Organic and Slow-Release Fertilizer Substitution Strategies Improved the Sustainability of Pineapple Production Systems in the Tropics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Data Collection
2.3. System Boundaries
2.4. Nr and NF
2.5. GHG and CF
2.6. Economic Benefit
2.7. EDC and NEEB
2.8. Statistical Analysis
3. Results
3.1. Pineapple Yield, N Uptake, NUE and PFPN
3.2. Nr Losses and NF
3.3. GHG Emissions and CF
3.4. EB, EDC and NEEB
4. Discussion
4.1. Pineapple Yield, N Uptake, NUE and PFPN of Different Fertilization Strategies
4.2. Nr Losses and NF of Different Fertilization Strategies
4.3. GHG Emissions and CF of Different Fertilization Strategies
4.4. EB, EDC and NEEB of Different Fertilization Strategies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, Z.; Zhang, W.S.; Wang, X.Z.; Lu, M.; Chadwick, D.; Zhang, Z.; Chen, X.P. Carbon footprint of maize production in tropical/subtropical region: A case study of Southwest China. Environ. Sci. Pollut. Res. 2021, 28, 28680–28691. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.H.; Jin, X.; Zhai, P.F.; Zhao, Y.; Cai, J.W.; Li, S.P.; Yang, S.Y.; Li, C.Z.; Li, C.J. Combination of organic fertilizer and slow-release fertilizer increases pineapple yields, agronomic efficiency and reduces greenhouse gas emissions under reduced fertilization conditions in tropical areas. J. Clean. Prod. 2022, 343, 131054. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.B.; Li, W.B.; Li, C.Q.; Chang, W.J.; Zhang, S.Q.; Zeng, Y.B.; Zeng, C.Y.; Peng, M. Effect of Different Rates of Nitrogen Fertilization on Crop Yield, Soil Properties and Leaf Physiological Attributes in Banana under Subtropical Regions of China. Front. Plant Sci. 2020, 11, 2083. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Z.Y.; Hu, Y.C.; Schmidhalter, U.; Zhang, W.S.; Ruan, S.Y.; Chen, X.P. Integrated assessment of agronomic, environmental and ecosystem economic benefits of blending use of controlled-release and common urea in wheat production. J. Clean. Prod. 2021, 287, 125572. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of United Nations). FAOSTAT Database-Resources. 2020. Available online: http://faostat.fao.org (accessed on 30 December 2020).
- Yan, C.M.; Zhang, J.Z.; Shi, W.Q.; Li, X.L.; Liu, Y.N.; Ma, H.Y. Nutritional characteristics of NPK of pineapple under drip fertigation. Chin. J. Trop. Crop. 2014, 35, 1688–1694. (In Chinese) [Google Scholar] [CrossRef]
- Yan, C.M.; Zhang, J.Z.; Shi, W.Q.; Liu, Y.N.; Ma, H.Y.; Li, X.L. Effects of drip fertigation on yield, quality and economic benefit of pineapple. Plant Nutr. Fertil. Sci. 2014, 20, 496–502. (In Chinese) [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Leach, A.M.; Ma, L.; Galloway, J.N.; Chang, S.X.; Ge, Y. Nitrogen footprint in China: Food, energy, and nonfood goods. Environ. Sci. Technol. 2013, 47, 9217–9224. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.C.; Ma, L. Economic, energy and environmental consequences of shifting from maize-wheat to forage rotation in the North China Plain. J. Clean. Prod. 2021, 328, 129670. [Google Scholar] [CrossRef]
- Xia, L.L.; Lam, S.K.; Chen, D.L.; Wang, J.Y.; Tang, Q.; Yan, X.Y. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Chang. Biol. 2017, 23, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Yin, S.; Li, Y.S.; Zhuang, H.L.; Li, C.S.; Liu, C.J. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island. Eastern China. Sci. Total Environ. 2014, 472, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ma, C.; Zhou, H.; Liu, Y.; Huang, X.; Wang, M.; Cai, Y.; Su, D.; Muneer, M.A.; Guo, M.; et al. Identifying the main crops and key factors determining the carbon footprint of crop production in China, 2001–2018. Resour. Conserv. Recycl. 2021, 172, 105661. [Google Scholar] [CrossRef]
