze River Delta and the Pearl River Delta: Two different responsive mechanisms to emission reductions in China. Environ. Sci. Technol. 2021, 55, 5721–5730. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Feng, Y.; Lee, C.-C.; Cen, Y. How does manufacturing agglomeration affect green economic efficiency? Energy Econ. 2020, 92, 104944. [Google Scholar] [CrossRef]
- Shoufu, Y.; Dan, M.; Zuiyi, S.; Lin, W.; Li, D. The impact of artificial intelligence industry agglomeration on economic complexity. Econ. Res.-Ekon. Istraživanja 2022, 36, 1420–1448. [Google Scholar] [CrossRef]
Variable | HT | ||
---|---|---|---|
No Constant | Intercept Term | Intercept Term and Time Trend | |
lnCI | 1.012 | 0.423 *** | 0.071 *** |
DIGA | 0.912 *** | 0.679 *** | 0.342 *** |
SDIGA | 0.928 *** | 0.704 *** | 0.371 *** |
lnPD | 0.897 *** | 0.609 *** | 0.235 *** |
lnPGDP | 0.976 *** | 0.763 | 0.370 *** |
lnINFRA | 0.922 *** | 0.561 *** | 0.300 *** |
OPEN | 0.8723 ** | 0.647 *** | 0.335 *** |
ER | 0.543 *** | 0.224 *** | −0.023 *** |
Economy–Geographical Weighted Matrix (W1) | ||||||||
---|---|---|---|---|---|---|---|---|
Year | lnCI | DIGA | SDIGA | lnPD | lnPGDP | lnINFRA | OPEN | ER |
2007 | 0.161 *** | 0.049 ** | 0.050 *** | 0.029 *** | 0.093 *** | 0.061 *** | 0.129 *** | 0.072 *** |
2008 | 0.158 *** | 0.048 * | 0.051 *** | 0.036 *** | 0.091 *** | 0.068 *** | 0.116 *** | 0.037 *** |
2009 | 0.150 *** | 0.061 *** | 0.065 *** | 0.032 *** | 0.087 *** | 0.070 *** | 0.124 *** | 0.025 *** |
2010 | 0.150 *** | 0.072 *** | 0.079 *** | 0.033 *** | 0.086 *** | 0.063 *** | 0.109 *** | 0.030 *** |
2011 | 0.146 *** | 0.082 ** | 0.090 *** | 0.038 *** | 0.082 *** | 0.060 *** | 0.092 *** | 0.034 *** |
2012 | 0.146 *** | 0.096 *** | 0.103 *** | 0.040 *** | 0.078 *** | 0.066 *** | 0.097 *** | 0.024 *** |
2013 | 0.150 *** | 0.096 *** | 0.103 *** | 0.041 *** | 0.076 *** | 0.059 *** | 0.086 *** | 0.010 ** |
2014 | 0.154 *** | 0.082 *** | 0.088 *** | 0.042 *** | 0.078 *** | 0.055 *** | 0.062 *** | 0.016 *** |
2015 | 0.125 *** | 0.052 *** | 0.044 *** | 0.041 *** | 0.077 *** | 0.058 *** | 0.053 *** | 0.010 ** |
2016 | 0.171 *** | 0.043 *** | 0.037 *** | 0.041 *** | 0.087 *** | 0.057 *** | 0.054 *** | 0.012 *** |
2017 | 0.115 *** | 0.032 *** | 0.024 *** | 0.035 *** | 0.090*** | 0.054 *** | 0.038 *** | 0.008 *** |
ICT–Geographical Weighted Matrix (W2) | ||||||||
2007 | 0.127 *** | 0.051 ** | 0.054 *** | 0.024 *** | 0.107 *** | 0.044 *** | 0.109 *** | 0.058 *** |
2008 | 0.127 *** | 0.054 * | 0.060 *** | 0.030 *** | 0.102 *** | 0.046 *** | 0.090 *** | 0.037 *** |
2009 | 0.124 *** | 0.068 *** | 0.075 *** | 0.029 *** | 0.097 *** | 0.047 *** | 0.092 *** | 0.028 *** |
