Definition and Classification of Potential of Forest Wood Biomass in Terms of Sustainable Development: A Review
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Forest Sustainable Development Definition
3.2. Definition of Biomass
3.3. Definition of Wood Biomass Potential
3.3.1. Theoretical Potential of Wood Biomass
3.3.2. Technical Potential of Wood Biomass
3.3.3. Economic (Market) Potential of Wood Biomass
3.3.4. Ecological Potential of Wood Biomass
3.3.5. Sustainable Potential of Wood Biomass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Parliament. EU Biodiversity Strategy for 2030. Available online: https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en (accessed on 3 November 2022).
- Vashum, K.T.; Jayakumar, S. Methods to estimate above-ground biomass and carbon stock in natural forests—A review. J. Ecosyst. Ecography 2012, 2, 1–7. [Google Scholar] [CrossRef]
- FAO. Time to Realise the Potential of Sustainable Wood for the Planet. Available online: https://www.lifegate.com/sustainable-wood-planet (accessed on 10 August 2022).
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Hetemäki, L.; Nasi, R.; Palahi, M.; Cerutti, P.; Mausch, K. The Future of Wood-towards Circular Bioeconomy. 2021. Available online: https://efi.int/publications/future-wood-towards-circular-bioeconomy-2022-01-04 (accessed on 1 May 2023).
- Purkus, A.; Lüdtke, J. A systemic evaluation framework for a multi-actor, forest-based bioeconomy governance process: The German Charter for Wood 2.0 as a case study. For. Policy Econ. 2020, 113, 102113. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Morone, P.; Rosa, P.; Sassanelli, C.; Settembre-Blundo, D.; Shen, Y. Bioeconomy of sustainability: Drivers, opportunities and policy implications. Sustainability 2021, 14, 200. [Google Scholar] [CrossRef]
- Wolfslehner, B.; Linser, S.; Pülzl, H.; Bastrup-Birk, A.; Camia, A.; Marchetti, M. Forest Bioeconomy—A New Scope for Sustainability Indicators. European Forest Institute; 2016. JRC105224. Available online: http://www.efi.int/files/attachments/publications/efi_fstp_4_2016.pdf (accessed on 1 May 2023).
- Sen, K.Y.; Baidurah, S. Renewable biomass feedstocks for production of sustainable biodegradable polymer. Curr. Opin. Green Sustain. Chem. 2021, 27, 100412. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022, Online Edition. Available online: https://population.un.org/wpp (accessed on 26 May 2023).
- OECD. Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences; OECD Publishing: Paris, France, 2018; p. 214. [Google Scholar]
- European Environment Agency. The European environment—State and outlook 2020. Knowledge for Transition to a Sustainable Europe. 2019. Available online: https://www.eea.europa.eu/soer/publications/soer-2020 (accessed on 1 May 2023).
- Brack, D. The Impacts of the Demand for Woody Biomass for Power and Heat on Climate and Forests; Chatham House, the Royal Institute of International Affairs: London, UK, 2017. [Google Scholar]
- Nepal, P.; Abt, K.L.; Skog, K.E.; Prestemon, J.P.; Abt, R.C. Projected market competition for wood biomass between traditional products and energy: A simulated interaction of US regional, national, and global forest product markets. For. Sci. 2019, 65, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Favero, A.; Daigneault, A.; Sohngen, B. Forests: Carbon sequestration, biomass energy, or both? Sci. Adv. 2002, 6, eaay6792. [Google Scholar] [CrossRef] [Green Version]
- Hennig, C.; Brosowski, A.; Majer, S. Sustainable feedstock potential–a limitation for the bio-based economy? J. Clean. Prod. 2016, 123, 200–202. [Google Scholar] [CrossRef]
- Erni, M.; Burg, V.; Bont, L.; Thees, O.; Ferretti, M.; Stadelmann, G.; Schweier, J. Current (2020) and long-term (2035 and 2050) sustainable potentials of wood fuel in Switzerland. Sustainability 2020, 12, 9749. [Google Scholar] [CrossRef]
- Steubing, B.; Zah, R.; Waeger, P.; Ludwig, C. Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential. Renew. Sustain. Energy Rev. 2010, 14, 2258. [Google Scholar] [CrossRef] [Green Version]
