A Sustainable Strategy for the Conversion of Industrial Citrus Fruit Waste into Bioethanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemicals
2.3. Proximate Composition
2.4. Microrganisms
2.5. Pretreatment of Citrus Waste (CW)
2.5.1. Physical Methods
2.5.2. Enzymatic Hydrolysis
2.6. Determination of Sugars
2.7. Fermentation
2.8. Quantification of Ethanol
2.9. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Citrus Waste
3.2. Pretreatment
3.3. Enzymatic Hydrolysis
3.4. Reducing Sugars and Fermentation
3.5. Production of Bioethanol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Citrus Fruit Statistical Compendium 2020; FAO: Rome, Italy, 2021; pp. 1–48. [Google Scholar]
- Suri, S.; Singh, A.; Nema, P.K. Current Applications of Citrus Fruit Processing Waste: A Scientific Outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Costa, R.; Albergamo, A.; Arrigo, S.; Gentile, F.; Dugo, G. Solid-phase microextraction-gas chromatography and ultra-high performance liquid chromatography applied to the characterization of lemon wax, a waste product from citrus industry. J. Chromatogr. A 2019, 1603, 262–268. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Dhyani, A.; Pathak, B.; Jang, H.; Park, S.; Pashikanti, S.; Cho, S. Biotransformation of Citrus Waste-I: Production of Biofuel and Valuable Compounds by Fermentation. Processes 2021, 9, 220. [Google Scholar] [CrossRef]
- Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K. Citrus Processing Wastes: Environmental Impacts, Recent Advances, and Future Perspectives in Total Valorization. Resour. Conserv. Recycl. 2018, 129, 153–167. [Google Scholar] [CrossRef]
- Roukas, T.; Kotzekidou, P. From Food Industry Wastes to Second Generation Bioethanol: A Review. Rev. Environ. Sci. Biotechnol. 2022, 21, 299–329. [Google Scholar] [CrossRef]
- Patsalou, M.; Samanides, C.G.; Protopapa, E.; Stavrinou, S.; Vyrides, I.; Koutinas, M. A Citrus Peel Waste Biorefinery for Ethanol and Methane Production. Molecules 2019, 24, 2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarao, L.K.; Kaur, S.; Kaur, P.; Ankita; Bakala, H.S. Production of Bioethanol from Fruit Wastes: Recent Advances. In Food Waste to Green Fuel: Trend & Development; Srivastava, N., Malik, M.A., Eds.; Springer: Singapore, 2022; pp. 213–253. [Google Scholar] [CrossRef]
- Boluda-Aguilar, M.; García-Vidal, L.; González-Castañeda, F.; López-Gómez, A. Mandarin Peel Wastes Pretreatment with Steam Explosion for Bioethanol Production. Bioresour. Technol. 2010, 101, 3506–3513. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.S.; Kim, J.-H.; Wi, S.G.; Kim, K.H.; Bae, H.-J. Bioethanol Production from Mandarin (Citrus Unshiu) Peel Waste Using Popping Pretreatment. Appl. Energy 2013, 102, 204–210. [Google Scholar] [CrossRef]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Pourbafrani, M.; Forgács, G.; Sárvári Horváth, I.; Niklasson, C.; Taherzadeh, M.J. Production of biofuels, limonene and pectin from citrus wastes. Bioresour. Technol. 2010, 101, 4246–4250. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Herrera, A.; Ortiz-Arango, F.; Álvarez-García, J. Profitability Using Second-Generation Bioethanol in Gasoline Produced in Mexico. Energies 2021, 14, 2294. [Google Scholar] [CrossRef]
- Demirbas, A. Progress and Recent Trends in Biofuels. Prog. Energy Combust. Sci. 2007, 33, 1–18. [Google Scholar] [CrossRef]
- Gohain, M.; Hasin, M.; Eldiehy, K.S.H.; Bardhan, P.; Laskar, K.; Phukon, H.; Mandal, M.; Kalita, D.; Deka, D. Bio-Ethanol Production: A Route to Sustainability of Fuels Using Bio-Based Heterogeneous Catalyst Derived from Waste. Proc. Saf. Environ. Protect. 2021, 146, 190–200. [Google Scholar] [CrossRef]
- AOAC Official Method 976.05—Protein (Crude) in Animal Feed and Pet Food. 2000. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=2265 (accessed on 15 October 2022).