2010 | 0.124 *** | 0.073 *** | 0.079 *** | 0.033 *** | 0.097 *** | 0.043 *** | 0.068 *** | 0.023 *** |
2011 | 0.117 *** | 0.085 ** | 0.094 *** | 0.038 *** | 0.094 *** | 0.041 *** | 0.045 *** | 0.030 *** |
2012 | 0.118 *** | 0.094 *** | 0.103 *** | 0.037 *** | 0.088 *** | 0.046 *** | 0.051 *** | 0.022 *** |
2013 | 0.115 *** | 0.091 *** | 0.101 *** | 0.038 *** | 0.086 *** | 0.039 *** | 0.040 *** | 0.008 ** |
2014 | 0.116 *** | 0.077 *** | 0.085 *** | 0.037 *** | 0.087*** | 0.034 *** | 0.035 *** | 0.017 *** |
2015 | 0.091 *** | 0.047 *** | 0.039 *** | 0.035 *** | 0.085 *** | 0.035 *** | 0.022 *** | 0.007 * |
2016 | 0.121 *** | 0.032 *** | 0.026 *** | 0.033 *** | 0.093 *** | 0.034 *** | 0.033 *** | 0.017 *** |
2017 | 0.074 *** | 0.022 *** | 0.015 *** | 0.028 *** | 0.092 *** | 0.031 *** | 0.023 *** | 0.007 |
Test | Chi-Square Statistic | |
---|---|---|
W1 | W2 | |
Hausman test | 41.21 *** | 41.21 *** |
LR test (ind. vs. both) | 59.15 *** | 59.15 *** |
LR test (time vs. both) | 5079.95 *** | 5079.95 *** |
LM test (error) | 3228.707 *** | 1208.063 *** |
Robust LM test (error) | 1418.847 *** | 360.598 *** |
LM test (lag) | 1931.322 *** | 984.134 *** |
Robust LM test (lag) | 121.461 *** | 136.669 *** |
Wald test (lag) | 51.40 *** | 40.05 *** |
Wald test (error) | 59.74 *** | 41.51 *** |
LR test (lag) | 54.03 *** | 40.38 *** |
LR test (error) | 59.97 *** | 25.22 *** |
Spatial | ||
---|---|---|
SDM_W1 | SDM_W2 | |
Model | 1 | 2 |
DIGA | 0.973 ** (2.21) | 0.976 ** (2.18) |
SDIGA | −2.878 *** (−2.68) | −2.967 *** (−2.72) |
lnPD | 0.000 (0.03) | 0.005 (0.50) |
lnPGDP | −0.231 *** (−9.68) | −0.256 *** (−10.56) |
lnINFRA | 0.069 *** (3.72) | 0.078 *** (4.15) |
OPEN | 0.785 ** (2.18) | 0.292 (0.82) |
ER | −1.600 (−0.51) | −0.583 (−0.18) |
W*DIGA | 16.307 *** (3.22) | 11.651 ** (2.20) |
W*SDIGA | −41.865 *** (−3.67) | −27.016 ** (−2.48) |
W*lnPD | 0.162 (1.29) | −0.564 *** (−2.90) |
W*lnPGDP | 0.118 (0.69) | 0.092 (0.41) |
W*lnINFRA | 1.017 *** (3.77) | −0.153 (−0.52) |
W*OPEN | −9.035 *** (−3.64) | −1.060 (−0.41) |
W*ER | 149.400 *** (3.66) | 125.826 *** −3.26 |
Constant | ||
rho | 0.587 *** | 0.3 *** |
Time-fixed effect | YES | YES |
City-fixed effect | YES | YES |
N | 3058 | 3058 |
Effect | DIGA | SDIGA | lnPD | lnPGDP | lnINFRA | OPEN | ER | |
---|---|---|---|---|---|---|---|---|
W1 | Total effect | 42.613 *** (2.78) | −110.322 *** (−2.92) | 0.420 (1.25) | −0.280 (−0.70) | 2.732 *** (3.03) | −21.106 *** (−2.58) | 375.386 *** (2.62) |
Direct effect | 1.127 ** (2.48) | −3.282 *** (−2.95) | 0.003 (0.29) | −0.232 *** (−10.18) | 0.078 *** (4.23) | 0.730 ** (2.06) | −0.355 (−0.11) | |
Indirect effect | 41.486 *** (2.72) | −107.040 *** (−2.85) | 0.417 (1.25) | −0.048 (−0.12) | 2.654 *** (2.96) | −21.836 *** (−2.67) | 375.741 *** (2.63) | |