- Burg, V.; Bowman, G.; Erni, M.; Lemm, R.; Thees, O. Analyzing the potential of domestic biomass resources for the energy transition in Switzerland. Biomass Bioenergy 2018, 111, 60–69. [Google Scholar] [CrossRef]
- Thees, O.; Erni, M.; Lemm, R.; Stadelmann, G.; Zenner, E.K. Future potentials of sustainable wood fuel from forests in Switzerland. Biomass Bioenergy 2020, 141, 105647. [Google Scholar] [CrossRef]
- Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C. Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments. Renew. Sustain. Energy Rev. 2012, 16, 6598–6630. [Google Scholar] [CrossRef]
- Lauri, P.; Havlík, P.; Kindermann, G.; Forsell, N.; Böttcher, H.; Obersteiner, M. Woody biomass energy potential in 2050. Energy Policy 2014, 66, 19–31. [Google Scholar] [CrossRef]
- Smeets, E.M.; Faaij, A.P.; Lewandowski, I.M.; Turkenburg, W.C. A bottom-up assessment and review of global bio-energy potentials to 2050. Prog. Energy Combust. Sci. 2007, 33, 56–106. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Jabareen, Y. A new conceptual framework for sustainable development. Environ. Dev. Sustain. 2008, 10, 179–192. [Google Scholar] [CrossRef]
- Wodzicki, T.J. Challenges concerning terminology and methodology in forest sciences. For. Res. Pap. 2019, 80, 233–238. [Google Scholar] [CrossRef]
- MacDicken, K.G. Global forest resources assessment 2015: What, why and how? For. Ecol. Manag. 2015, 352, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Han, L.; Yang, F.; Gao, L. The evolution of sustainable development theory: Types, goals, and research prospects. Sustainability 2019, 11, 7158. [Google Scholar] [CrossRef] [Green Version]
- Wiersum, K.F. 200 years of sustainability in forestry: Lessons from history. Environ. Manag. 1995, 19, 321–329. [Google Scholar] [CrossRef]
- O’Neill, D.W.; Fanning, A.L.; Lamb, W.F.; Steinberger, J.K. A good life for all within planetary boundaries. Nat. Sustain. 2018, 1, 88–95. [Google Scholar] [CrossRef] [Green Version]
- WCED (World Commission on Environment and Development). Our Common Future. Oxford University PresWCED, S.W. S. World commission on environment and development. Our Common Future 1987, 17, 1–91. [Google Scholar]
- European Commission. Sustainable Europe by 2030. Available online: https://ec.europa.eu/commission/publications/reflection-paper-towards-sustainable-europe-2030_en (accessed on 20 January 2023).
- Suominen, T.; Kunttu, J.; Jasinevičius, G.; Tuomasjukka, D.; Lindner, M. Trade-offs in sustainability impacts of introducing cascade use of wood. Scand. J. For. Res. 2017, 32, 588–597. [Google Scholar] [CrossRef]
- Mebratu, D. Sustainability and sustainable development: Historical and conceptual review. Environ. Impact Assess. Rev. 1998, 18, 493–520. [Google Scholar] [CrossRef]
- European Commission. Communication: New EU Forest Strategy for 2030. Available online: https://commission.europa.eu/document/cf3294e1-8358-4c93-8de4-3e1503b95201_en (accessed on 9 August 2022).
- MCPFE. Resolution H1. General Guidlines for the Sustainable Management of Forests in Europe. In Proceedings of the Second MCPFE, Helsinki, Finland, 16–17 June 1993; p. 5. [Google Scholar]
- MCPFE. Annex 1 of the Resolution L2 Pan-European criteria and indicators for sustainable forest management. In Proceedings of the Third Ministral Conference on the Protection of Forests in Europe, Lisbon, Portugal, 2–4 June 1998; p. 14. [Google Scholar]
- MCPFE. Improved Pan-European indicators for sustainable forest management as adopted by the MCPFE expert level meeting. In Proceedings of the Ministerial Conference on the Protection of Forests in Europa, Vienna, Austria, 7–8 October 2002. [Google Scholar]
- The Montréal Process Working Group (Argentina, Australia, Canada, Chile, China, Japan, Korea, Mexico, New Zealand, the Russian Federation, the United States of America and Uruguay). Technical notes on implementation of the montréal process criteria and indicators. In Montréal Process Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests, 3rd ed.; 2009; 100p. Available online: https://montreal-process.org/documents/publications/techreports/2009p_2.pdf (accessed on 1 May 2023).