- Mæhre, H.; Dalheim, L.; Edvinsen, G.; Elvevoll, E.; Jensen, I.-J. Protein Determination—Method Matters. Foods 2018, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Zannini, D.; Dal Poggetto, G.; Malinconico, M.; Santagata, G.; Immirzi, B. Citrus Pomace Biomass as a Source of Pectin and Lignocellulose Fibers: From Waste to Upgraded Biocomposites for Mulching Applications. Polymers 2021, 13, 1280. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Tropea, A.; Potortì, A.G.; Lo Turco, V.; Russo, E.; Vadalà, R.; Rando, R.; Di Bella, G. Aquafeed Production from Fermented Fish Waste and Lemon Peel. Fermentation 2021, 7, 272. [Google Scholar] [CrossRef]
- Khan, U.M.; Sameen, A.; Aadil, R.M.; Shahid, M.; Sezen, S.; Zarrabi, A.; Ozdemir, B.; Sevindik, M.; Nur Kaplan, D.; Selamoglu, Z.; et al. Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application. Evid. Based Complement. Alternat. Med. 2021, 2021, 2488804. [Google Scholar] [CrossRef]
- Sarkar, N.; Kumar Ghosh, S.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Bussemaker, M.J.; Zhang, D. Effect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biorefinery and Biofuel Applications. Ind. Eng. Chem. Res. 2013, 52, 3563–3580. [Google Scholar] [CrossRef]
- Lo Presti, M.; Crupi, M.L.; Costa, R.; Dugo, G.; Mondello, L.; Ragusa, S.; Santi, L. Seasonal Variations of Teucrium flavum L. Essential Oil. J. Essent. Oil Res. 2010, 22, 211–216. [Google Scholar] [CrossRef]
- Ooshima, H.; Aso, K.; Harano, Y.; Yamamoto, T. Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnol. Lett. 1984, 6, 289–294. [Google Scholar] [CrossRef]
- Grohmann, K.; Baldwin, E.A.; Buslig, B.S. Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 1994, 45, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Polesca Freitas, C.M.; Reis Coimbra, J.S.; Lauriano Souza, V.G.; Superbi Sousa, R.C. Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. Coatings 2021, 11, 922. [Google Scholar] [CrossRef]
- Ho, N.W.; Chen, Z.; Brainard, A.P. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 1998, 64, 1852–1859. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulou, M.; Troianou, V.; Toumpeki, C.; Gosselin, Y.; Dorignac, E.; Kotseridis, Y. Effect of strains from different Saccharomyces species used in different inoculation schemes on chemical composition and sensory characteristics of Sauvignon blanc wine. OENO One 2020, 54, 745–759. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, W.; Li, C.; Sakakibara, K.; Tanaka, S.; Kong, H. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 2012, 47, 395–401. [Google Scholar] [CrossRef]
- Taghizadeh-Alisaraei, A.; Abbaszadeh-Mayvan, A.; Hosseini, S.H. Bio-Ethanol Production from a Mixture of Rice Hull and Orange Peel Wastes. Biofuels 2022, 13, 171–175. [Google Scholar] [CrossRef]
- Cypriano, D.Z.; da Silva, L.L.; Tasic, L. High Value-Added Products from the Orange Juice Industry Waste. Waste Manag. 2018, 79, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Cao, M.; Guo, H.; Qi, W.; Su, R.; He, Z. Enhanced Ethanol Production from Pomelo Peel Waste by Integrated Hydrothermal Treatment, Multienzyme Formulation, and Fed-Batch Operation. J. Agric. Food Chem. 2014, 62, 4643–4651. [Google Scholar] [CrossRef] [PubMed]
CW | Crude Protein (%) | Moisture (%) | Density (g/cm3) | Viscosity (Pa·s) | Pectin (wt%) | Cellulose (wt%) | Hemicellulose (wt%) |
---|---|---|---|---|---|---|---|
Orange Mean ± s.d. (N = 10) | 1.15 a ± 0.09 | 74.19 a ± 1.16 | 0.95 a ± 0.09 | 0.3 a ± 0.01 | 28.57 a ± 0.63 | 18.13 a ± 0.45 | 13.10 a ± 0.62 |
Mandarin Mean ± s.d. (N = 10) | 0.93 a ± 0.09 | 73.47 a ± 1.21 | 0.93 a ± 0.07 | 0.4 a ± 0.02 | 27.35 a ± 0.78 | 17.29 a ± 1.02 | 11.38 a ± 0.98 |
Sugar | Sampling Time | ||
---|---|---|---|
0 h | 24 h | 48 h | |
Arabinose | 3.63 ± 0.08 a | 3.09 ± 0.42 a | 2.52 ± 0.13 a |
Xylose | 1.82 ± 0.05 a | 1.57 ± 0.08 a | 1.29 ± 0.06 a |
Fructose | 13.28 ± 0.08 b | 2.72 ± 0.12 a | 1.42 ± 0.18 a |
Glucose | 30.01 ± 0.26 c | 3.48 ± 0.15 a | 1.04 ± 0.21 a |
Galactose | 4.22 ± 0.61 a | 2.18 ± 0.09 a | 0.99 ± 0.08 a |
Galacturonic acid | 12.8 ± 0.12 a | 7.72 ± 0.08 a | 0.81 ± 0.03 a |
Rhamnose | 1.92 ± 0.09 a | 0.85 ± 0.03 a | 0.46 ± 0.08 a |
Mannose | 1.62 ± 0.07 a | 0.97 ± 0.01 a | 0.39 ± 0.05 a |
Sucrose | 1.66 ± 0.12 a | 0.89 ± 0.11 a | 0.56 ± 0.05 a |
Total | 70.96 ± 1.48 | 23.47 ± 1.09 | 9.48 ± 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadalà, R.; Lo Vecchio, G.; Rando, R.; Leonardi, M.; Cicero, N.; Costa, R. A Sustainable Strategy for the Conversion of Industrial Citrus Fruit Waste into Bioethanol. Sustainability 2023, 15, 9647. https://doi.org/10.3390/su15129647
Vadalà R, Lo Vecchio G, Rando R, Leonardi M, Cicero N, Costa R. A Sustainable Strategy for the Conversion of Industrial Citrus Fruit Waste into Bioethanol. Sustainability. 2023; 15(12):9647. https://doi.org/10.3390/su15129647
Chicago/Turabian StyleVadalà, Rossella, Giovanna Lo Vecchio, Rossana Rando, Michelangelo Leonardi, Nicola Cicero, and Rosaria Costa. 2023. "A Sustainable Strategy for the Conversion of Industrial Citrus Fruit Waste into Bioethanol" Sustainability 15, no. 12: 9647. https://doi.org/10.3390/su15129647
APA StyleVadalà, R., Lo Vecchio, G., Rando, R., Leonardi, M., Cicero, N., & Costa, R. (2023). A Sustainable Strategy for the Conversion of Industrial Citrus Fruit Waste into Bioethanol. Sustainability, 15(12), 9647. https://doi.org/10.3390/su15129647