- Yu, K.; Fang, X.T.; Zhang, Y.H.; Miao, Y.C.; Liu, S.W.; Zou, J.W. Low greenhouse gases emissions associated with high nitrogen use efficiency under optimized fertilization regimes in double-rice cropping systems. Appl. Soil Ecol. 2021, 160, 103846. [Google Scholar] [CrossRef]
- Peng, S.B.; Buresh, R.J.; Huang, J.L.; Yang, J.C.; Zou, Y.B.; Zhong, X.H.; Wang, G.H.; Zhang, F.S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crop. Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Guo, J.Y. Investigation on Pineapple Fertilization Situation and Study on Nutritional Characteristics and Fertilizer-Saving Technology of MD-2 Pineapple. Master’s Thesis, Hainan University, Haikou, China, 2019. (In Chinese). [Google Scholar] [CrossRef]
- Maillard, E.; Angers, D.A. Animal manure application and soil organic carbon stocks: A meta-analysis. Glob. Chang. Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.Q.; Gong, Y.S.; Yang, H.F.; Fan, M.S.; Kuzyakov, Y. Effects of 15 years of manure and mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. Eur. J. Soil Biol. 2014, 60, 112–119. [Google Scholar] [CrossRef]
- Zhou, J.; Li, B.; Xia, L.L.; Fan, C.H.; Xiong, Z.Q. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production. J. Clean. Prod. 2019, 225, 984–994. [Google Scholar] [CrossRef]
- Zhang, W.S.; Liang, Z.Y.; He, X.M.; Wang, X.Z.; Shi, X.J.; Zou, C.Q.; Chen, X.P. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environ. Pollut. 2019, 246, 559–565. [Google Scholar] [CrossRef]
- He, H.; Peng, M.W.; Lu, W.D.; Hou, Z.A.; Li, J.H. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Sci. Total Environ. 2022, 851, 158132. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Coelho, J.J.; Prieto, M.L.; Dowling, S.; Hennessy, A.; Casey, I.; Woodcock, T.; Kennedy, N. Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Manag. 2018, 78, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wang, M.Y.; Zheng, G.L.; Yao, Y.; Tao, R.R.; Zhu, M.; Ding, J.F.; Li, C.Y.; Guo, W.S.; Zhu, X.K. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crop. Res. 2021, 267, 108163. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Chen, J.; Liu, T.Q.; Cao, C.G.; Li, C.F. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmos. Environ. 2016, 144, 274–281. [Google Scholar] [CrossRef]
- Sossa, E.L.; Agbangba, C.E.; Accalogoun, S.G.G.S.; Amadji, G.L.; Agbossou, K.E.; Hounhouigan, D.J. Residues Management Practices and Nitrogen-Potassium Fertilization Influence on the Quality of Pineapple (Ananas comosus (L.) Merrill) Sugarloaf Fruit for Exportation and Local Consumption. Agronomy 2017, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Rothé, M.; Darnaudery, M.; Thuriès, L. Organic fertilizers, green manures and mixtures of the two revealed their potential as substitutes for inorganic fertilizers used in pineapple cropping. Sci. Hortic. 2019, 257, 108691. [Google Scholar] [CrossRef]
- Xue, J.F.; Pu, C.; Liu, S.L.; Zhao, X.; Zhang, R.; Chen, F.; Xiao, X.P.; Zhang, H.L. Carbon and nitrogen footprint of double rice production in Southern China. Ecol. Indic. 2016, 64, 249–257. [Google Scholar] [CrossRef]
- Chen, Z.D.; Xu, C.C.; Ji, L.; Feng, J.F.; Li, F.B.; Zhou, X.Y.; Fang, F.P. Effects of multi-cropping system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China. Glob. Ecol. Conserv. 2020, 22, e00895. [Google Scholar] [CrossRef]
- Leach, A.M.; Galloway, J.N.; Bleeker, A.; Erisman, J.W.; Kohn, R.; Kitzes, J. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ. Dev. 2012, 1, 40–66. [Google Scholar] [CrossRef] [Green Version]
- ISO-14067; Greenhouse Gases-Carbon Footprint of Products-Requirements and Guidelines for Quantification and Communication. International Organization for Standardization: Geneva, Switzerland, 2013.