- Neumayer, E. Weak versus Strong Sustainability: Exploring the Limits of Two Opposing Paradigms. In Measuring the Immeasurable, 2nd ed.; Bell, S., Morse, S., Eds.; Sustainability Indicators: London, UK, 2012; 228p. [Google Scholar]
- Grainger, A. Miškų tvarumo rodiklių sistemos kaip procedūrinės politikos priemonės pasauliniame aplinkos valdyme. Glob. Environ. Chang. 2012, 22, 147–160. [Google Scholar] [CrossRef]
- Gerdessen, J.C.; Pascucci, S. Data Envelopment Analysis of sustainability indicators of European agricultural systems at regional level. Agric. Syst. 2013, 118, 78–90. [Google Scholar] [CrossRef]
- Rodrigues, M.; Ibarra, P.; Echeverría, M.; Perez-Cabello, F.; Riva, J.D.L. A method for regional-scale assessment of vegetation recovery time after high-severity wildfires: Case study of Spain. Prog. Phys. Geogr. 2014, 38, 556–575. [Google Scholar] [CrossRef]
- Ojea, E.; Ruiz-Benito, P.; Markandya, A.; Zavala, M.A. Wood provisioning in Mediterranean forests: A bottom-up spatial valuation approach. For. Policy Econ. 2012, 20, 78–88. [Google Scholar] [CrossRef]
- Hahn, W.A.; Knoke, T. Sustainable development and sustainable forestry: Analogies, differences, and the role of flexibility. Eur. J. For. Res. 2010, 129, 787–801. [Google Scholar] [CrossRef]
- Azevedo, S.G.; Sequeira, T.; Santos, M.; Mendes, L. Biomass-related sustainability: A review of the literature and interpretive structural modeling. Energy 2019, 171, 1107–1125. [Google Scholar] [CrossRef]
- Fortune, J.; Hughes, J. Modern academic myths. In Systems for Sustainability; Springer: Boston, MA, USA, 1997; pp. 125–130. [Google Scholar]
- Holme, N.A. The biomass of the bottom fauna in the English Channel off Plymouth. J. Mar. Biol. Assoc. 1997, 32, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ho, Y.S. Highly cited articles in biomass research: A bibliometric analysis. Renew. Sustain. Energy Rev. 2015, 49, 12–20. [Google Scholar] [CrossRef]
- IPCC. 2006 IPPC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_02_Ch2_Generic.pdf (accessed on 4 March 2023).
- FAO. Unified Bioenergy Terminology. Available online: https://www.fao.org/3/j4504e/j4504e00.pdf (accessed on 4 March 2023).
- Lewandowski, I. Bioeconomy. In Shaping the Transition to a Sustainable, Biobased Economy; University of Hohenheim: Stuttgart, Germany, 2018; p. 356. [Google Scholar]
- Europos Komisija. Gairės. Biomasės Aspektai. SAR Gairės Nr. 3, 2012 m. Spalio 17 d. Redakcija (Galutinė). Available online: https://am.lrv.lt/uploads/am/documents/files/KLIMATO%20KAITA/ES%20ATL%20sistema/Gair%C4%97s%20biomas%C4%97s%20aspektams.DOC?__cf_chl_tk=gMl2kMhP7qnliYEyPEG3sgE1cd4AwIo5XR7021VgRTU-1685675791-0-gaNycGzNC3s (accessed on 1 May 2023). (In Lithuanian).
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Brosowski, A.; Thrän, D.; Mantau, U.; Mahro, B.; Erdmann, G.; Adler, P.; Stinner, W.; Reinhold, G.; Hering, T.; Blanke, C. A review of biomass potential and current utilisation—Status quo for 93 biogenic wastes and residues in Germany. Biomass Bioenergy 2016, 95, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Gumartini, T. Biomass energy in the Asia-Pacific region: Current status, trends and future setting. In Asia-Pacific Forestry Sector Outlook Study II; Working Paper No. APFSOS II/WP/2009/26; Food and Agriculture Organization of the United Nations: Bangkok, Thailand; Quebec City, QC, Canada, 2009. [Google Scholar]
- Krausmann, F.; Erb, K.H.; Gingrich, S.; Lauk, C.; Haberl, H. Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecol. Econ. 2008, 65, 471–487. [Google Scholar] [CrossRef]
- Lewandowski, I. Securing a sustainable biomass supply in a growing bioeconomy. Glob. Food Secur. 2015, 6, 34–42. [Google Scholar] [CrossRef]
- Hetsch, S. Potential Sustainable Wood Supply in Europe; United Nations Economic Commission for Europe, Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Smeets, E.M.; Faaij, A.P. Bioenergy potentials from forestry in 2050: An assessment of the drivers that determine the potentials. Clim. Chang. 2017, 81, 353–390. [Google Scholar] [CrossRef]
- Camia, A.; Giuntoli, J.; Jonsson, K.; Robert, N.; Cazzaniga, N.; Jasinevičius, G.; Avitabile, V.; Grassi, G.; Barredo Cano, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Production in the EU; Publications Office of the European Union: Luxembourg, 2021.