W2 | Total effect | 18.077 ** (2.30) | −42.867 ** (−2.51) | −0.813 ** (−2.40) | −0.244 (−0.77) | −0.092 (−0.20) | −1.288 (−0.35) | 186.157 *** (2.61) |
Direct effect | 1.025 ** (2.23) | −3.095 *** (−2.76) | 0.004 (0.46) | −0.256 *** (−11.01) | 0.078 *** (4.26) | 0.306 (0.87) | −0.217 (−0.07) | |
Indirect effect | 17.052 ** (2.18) | −39.772 ** (−2.34) | −0.818 ** (−2.42) | 0.012 (0.40) | −0.170 (−0.37) | −1.594 (−0.43) | 186.374 *** (2.63) |
SDM_W1 | SDM_M3 | SDM_M4 | Removing Municipalities | Adding Control Variables | |
---|---|---|---|---|---|
Model | 1 | 2 | 3 | 4 | 5 |
DIGA | 0.973 ** (2.21) | 0.985 ** (2.23) | 0.998 ** (2.31) | 0.784 * (1.77) | 0.835 * (1.93) |
SDIGA | −2.878 *** (−2.68) | −2.899 *** (−2.70) | −2.901 *** (−2.76) | −2.332 ** (−2.15) | −2.408 ** (−2.29) |
W*DIGA | 16.307 *** (3.22) | 21.180 *** (3.61) | 22.546 *** (3.52) | 15.221 *** (3.07) | 12.060 ** (2.32) |
W*SDIGA | −41.865 *** (−3.67) | −55.681 *** (−4.15) | −64.781 *** (−4.29) | −39.112 *** (−3.51) | −29.568 ** (−2.55) |
Control variables | Yes | Yes | Yes | Yes | Yes |
Time-fixed effect | Yes | Yes | Yes | Yes | Yes |
City-fixed effect | Yes | Yes | Yes | Yes | Yes |
N | 3058 | 3058 | 3058 | 3058 | 3058 |
Eastern Regions | Middle Regions | Western Regions | |
---|---|---|---|
Model | 1 | 2 | 3 |
DIGA | 2.241 *** (2.79) | −1.133 * (−1.67) | 4.215 *** (4.30) |
SDIGA | −5.219 *** (−2.90) | 2.443 (1.48) | −12.570 *** (−4.61) |
W*DIGA | 12.713 ** (2.09) | −29.769 ** (−2.53) | 115.876 *** (6.69) |
W*SDIGA | −40.739 *** (−2.93) | 66.074 *** (2.57) | −234.847 *** (−5.39) |
Control variables | Yes | Yes | Yes |
Time-fixed effect | Yes | Yes | Yes |
City-fixed effect | Yes | Yes | Yes |
N | 3058 | 3058 | 3058 |
Non-Resource-Based Cities | Resource-Based Cities | |
---|---|---|
Model | 1 | 2 |
DIGA | 0.809 (1.44) | 1.511 * (1.82) |
SDIGA | −2.459 * (−1.91) | −4.474 ** (−1.99) |
W*DIGA | 12.774 ** (2.20) | 9.171 (0.61) |
W*SDIGA | −38.711 *** (−3.03) | 2.662 (0.07) |
Control variables | Yes | Yes |
Time-fixed effect | Yes | Yes |
City-fixed effect | Yes | Yes |
N | 3058 | 3058 |
Nonindustrialized Cities | Industrialized Cities | |
---|---|---|
Model | 1 | 2 |
DIGA | 1.898 *** (3.21) | −0.572 (−0.87) |
SDIGA | −4.858 *** (−3.38) | 0.726 (0.45) |
W*DIGA | −15.131 ** (−2.34) | 7.274 (1.14) |
W*SDIGA | 32.671 ** (2.47) | −20.997 (−1.49) |
Control variables | Yes | Yes |
Time-fixed effect | Yes | Yes |
City-fixed effect | Yes | Yes |
N | 3058 | 3058 |
Financially Undeveloped Cities | Financially Developed Cities | |
---|---|---|
Model | 1 | 2 |
DIGA | −0.302 (−0.49) | 1.605 ** (2.53) |
SDIGA | 0.922 (0.60) | −4.968 *** (−3.30) |
W*DIGA | 6.535 * (1.09) | −10.136 * (−1.76) |