- Liang, T.; Liao, D.X.; Wang, S.; Yang, B.; Zhao, J.K.; Zhu, C.F.; Tao, Z.; Shi, X.J.; Chen, X.P.; Wang, X.Z. The nitrogen and carbon footprints of vegetable production in the subtropical high elevation mountain region. Ecol. Indic. 2021, 122, 107298. [Google Scholar] [CrossRef]
- Meena, B.P.; Biswas, A.K.; Singh, M.; Das, H.; Chaudhary, R.S.; Singh, A.B.; Shirale, A.O.; Patra, A.K. Energy budgeting and carbon footprint in long-term integrated nutrient management modules in a cereal-legume (Zea mays—Cicer arietinum) cropping system. J. Clean. Prod. 2021, 314, 127900. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.C.; Wang, X.C.; Ma, L. Economic and environmental sustainability of maize-wheat rotation production when substituting mineral fertilizers with manure in the North China Plain. J. Clean. Prod. 2020, 271, 122683. [Google Scholar] [CrossRef]
- Wang, Z.B.; Zhai, L.C.; Xiong, S.W.; Li, X.F.; Han, Y.C.; Wang, G.P.; Feng, L.; Fan, Z.Y.; Lei, Y.P.; Yang, B.F.; et al. February orchid cover crop improves sustainability of cotton production systems in the Yellow River basin. Agron. Sustain. Dev. 2021, 41, 67. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Yan, X.Y. Ecologically optimal nitrogen application rates for rice cropping in the Taihu Lake Region of China. Sustain. Sci. 2012, 7, 33–44. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Wang, B.C.; Zhu, S.X.; Xie, W.; Wang, S.Q.; Zhao, X. Single application of a new polymer-coated urea improves yield while mitigates environmental issues associated with winter wheat grown in rice paddy soil. Field Crop. Res. 2022, 285, 108592. [Google Scholar] [CrossRef]
- Xu, C.; Wang, J.D.; Wu, D.; Li, C.Z.; Wang, L.; Ji, C.; Zhang, Y.C.; Ai, Y.C. Optimizing organic amendment applications to enhance carbon sequestration and economic benefits in an infertile sandy soil. J. Environ. Manag. 2022, 303, 114129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qian, H.Y.; Hua, K.K.; Chen, H.; Deng, A.X.; Song, Z.W.; Zhang, J.; Raheem, A.; Danso, F.; Wang, D.Z.; et al. Organic amendments increase crop yield while mitigating greenhouse gas emissions from the perspective of carbon fees in a soybean-wheat system. Agric. Ecosyst. Environ. 2022, 325, 107736. [Google Scholar] [CrossRef]
- Horwitz, W. Official methods of analysis of AOAC International. Trends Food Sci. Technol. 1995, 6, 382. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Ridoutt, B.G.; Lal, R.; Wang, D.P.; Wu, W.L.; Peng, P.; Hang, S.; Wang, L.Y.; Zhao, G.S. Nitrogen footprint and nitrogen use efficiency of greenhouse tomato production in North China. J. Clean. Prod. 2019, 208, 285–296. [Google Scholar] [CrossRef]