- European Environment Agency. Forest: Growing Stock, Increment and Fellings. Available online: https://www.eea.europa.eu/data-and-maps/indicators/forest-growing-stock-increment-and-fellings-3 (accessed on 14 April 2023).
- FAO. Global Forest Resources Assessment. Main Report. Available online: https://www.fao.org/3/ca9825en/ca9825en.pdf (accessed on 30 April 2023).
- FAO. Global Forest Resources Assessment. Terms and Definitions. Available online: https://www.fao.org/3/I8661EN/i8661en.pdf (accessed on 30 April 2023).
- Titus, B.D.; Brown, K.; Helmisaari, H.-S.; Vanguelova, E.; Stupak, I.; Evans, A.; Clarke, N.; Guidi, C.; Bruckman, V.J.; Varnagiryte-Kabasinskiene, I.; et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 2021, 11, 10. [Google Scholar] [CrossRef]
- Syrbe, R.U.; Han, T.T.; Grunewald, K.; Xiao, S.; Wende, W. Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications. Land 2022, 11, 1937. [Google Scholar] [CrossRef]
- Panoutsou, C. Modeling and Optimization of Biomass Supply Chains. In Top-Down and Bottom-Up Assessment for Agricultural, Forest and Waste Feedstock; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Smeets, E.; Faaij, A.; Lewandowski, I.; Turkenburg, W.C. A Quick Scan of Global Bio-Energy Potentials to 2050. An Analysis of the Regional Availability of Biomass Resources for Export in Relation to the Underlying Factors. Report NWS-E-2004-109 ISBN 90-393-3909-0, Copernicus Institute. 2004. Available online: https://www.biomassmurder.org/lobbyfacts/2004-03-00-university-utrecht-copernicus-institute-a-quickscan-of-global-bio-energy-potentials-to-2050-english.pdf (accessed on 1 May 2023).
- IEA; FAO. Bioenergy Roadmap Development and Implementation. New Bioenergy Roadmap Guide Released Jointly by IEA and FAO. Available online: https://www.iea.org/news/new-bioenergy-roadmap-guide-released-jointly-by-iea-and-fao (accessed on 16 September 2020).
- Bentsen, N.S.; Felby, C. Technical potentials of biomass for energy services from current agriculture and forestry in selected countries in Europe, the Americas and Asia. For. Landsc. 2010, 55, 131. [Google Scholar]
- Ojolo, S.; Orisaleye, J.; Ismail, S.; Abolarin, S. Technical Potential of Biomass Energy in Nigeria. Ife J. Technol. 2012, 21, 60–65. Available online: http://ijt.oauife.edu.ng/index.php/ijt/article/view/110 (accessed on 24 April 2023).
- Parzych, S. The potential opportunities for using wood biomass in energy production. For. Res. Pap. 2015, 76, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Dees, M.; Elbersen, B.; Fitzgerald, J.; Vis, M.; Anttila, P.; Forsell, N.; Ramirez-Almeyda, J.; García Galindo, D.; Glavonjic, B.; Staritsky, I.; et al. A spatial data base on sustainable biomass cost-supply of lignocellulosic biomass in Europe—Methods & data sources. In Project Report. S2BIOM—A Project Funded under the European Union 7th Framework Programme for Research. Grant Agreement n°608622; Chair of Remote Sensing and Landscape Information Systems, Institute of Forest Sciences, University of Freiburg: Freiburg, Germany, 2017; 176p. [Google Scholar]
- Verkerk, P.J.; Fitzgerald, J.B.; Datta, P.; Dees, M.; Hengeveld, G.M.; Lindner, M.; Zudin, S. Spatial distribution of the potential forest biomass availability in Europe. For. Ecosyst. 2019, 6, 5. [Google Scholar] [CrossRef]
- Lopez, A.; Roberts, B.; Heimiller, D.; Blair, N.; Porro, G. US Renewable Energy Technical Potentials. In A GIS-Based Analysis (No. NREL/TP-6A20-51946); National Renewable Energy Lab (NREL): Golden, CO, USA, 2012. [Google Scholar]
- Lee, N.; Grue, N.; Rosenlieb, E. Task 2 Report—A GIS-Based Technical Potential Assessment of Domestic Energy Resources for Electricity Generation: Energy Alternatives Study for the Lao People’s Democratic Republic: Smart Infrastructure for the Mekong Program; Technical Report NREL/TP-7A40-70470; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2018. Available online: www.nrel.gov/docs/fy18osti/70470.pdf (accessed on 24 April 2023).
