The Impact of Low-Carbon Pilot Cities on the Development of Digital Economy: Empirical Evidence from 284 Cities in China
Abstract
:1. Introduction
2. Literature Review
2.1. On the Definition of the Digital Economy
2.2. Studies on the Effect of Low-Carbon City Pilot Policy
2.3. Studies on the Influencing Factors of Digital Economy Development
2.4. Studies on the Relationship between Carbon Dioxide Emissions and Digital Economy
3. Theoretical Mechanisms and Research Hypotheses
3.1. The Impact of Low-Carbon Pilot Cities on the Development of Digital Economy
3.2. Low-Carbon Pilot Cities, Government Intervention, and Digital Economy Development
3.3. Low-Carbon Pilot Cities, Industrial Structure Upgrading, and Digital Economy Development
3.4. Low-Carbon Pilot Cities, Human Capital, and Digital Economy Development
4. Study Design
4.1. Econometric Models
4.2. Variable Selection
4.3. Data Sources and Descriptive Statistics
5. Results
5.1. Baseline Regression Results
5.2. Parallel Trend Test
5.3. Robustness Test
5.3.1. Placebo Test
5.3.2. Changing the Calculation Method of the Explained Variable
5.3.3. Elimination of Extremes
5.3.4. Exclusion of Special Cities
5.3.5. Excluding the Influence of Other Policies at the Same Time
5.4. Test of Mechanism of Action
5.4.1. Government Intervention
5.4.2. Upgrading of Industrial Structure
5.4.3. Human Capital
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Explained Variable | Gov | Dig | IS | Dig | Hum | Dig |
DID | 124.0 *** | 0.0759 | 0.0758 | 0.124 ** | 0.574 *** | 0.0596 |
(38.56) | (0.0562) | (0.353) | (0.0592) | (0.178) | (0.0562) | |
Gov | 0.000394 ** | |||||
(0.000167) | ||||||
IS | 0.00764 * | |||||
(0.00455) | ||||||
Hum | 0.113 *** | |||||
(0.0236) | ||||||
Constant | −6606 *** | 3.859 | 42.62 *** | 0.934 | −22.00 *** | 3.755 |
(2353) | (3.459) | (10.79) | (3.451) | (7.859) | (3.628) | |
Control variable | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Urban fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 3969 | 3969 | 3969 | 3969 | 3969 | 3969 |
R-squared | 0.397 | 0.480 | 0.786 | 0.460 | 0.135 | 0.494 |
Number of Id | 284 | 284 | 284 | 284 | 284 | 284 |
5.5. Further Analysis
5.5.1. Urban Location Heterogeneity
5.5.2. Heterogeneity of Urban Development Types
6. Discussion
7. Conclusions and Policy Implications
7.1. Conclusions
7.2. Policy Implications
7.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manolis, M.; Giorgos, M. Broad strokes towards a grand theory in the analysis of sustainable development: A return to the classical political economy. New Polit. Econ. 2022, 27, 866–878. [Google Scholar] [CrossRef]
- Wang, S.; Tan, S.; Xu, J. Evaluation and Implication of the Policies towards China’s Carbon Neutrality. Sustainability 2023, 15, 6762. [Google Scholar] [CrossRef]
- Dasgupta, P. The idea of sustainable development. Sustain. Sci. 2007, 2, 5–11. [Google Scholar] [CrossRef]
- Li, S.; Wang, J. Low-carbon city pilot policies, low-carbon literacy of residents and green technology innovation of enterprises. China Popul. Resour. Environ. 2023, 33, 93–103. (In Chinese) [Google Scholar]
- Chen, M.; Zhang, C.; Chen, C.; Li, J.; Cui, W. Main Pathways of Carbon Reduction in Cities under the Target of Carbon Peaking: A Case Study of Nanjing, China. Sustainability 2023, 15, 8917. [Google Scholar] [CrossRef]
- Wen, J.; Su, S. An Empirical Analysis of the Synergistic Effect of Urban Pilot Policies in China. Sustainability 2023, 15, 6313. [Google Scholar] [CrossRef]
- Gao, D.; Cao, Y.; Liu, C. The Low-Carbon Policy and Urban Green Total Factor Energy Efficiency: Evidence from a Spatial Difference-in-Difference Method. Int. J. Environ. Res. Public Health 2023, 20, 3498. [Google Scholar] [CrossRef]