- ISO-14040; Environmental Management Life Cycle Assessment Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO-14044; Environmental Management Life Cycle Assessment Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Liang, L.; Lal, R.; Ridoutt, B.G.; Du, Z.L.; Wang, D.P.; Wang, L.Y.; Wu, W.L.; Zhao, G.S. Life cycle assessment of China’s agroecosystems. Ecol. Indic. 2018, 88, 341–350. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, W.S.; Wang, X.B.; Zhang, L.; Zhang, W.; Liu, D.Y.; Chen, X.P. Agronomic, environmental, and ecosystem economic benefits of controlled-release nitrogen fertilizers for maize production in Southwest China. J. Clean. Prod. 2021, 312, 127611. [Google Scholar] [CrossRef]
- Ansari, M.A.; Saha, S.; Das, A.; Lal, R.; Das, B.; Choudhury, B.U.; Roy, S.S.; Sharma, S.K.; Singh, I.M.; Meitei, C.B.; et al. Energy and carbon budgeting of traditional land use change with groundnut based cropping system for environmental quality, resilient soil health and farmers income in eastern Indian Himalayas. J. Environ. Manag. 2021, 293, 112892. [Google Scholar] [CrossRef]
- Zhang, Z.G.; An, J.; Han, Y.C.; Feng, L.; Li, X.F.; Xiong, S.W.; Xing, F.F.; Xin, M.H.; Li, Y.B.; Wang, Z.B. Advantages of an Orychophragmus violaceus-maize rotation in reducing greenhouse gas emissions and reactive nitrogen losses and increasing net ecosystem economic benefits on the North China Plain. J. Clean. Prod. 2021, 317, 128426. [Google Scholar] [CrossRef]
- Peng, Y.L.; Fei, L.J.; Liu, X.G.; Sun, G.Z.; Hao, K.; Cui, N.B.; Zhao, L.; Liu, L.H.; Jie, F.L. Coupling of regulated deficit irrigation at maturity stage and moderate fertilization to improve soil quality, mango yield and water-fertilizer use efficiency. Sci. Hortic. 2023, 307, 111492. [Google Scholar] [CrossRef]
- Li, C.; Feng, H.; Luo, X.Q.; Li, Y.; Wang, N.J.; Wu, W.J.; Zhang, T.B.; Dong, Q.G.; Siddique, K.H.M. Limited irrigation and fertilization in sand-layered soil increases nitrogen use efficiency and economic benefits under film mulched ridge-furrow irrigation in arid areas. Agric. Water Manag. 2022, 262, 107406. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, T.; Cai, Z.; Qin, S.; Muller, C. Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations. Eur. J. Soil Sci. 2012, 63, 75–85. [Google Scholar] [CrossRef]
- Linquist, B.A.; Liu, L.J.; van Kessel, C.; van Groenigen, K.J. Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crop. Res. 2013, 154, 246–254. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, X.Q.; Bai, Y.; Sun, D.; Zou, H.T.; Fang, Y.T.; Zhang, Y.L. Coated controlled-release urea creates a win-win scenario for producing more staple grains and resolving N loss dilemma worldwide. J. Clean. Prod. 2021, 288, 125660. [Google Scholar] [CrossRef]
- Zhang, B.G.; Li, Q.; Cao, J.; Zhang, C.Y.; Song, Z.; Zhang, F.S.; Chen, X.P. Reducing nitrogen leaching in a subtropical vegetable system. Agric. Ecosyst. Environ. 2017, 241, 133–141. [Google Scholar] [CrossRef]