- Vis, M.; Dees, M. Biomass Resource Assessment Handbook: Harmonisation of Biomass Resource Assessments, Best Practices and Methods Handbook; VDM Verlag Dr. Müller GmbH & Co.: Saarbrücken, Germany, 2011. [Google Scholar]
- Field, C.B.; Campbell, J.E.; Lobell, D.B. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 2008, 23, 65–72. [Google Scholar] [CrossRef]
- Van Holsbeeck, S.; Brown, M.; Srivastava, S.K.; Ghaffariyan, M.R. A review on the potential of forest biomass for bioenergy in Australia. Energies 2020, 13, 1147. [Google Scholar] [CrossRef] [Green Version]
- Souza, L.L.P.D.; Lora, E.E.S.; Hamedani, S.R.; Palacio, J.C.E.; Cioccolanti, L.; Villarini, M.; Comodi, G.; Colantoni, A. Life cycle assessment of prospective scenarios maximizing renewable resources in the Brazilian electricity matrix. Renew. Energy Focus 2023, 44, 1–18. [Google Scholar] [CrossRef]
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba–Zięty, E.; Akincza, M. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- Senocak, A.A.; Goren, H.G. Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: A case study. Eng. Sci. Technol. Int. J. 2022, 26, 100992. [Google Scholar] [CrossRef]
- Nandimandalam, H.; Gude, V.G. Renewable wood residue sources as potential alternative for fossil fuel dominated electricity mix for regions in Mississippi: A techno-economic analysis. Renew. Energy 2022, 200, 1105–1119. [Google Scholar] [CrossRef]
- Bao, K.; Bieber, L.M.; Kürpick, S.; Radanielina, M.H.; Padsala, R.; Thrän, D.; Schröter, B. Bottom-up assessment of local agriculture, forestry and urban waste potentials towards energy autonomy of isolated regions: Example of Réunion. Energy Sustain. Dev. 2022, 66, 125–139. [Google Scholar] [CrossRef]
- ICV (Instituto Centro de Vida). An Unprecedented Study Shows Illegalities in 94% of Converted Ecosystems in the Amazon and the MATOPIBA Region. Available online: https://www.icv.org.br/2021/05/an-unprecedented-study-shows-illegalities-in-94-of-converted-ecosystems-in-the-amazon-and-the-matopiba-region/ (accessed on 19 June 2022).
- Endres, A.; Querner, I. Die Ökonomie Natürlicher Ressourcen, Kohlhammer 2; Auflage: Stuttgart, Germany, 2000. [Google Scholar]
- Maes, W.H.; Fontaine, M.; Rongé, K.; Hermy, M.; Muys, B. A quantitative indicator framework for stand level evaluation and monitoring of environmentally sustainable forest management. Ecol. Indic. 2011, 11, 468–479. [Google Scholar] [CrossRef]
- Forest Europe. State of Europe’s Forests. Report 2015. Available online: https://foresteurope.org/wp-content/uploads/2022/02/soef_21_12_2015.pdf (accessed on 11 April 2023).
- Hanssen, K.H.; Fløistad, I.S.; Granhus, A.; Søgaard, G. Harvesting of logging residues affects diameter growth and pine weevil attacks on Norway spruce seedlings. Scand. J. For. Res. 2018, 33, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Ranius, T.; Hämäläinen, A.; Egnell, G.; Olsson, B.; Eklöf, K.; Stendahl, J.; Rudolphi, J.; Sténs, A.; Felton, A. The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis. J. Environ. Manag. 2018, 209, 409–425. [Google Scholar] [CrossRef]
- European Commission. Guidelines on Biodiversity-Friendly Afforestation, Reforestation and Tree Planting. 2023. Available online: https://environment.ec.europa.eu/publications/guidelines-biodiversity-friendly-afforestation-reforestation-and-tree-planting_en (accessed on 25 May 2023).