- Mao, Q.; Ma, B.; Wang, H.; Bian, Q. Investigating Policy Instrument Adoption in Low-Carbon City Development: A Case Study from China. Energies 2019, 12, 3475. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Zhi, Z.; Liang, S. Digital Economy, entrepreneurial activity and high-quality development: Empirical evidence from Chinese cities. Manag. World 2020, 36, 65–76. [Google Scholar] [CrossRef]
- Feng, D.; Hu, M.; Gao, Y.; Liu, Y.; Jiao, Z.; Pan, Y. How does digital economy affect carbon emissions? Evidence from global 60 countries. Sci. Total Environ. 2022, 15, 852. [Google Scholar] [CrossRef]
- Lei, X.; Ma, Y.; Ke, J.; Zhang, C. The Non-Linear Impact of the Digital Economy on Carbon Emissions Based on a Mediated Effects Model. Sustainability 2023, 15, 7438. [Google Scholar] [CrossRef]
- Meng, Z.; Li, W.B.; Chen, C.; Guan, C. Carbon Emission Reduction Effects of the Digital Economy: Mechanisms and Evidence from 282 Cities in China. Land 2023, 12, 773. [Google Scholar] [CrossRef]
- Yu, C.; Yue, Z.; Wang, J.; Jiang, J. The impact of the urban digital economy on China’s carbon intensity: Spatial spillover and mediating effect. Resour. Conserv. Recycl. 2023, 189, 106762. [Google Scholar] [CrossRef]
- Zhi, W.; Gao, T.; Nan, W. Research on Digital Innovation Empowering Digital Economy Development: A Literature Review. Sci. Manag. Resear. 2022, 40, 91–97. [Google Scholar] [CrossRef]
- Peter, C.; Chandler, H.; Armstrong, A. Applying close range digital photogrammetry in soil erosion studies. Photogramm. Record 2010, 25, 240–265. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y. Building an Inclusive Digital Economy Model and Promoting the High-quality Development of China’s Economy—The Chinese Academy of Information and Communications Technology released the White Paper on the Development of China’s Digital Economy (2020). Sci. Technol. Indust. China 2020, 374, 5–7. [Google Scholar]
- 2021 China Digital Economy City Development White Paper. Digital Ecosyst. 2021, 10, 73–82. [CrossRef]
- Ge, L.; Mo, L.; Huang, N. Digital economy development, industrial structure upgrading and urban carbon emissions. Modern Econ. J. Tianjin Univ. Finance Econ. 2022, 42, 20–37. [Google Scholar] [CrossRef]
- Ramanathan, R.; He, Q.; Black, A.; Ghobadian, A.; Gallear, D. Environmental regulations, innovation and firm performance: A revisit of the Porter hypothesis. J. Clean. Prod. 2017, 155, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.; Ren, Y.; Wang, G. Low-carbon city construction and industrial structure optimization and upgrading: Empirical evidence from low-carbon city pilot work. Soft Sci. 2023, 37, 10–19. [Google Scholar] [CrossRef]
- Fang, H.; Huo, Q.; Hatim, K. Can Digital Services Trade Liberalization Improve the Quality of Green Innovation of Enterprises? Evidence from China. Sustainability 2023, 15, 6674. [Google Scholar] [CrossRef]
- Xing, W. How will low-carbon city pilots affect urban green technology innovation?—Based on the synergistic perspective of government intervention and public participation. J. Lanzhou Univ. Soc. Sci. 2022, 50, 41–53. [Google Scholar] [CrossRef]
- Wang, B.; Tian, J.; Cheng, L.; Han, H.; Wang, S. Spatial differentiation and influencing factors of China’s digital economy. Sci. Geogr. Sin. 2018, 38, 859–868. [Google Scholar] [CrossRef]
- Yan, H.; Li, M.; Rui, T. Structural characteristics and influencing factors of digital economy network in the Yangtze River Delta. East China Econ. Manag. 2022, 36, 26–34. [Google Scholar] [CrossRef]