W*SDIGA | −25.915 (−1.85) | 25.453 ** (2.05) |
Control variables | Yes | Yes |
Time-fixed effect | Yes | Yes |
City-fixed effect | Yes | Yes |
N | 3058 | 3058 |
Variable | Total Effect | Green Technology Innovation Effect | Industrial Structure Rationalization Effect | Industrial Structure Advancement Effect | |||
---|---|---|---|---|---|---|---|
lnCI | GTI | lnCI | ISR | lnCI | ISA | lnCI | |
Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
DIGA | 0.973 ** (2.21) | −18.253 *** (−4.67) | 0.628 (1.44) | −0.671 *** (−2.94) | 0.910 ** (2.07) | −1.338 *** (−4.04) | 1.071 ** (2.43) |
SDIGA | −2.878 *** (−2.68) | 40.865 *** (4.30) | −2.154 ** (−2.03) | 1.246 ** (2.24) | −2.771*** (−2.59) | 3.345 *** (4.15) | −3.121 *** (−2.91) |
GTI | −0.014 *** (−6.13) | ||||||
ISR | −0.095 *** (−2.74) | ||||||
ISA | 0.068 *** (2.78) | ||||||
rho | 0.587 *** | 0.345 *** | 0.351 *** | −0.007 | 0.559 *** | 0.436 *** | 0.585 *** |
Control variables | Yes | Yes | YES | YES | YES | YES | YES |
Time-fixed effect | YES | YES | YES | YES | YES | YES | YES |
City-fixed effect | YES | YES | YES | YES | YES | YES | YES |
Sobel test | 0.052 ** | 0.019 ** | −0.008 | ||||
N | 3058 | 3058 | 3058 | 3058 | 3058 | 3058 | 3058 |
Variable | EDU | GI |
---|---|---|
lnCI | lnCI | |
1 | 2 | |
DIGA | 2.255 *** (4.11) | 0.396 (0.83) |
SDIGA | −2.242 ** (−2.10) | −2.596 ** (−2.42) |
lnEDU | 0.123 *** (7.04) | |
GI | −0.445 *** (−3.17) | |
DIGA* lnEDU | −0.256 *** (−3.41) | |
DIGA * GI | 2.791 *** (3.01) | |
rho | 0.323 ** | 0.568 *** |
Control variables | Yes | Yes |
Time-fixed effect | Yes | Yes |
City-fixed effect | Yes | Yes |
N | 3058 | 3058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Zhao, H.; Chen, Y.; Fu, Z.; Sun, C.; Chang, T. The Impact of Digital Enterprise Agglomeration on Carbon Intensity: A Study Based on the Extended Spatial STIRPAT Model. Sustainability 2023, 15, 9308. https://doi.org/10.3390/su15129308
Yang S, Zhao H, Chen Y, Fu Z, Sun C, Chang T. The Impact of Digital Enterprise Agglomeration on Carbon Intensity: A Study Based on the Extended Spatial STIRPAT Model. Sustainability. 2023; 15(12):9308. https://doi.org/10.3390/su15129308
Chicago/Turabian StyleYang, Shoufu, Hanhui Zhao, Yiming Chen, Zitian Fu, Chaohao Sun, and Tsangyao Chang. 2023. "The Impact of Digital Enterprise Agglomeration on Carbon Intensity: A Study Based on the Extended Spatial STIRPAT Model" Sustainability 15, no. 12: 9308. https://doi.org/10.3390/su15129308
APA StyleYang, S., Zhao, H., Chen, Y., Fu, Z., Sun, C., & Chang, T. (2023). The Impact of Digital Enterprise Agglomeration on Carbon Intensity: A Study Based on the Extended Spatial STIRPAT Model. Sustainability, 15(12), 9308. https://doi.org/10.3390/su15129308