- Haberl, H. Human Appropriation of Net Primary Production as An Environmental lndicator: Implications for Sustainable Development. Report. R. Swed. Acad. Sci. 1997, 26, 143–146. [Google Scholar]
- Valstybinė Miškų Tarnyba. Oficialiosios Miškų Statistikos Metaduomenys. Available online: http://www.amvmt.lt/Images/Veikla/STAT/Oficialiojistatistika/OMS_metaduomenys.pdf (accessed on 24 April 2023). (In Lithuanian).
Time | Event | Results |
---|---|---|
1992 | Earth Summit and United Nations Sustainable Development Conference in Rio de Janeiro | Although there was no specific convention on forests, there was a clear recognition of the importance of forests and the fact that forest resources should be managed sustainably to meet the social, economic, environmental, cultural and spiritual needs of present and future generations. |
1992 | The International Tropical Timber Organization (ITTO) | The guidelines for the sustainable management of natural tropical forests were developed as a tool to monitor and assess forests. |
1993–to now | Ministerial Conference on the Protection of Forests Europe (MCPFE). It is a pan-European ministerial-level voluntary political process for the promotion of the sustainable management of European forests. | From 1993 until 2021, eight conferences were initiated. Through these processes, general guidelines for sustainable forest management (SFM) in Europe were developed. The main aim was to identify measurable criteria and indicators. The six European criteria are as follows: (1) the maintenance and appropriate enhancement of forest resources and their contribution to global carbon cycles; (2) the maintenance of forest ecosystem health and vitality; (3) the maintenance and encouragement of the productive functions of forests; (4) the maintenance, conservation and appropriate enhancement of biological diversity in forest ecosystems; (5) the maintenance and appropriate enhancement of protective functions in forests; and (6) the maintenance of other socio-economic functions and conditions [36,37,38]. |
2004 | United Nations Forum of Forests (UNFF) | The seven thematic elements of sustainable forest management were as follows: (1) the extent of forest resources; (2) forest biological diversity; (3) forest ecosystem health and vitality; (4) productive functions of forests; (5) protective functions of forests; (6) socio-economic functions of forests; and (7) legal, policy and institutional framework [39]. |
2009 | Montréal Process | A set of 54 indicators for 7 criteria for the Conservation and Sustainable Management of Forests. |
2012 | Rio20+ United Nations Conference on Sustainable Development | The beginning of the process of developing a set of sustainable development goals. |
2016 | The International Tropical Timber Organization (ITTO) | A set of 7 criteria and 58 indicators for sustainable tropical forest management. |
2019 | European Green Deal | The European Commission has adopted policies fit for reducing net greenhouse gas emissions by at least 55% by 2030 compared to 1990 levels, in order to ensure that there are no net emissions of greenhouse gases by 2050 and that economic growth is decoupled from resource use [32]. |
2020 | EU biodiversity strategy for 2030 | Effective restoration measures to restore degraded ecosystems. |
2021 | EU forest strategy for 2030 | The measures proposed in the strategy are as follows: promoting sustainable forest management (SFM), including encouraging the sustainable use of wood-based resources, as well as improving the size and biodiversity of forests, promoting alternative forest industries, and protecting the EU’s remaining primary and old-growth forests [35]. |
2022 | New Nature Restoration Law | A proposal for a Nature Restoration Law has been adopted. It is a key element of the EU Biodiversity Strategy, which calls for binding targets to restore degraded ecosystems. |
2023 | Guidelines on Biodiversity-Friendly Afforestation, Reforestation and Tree Planting | A set of practical recommendations to better implement biodiversity-friendly afforestation, reforestation and tree-planting projects. |