- Jun, L.; Yang, Y.; Zhang, S. Research on the measurement and driving factors of China’s digital economy. Shanghai J. Econ. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Sahabuddin, M.; Hossain, M.B.; Khokhar, M.; Sharaf, M.; Ejaz, S.; Ejaz, F.; Illés, C.B. The Effect of Eco-Preneurship and Green Technology Management on Greenhouse Gas Discharge: An Analysis on East Asian Economies. Sustainability 2023, 15, 6747. [Google Scholar] [CrossRef]
- Zhou, Y.; Jing, L.; Chen, H. The Impact of Clean Energy Demonstration Provincial Policies on Carbon Emissions and Economic Development Level in Pilot Areas: Based on the Verification of Multi-Phase PSM-DID. Soft Sci. 2023, 3, 1–12. (In Chinese) [Google Scholar]
- Belousova, V.; Bondarenko, O.; Chichkanov, N.; Lebedev, D.; Miles, I. Coping with Greenhouse Gas Emissions: Insights from Digital Business Services. Energies 2022, 15, 2745. [Google Scholar] [CrossRef]
- Palmer, M.A.; Filoso, S. Environmental markets: The power of regulation response. Science 2009, 326, 1061–1062. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, J.; Liu, C. The spatial effect of the impact of digital economy development on urban carbon emissions. Geogr. Res. 2022, 41, 111–129. (In Chinese) [Google Scholar]
- Xu, G.; Wong, C.U.I.; Xu, X. A Comprehensive Evaluation and Empirical Research on Dual Carbon Emission Reduction under Digital Empowerment. Sustainability 2023, 15, 6598. [Google Scholar] [CrossRef]
- Ma, S.; Zhao, Z. Spatial econometric analysis of the impact of fiscal science and technology investment on China’s economic growth: Based on panel data of 285 prefecture-level cities. Inquiry Econ. Issues 2022, 480, 1–12. (In Chinese) [Google Scholar]
- Zhang, X.; Shi, F. Innovative city pilot, government intervention strategy and high-quality economic development. Res. Ecol. Manag. 2022, 43, 3–19. [Google Scholar] [CrossRef]
- Wang, R.; Yu, S.; Hu, X. Technological innovation, urban agglomeration integration and high-quality economic development. Finan. Ecol. 2020, 516, 59–66+96. [Google Scholar] [CrossRef]
- Luo, Y.; Mensah, C.; Lu, Z.; Cao, W. Environmental regulation and green total factor productivity in China: A perspective of Porter’s and Compliance Hypothesis. Ecol. Indic. 2022, 12, 145. [Google Scholar] [CrossRef]
- Shuo, S.; Qiao, W.; Zhang, A. Technological innovation, industrial structure and urban green total factor productivity: An impact channel test based on National low-carbon city pilot. Res. Ecol. Manag. 2020, 41, 44–61. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Kalfas, D.; Chatzitheodoridis, F.; Kontsas, S. The Impact of Digitalization in Supporting the Performance of Circular Economy: A Case Study of Greece. J. Risk Finan. Manag. 2022, 15, 349. [Google Scholar] [CrossRef]
- Feng, X.; Qin, P.; Wang, Y. Research on the impact of green and low-carbon transformation on corporate profitability under the goal of “dual carbon”. Macroeconomics 2022, 278, 161–175. [Google Scholar] [CrossRef]
- Xie, X. Research on the Impact of Advanced Human Capital Structure on Digital Economy: Based on the Perspective of Spatial Spillover Effect. China Price 2023, 408, 26–29. (In Chinese) [Google Scholar]
- Zhang, W.; Sun, Y. An empirical study on the coupling relationship between human capital and industrial structure evolution. Chin. J. Popul. Sci. 2014, 165, 96–106+128. (In Chinese) [Google Scholar]
- Beck, T.; Levine, R.; Levkov, A. Big bad banks? The winners and losers from bank deregulation in the United States. J. Finance 2010, 65, 1637–1667. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Du, J.; Shuang, P. How the digital economy promotes green innovation: Empirical evidence from Chinese cities. Coll. Ess. Finan. Ecol. 2022, 291, 10–20. [Google Scholar] [CrossRef]