- Shen, S.Z.; Yang, Y.; Wang, R.Q.; Wu, F.; Hu, Y.K.; Wang, F.; Zhang, K.Q. Effects of fertilization on ammonia volatilization and garlic yield in Erhai Lake Basin of Yunnan Province. Plant Nutr. Fertil. Sci. 2021, 27, 470–479. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Q.; Hu, K.L.; Yao, Z.S.; Zuo, Q. Evaluation of carbon, nitrogen footprint and primary energy demand under different rice production systems. Ecol. Indic. 2020, 117, 106634. [Google Scholar] [CrossRef]
- Cui, Z.L.; Yue, S.C.; Wang, G.L.; Zhang, F.S.; Chen, X.P. In-Season Root-Zone N Management for Mitigating Greenhouse Gas Emission and Reactive N Losses in Intensive Wheat Production. Environ. Sci. Technol. 2013, 47, 6015–6022. [Google Scholar] [CrossRef] [PubMed]
- Rasool, R.; Kukal, S.S.; Hira, G.S. Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize–wheat system. Soil Tillage Res. 2008, 101, 31–36. [Google Scholar] [CrossRef]
- Xia, L.L.; Lam, S.K.; Yan, X.Y.; Chen, D.L. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses and soil carbon balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef]
- Eiland, F.; Leth, M.; Klamer, M.; Lind, A.-M.; Jensen, H.E.K.; Iversen, J.J.L. C and N Turnover and Lignocellulose Degradation during Composting of Miscanthus Straw and Liquid Pig Manure. Compos. Sci. Util. 2001, 9, 186–196. [Google Scholar] [CrossRef]
- Xia, L.L.; Ti, C.P.; Li, B.L.; Xia, Y.Q.; Yan, X.Y. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 2016, 556, 116–125. [Google Scholar] [CrossRef]
- Chen, X.P.; Cui, Z.L.; Fan, M.S.; Vitousek, P.; Zhao, M.; Ma, W.Q. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Rahim, R.; Raman, A.A.A. Carbon dioxide emission reduction through cleaner production strategies in a recycled plastic resins producing plant. J. Clean. Prod. 2017, 141, 1067–1073. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.Y.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Chang. Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Zhang, K.P.; Duan, M.C.; Xu, Q.W.; Wang, Z.Y.; Liu, B.Y.; Wang, L.C. Soil microbial functional diversity and root growth responses to soil amendments contribute to CO2 emission in rainfed cropland. Catena 2020, 195, 104747. [Google Scholar] [CrossRef]
- Li, Y.Q.; Wen, Y.C.; Lin, Z.A.; Zhao, B.Q. Effect of different manures combined with chemical fertilizer on yields of crops and gaseous N loss in farmland. Plant Nutr. Fertil. Sci. 2019, 25, 1835–1846. (In Chinese) [Google Scholar] [CrossRef]
- Hou, Y.; Velthof, G.L.; Oenema, O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: A meta-analysis and integrated assessment. Glob. Chang. Biol. 2015, 21, 1293–1312. [Google Scholar] [CrossRef] [PubMed]
- Pishgar-Komleh, S.H.; Omid, M.; Heidari, M.D. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province. Energy 2013, 59, 63–71. [Google Scholar] [CrossRef]
- Ren, L.J. Methodology Research and Typical Paper Products of Life Cycle Assessment. Master’s Thesis, Beijing University of Technology Press, Beijing, China, 2011. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=1011282781.nh&DbName=CMFD2011 (accessed on 30 December 2020). (In Chinese).