Literature Sources | Types of Potential of Wood Biomass | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E/EI | Theo-retical | Geographical | Tech-nical | Econo-mic | Market | Techno-Economic | Ecolo-gical (Environ-Mental) | Sustainable = Used + Unused | |||
Sustai-nable | Used | Unused (Additional) | |||||||||
Smeets et al. [69] | E | + | + | + | + | ||||||
Smeets et al. [23] | E | + | + | + | + | ||||||
Smeets and Faaij [60] | EI | + | + | + | + | ||||||
Batidzirai et al. [21] | E | + | + | + | + | + | |||||
IEA, FAO [70] | E | + | + | ||||||||
Thees et al. [20] | E | + | + | + | + | ||||||
Levanowski [58] | E | + | + | + | |||||||
Steubing et al. [18] | E | + | + | + | + | + | |||||
Bentsen and Felby [71] | E | + | |||||||||
Brosowski et al. [55] | E | + | + | ||||||||
Burg et al. [19] | E | + | + | + | + | + | |||||
Ojolo et al. [72] | E | + | + | ||||||||
Parzych [73] | E | + | + | + | |||||||
Panoutsou [67] | E | + | + | + | + | ||||||
Dees et al. [74] | EI | + | + | + | + | ||||||
Verkerk et al. [75] | EI | + | + | + | + | ||||||
Lopez et al. [76] | E | + | + | + | + | ||||||
Hetsch [59] | E | + | + | ||||||||
Lee et al. [77] | EI | + | + | + | + | ||||||
Vis and Dees [78] | EI | + | + | + | |||||||
Hennig et al. [16] | E | + | + | + | + | ||||||
Lauri et al. [22] | E | + | + | + | + | ||||||
Erni et al. [17] | E | + | + | ||||||||
Field et al. [79] | E | + | |||||||||
Van Holsbeeck et al. [80] | E | + | + | + | + | ||||||
de Souza et al. [81] | E | + | |||||||||
Hamelin et al. [82] | E | + | |||||||||
Stolarski et al. [83] | E | + | + | ||||||||
Senocak and Goren [84] | E | + | |||||||||
Nandimandalam and Gude [85] | E | + | + | ||||||||
Bao et al. [86] | + |
Literature | Technological Constraints | Topographic/Geographic Constraints | Physical Constraints (Inaccessible Land) | Land-Use Constraints (Protected Areas) | Other Not Technical Constraints |
---|---|---|---|---|---|
Smeets et al. [69] | + | ||||
Smeets et al. [23] | + | ||||
Smeets and Faaij [60] | + | + | |||
Hetsch [59] | + | ||||
Steubing et al. [18] | + | + | |||
Bentsen and Felby [71] | + | ||||
Vis and Dees [78] | + | + | |||
Batidzirai et al. [21] | + | + | + | ||
Ojolo at al. [72] | + | + | |||
Lopez et al. [76] | + | + | + | ||
Lauri et al. [22] | + | ||||
Levanowski [58] | + | + | + | ||
Parzych, 2015 [73] | + | ||||
Brosowski et al., 2016 [55] | + | + |
Constraints of Sustainable Potential of Forest Wood Biomass | Type of Potential | The Criteria of SFM | Essential Principle |
---|---|---|---|
Biological constraint | Theoretical potential | Forest resources and their contribution to Global Carbon Cycles | Resource principle |
Topographic constraint | Technical potential | - | Availability principle |
Technological constraint | Technical potential | - | Availability principle |
Social–political constraint | Sustainable potential | Legal, policy and institutional framework | Social–political principle |
Economic constraint | Sustainable potential | Productive functions of forest resources Other socio-economic functions of forest resources | Economic principle |
Ecological constraint | Sustainable potential | Forest health and vitality Biological diversity in forest ecosystems Protective functions of forest resources | Ecological principle |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinavičienė, J.; Vitunskienė, V. Definition and Classification of Potential of Forest Wood Biomass in Terms of Sustainable Development: A Review. Sustainability 2023, 15, 9311. https://doi.org/10.3390/su15129311
Konstantinavičienė J, Vitunskienė V. Definition and Classification of Potential of Forest Wood Biomass in Terms of Sustainable Development: A Review. Sustainability. 2023; 15(12):9311. https://doi.org/10.3390/su15129311
Chicago/Turabian StyleKonstantinavičienė, Julija, and Vlada Vitunskienė. 2023. "Definition and Classification of Potential of Forest Wood Biomass in Terms of Sustainable Development: A Review" Sustainability 15, no. 12: 9311. https://doi.org/10.3390/su15129311
APA StyleKonstantinavičienė, J., & Vitunskienė, V. (2023). Definition and Classification of Potential of Forest Wood Biomass in Terms of Sustainable Development: A Review. Sustainability, 15(12), 9311. https://doi.org/10.3390/su15129311