- Wang, J.; Zhang, L.H.; He, X.H.; Zhang, Y.Q.; Wan, Y.; Duan, S.Y.; Xu, C.Y.; Mao, X.Y.; Chen, X.P.; Shi, X.J. Environmental mitigation potential by improved nutrient managements in pear (Pyrus pyrifoliaL.) orchards based on life cycle assessment: A case study in the North China Plain. J. Clean. Prod. 2020, 262, 121273. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Lal, R.; Babu, S.; Meena, R.S.; Saha, P.; Singh, R.; Datta, M. Energy budget and carbon footprint in a no-till and mulch-based rice mustard cropping system. J. Clean. Prod. 2018, 191, 144–157. [Google Scholar] [CrossRef]
Treatment | Total Nutrient (kg ha−1 Season) | Basal Fertilizer (kg ha−1 Season) | Topdressing Fertilizer (kg ha−1 Season) | ||||||
---|---|---|---|---|---|---|---|---|---|
N + P2O5 + K2O | N-Urea | N-Organic Fertilizer | N-Slow-Release Fertilizer | P2O5 | K2O | N-Urea | P2O5 | K2O | |
CK | - | - | - | - | - | - | - | - | - |
F | 817 + 336 + 945 | 294 | - | - | 121 | 340 | 523 | 215 | 605 |
RF | 476 + 94 + 632 | 171 | - | - | 34 | 228 | 305 | 60 | 404 |
RFO | 476 + 94 + 632 | 76 | 95 | - | - | 169 | 305 | 23 | 404 |
RFOS | 476 + 94 + 632 | 5 | 95 | 71 | - | 169 | 305 | 23 | 404 |
Treatment | N-Urea (kg ha−1) | N-Organic Fertilizer (kg ha−1) | N-Slow-Release Fertilizer (kg ha−1) | P2O5 (kg ha−1) | K2O (kg ha−1) | Labor (Days p ha−1) | Electricity (kWh ha−1) | Diesel (kg ha−1) | Pesticides (kg ha−1) | Herbi-Cides (kg ha−1) | Bacteri-Cides (kg ha−1) | Paper Bag (kg ha−1) | Plastic Film (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0 | 0 | 0 | 0 | 0 | 180 | 922 | 287 | 1.6 | 12 | 1.6 | 403.2 | 116 |
F | 817 | 0 | 0 | 336 | 945 | 225 | 922 | 287 | 1.6 | 12 | 1.6 | 403.2 | 116 |
RF | 476 | 0 | 0 | 94 | 632 | 225 | 922 | 287 | 1.6 | 12 | 1.6 | 403.2 | 116 |
RFO | 381 | 95 | 0 | 23 | 573 | 230 | 922 | 287 | 1.6 | 12 | 1.6 | 403.2 | 116 |
RFOS | 310 | 95 | 71 | 23 | 573 | 230 | 922 | 287 | 1.6 | 12 | 1.6 | 403.2 | 116 |
Treatment | Agriculture Input Costs (USD ha−1) | Total Returns (USD ha−1) | Net Income (USD ha−1) | B:C Ratio | EDC (USD ha−1) | NEEB (USD ha−1) |
---|---|---|---|---|---|---|
CK | 5799 | 22,829 | 17,030 | 3.94 | 421 | 16,609 |
F | 8867 | 49,259 | 40,392 | 5.56 | 1170 | 39,222 |
RF | 8002 | 53,244 | 45,242 | 6.65 | 907 | 44,335 |
RFO | 8315 | 56,477 | 48,162 | 6.79 | 816 | 47,346 |
RFOS | 8386 | 64,099 | 55,713 | 7.64 | 833 | 54,880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Cheng, W.; Liang, Z.; Li, C.; Deng, Y.; Yin, T.; Li, C. Organic and Slow-Release Fertilizer Substitution Strategies Improved the Sustainability of Pineapple Production Systems in the Tropics. Sustainability 2023, 15, 10353. https://doi.org/10.3390/su151310353
Cai J, Cheng W, Liang Z, Li C, Deng Y, Yin T, Li C. Organic and Slow-Release Fertilizer Substitution Strategies Improved the Sustainability of Pineapple Production Systems in the Tropics. Sustainability. 2023; 15(13):10353. https://doi.org/10.3390/su151310353
Chicago/Turabian StyleCai, Jinwen, Wenxiao Cheng, Zhenghao Liang, Changzhen Li, Yan Deng, Tao Yin, and Changjiang Li. 2023. "Organic and Slow-Release Fertilizer Substitution Strategies Improved the Sustainability of Pineapple Production Systems in the Tropics" Sustainability 15, no. 13: 10353. https://doi.org/10.3390/su151310353