- Hong, S.; Sun, Y.; Chen, D. Assessment of the effect of Government air pollution control: An empirical study on the construction of “low-carbon cities” in China. Manag. World 2019, 35, 95–108+195. [Google Scholar] [CrossRef]
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
Variable Symbol | Variable Name | Sample Number | Mean Value | Standard Deviation | Minimum Value | Maximum Value | |
Explained variable | Dig | Digital economy development | 3976 | 1.685 | 1.230 | 0.150 | 13.294 |
Core explanatory variable | DID | Low-carbon pilot city | 3976 | 0.247 | 0.431 | 0.000 | 1.000 |
Control variable | Inno | Technological innovation level | 3976 | 6.901 | 1.779 | 1.609 | 12.310 |
GDP | Level of economic development | 3976 | 7.167 | 0.991 | 4.124 | 10.564 | |
Fina | Financial development level | 3976 | 7.907 | 1.185 | 4.607 | 12.477 | |
Open | Degree of opening up | 3969 | 4.783 | 2.119 | −2.904 | 10.459 | |
Ur | Urbanization level | 3976 | 5.879 | 0.701 | 2.797 | 8.136 | |
Mechanism variable | Gov | Government intervention | 3976 | 351.425 | 597.22 | 3.594 | 8607.032 |
Hum | Human capital | 3976 | 1.244 | 4.133 | 0.3 | 71.710 | |
IS | Industrial structure | 3976 | 40.114 | 10.044 | 8.580 | 83.870 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Dependent Variable | Dig | Dig | Dig | Dig | Dig | Dig |
DID | 0.165 *** | 0.167 *** | 0.802 *** | 0.191 *** | 0.144 ** | 0.125 ** |
(0.0614) | (0.0604) | (0.0643) | (0.0578) | (0.0611) | (0.0593) | |
Inno | −0.0655 * | 0.0317 | −0.101 *** | |||
(0.0344) | (0.0339) | (0.0354) | ||||
GDP | 0.245 *** | 0.0786 | 0.179 * | |||
(0.0950) | (0.0889) | (0.102) | ||||
Fina | 0.454 *** | 0.541 *** | −0.0695 | |||
(0.0838) | (0.0699) | (0.103) | ||||
Open | 0.0711 *** | 0.0249 | −0.0108 | |||
(0.0276) | (0.0328) | (0.0351) | ||||
Ur | −0.607 *** | −0.302 | −0.0508 | |||
(0.179) | (0.586) | (0.605) | ||||
Constant | 1.034 *** | −0.0854 | 1.487 *** | −1.767 | 1.034 *** | 1.259 |
(0.0538) | (0.634) | (0.0159) | (3.360) | (0.0269) | (3.541) | |
Time fixed effect | Yes | Yes | No | No | Yes | Yes |
Individual fixation effect | No | No | Yes | Yes | Yes | Yes |
Observations | 3976 | 3969 | 3976 | 3969 | 3976 | 3969 |
R-squared | 0.455 | 0.442 | 0.162 | 0.412 | 0.455 | 0.459 |
Number of Id | 284 | 284 | 284 | 284 | 284 | 284 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Change the Explained Variable | Change the Explained Variable | Tail Reduction Treatment | Tail-Breaking Treatment | Exclude the Municipalities Directly under the Central Government | |
Explained Variable | Dig2 | Dig2 | Dig | Dig | Dig |
DID | 0.00734 * | 0.00661 * | 0.0987 ** | 0.0898 * | 0.111 * |
(0.00402) | (0.00395) | (0.0479) | (0.0458) | (0.0589) | |
Inno | −0.00332 * | −0.0934 *** | −0.0931 *** | −0.0883 ** | |
(0.00201) | (0.0302) | (0.0304) | (0.0342) | ||
GDP | 0.0139 ** | 0.0752 | 0.0428 | 0.170 * | |
(0.00570) | (0.0819) | (0.0774) | (0.100) | ||
Fina | −0.000708 | −0.0405 | −0.0407 | −0.0312 | |
(0.00634) | (0.0789) | (0.0771) | (0.101) | ||
Open | 0.000182 | 0.00792 | 0.0141 | −0.00822 | |
(0.00192) | (0.0291) | (0.0280) | (0.0356) | ||
Ur | −0.0465 | −0.0995 | 0.00527 | −0.105 | |
(0.0482) | (0.250) | (0.232) | (0.606) | ||
Constant | 0.0574 *** | 0.262 | 1.864 | 1.363 | 1.271 |
(0.00175) | (0.279) | (1.528) | (1.438) | (3.523) | |
Time fixed effect | Yes | Yes | Yes | Yes | Yes |
Individual fixation effect | Yes | Yes | Yes | Yes | Yes |
Observations | 3976 | 3969 | 3969 | 3811 | 3913 |
R-squared | 0.405 | 0.412 | 0.543 | 0.545 | 0.461 |
Number of Id | 284 | 284 | 284 | 282 | 280 |
(1) | (2) | (3) | |
---|---|---|---|
Dig | Dig | Dig | |
DID | 0.125 ** | 0.128 ** | 0.118 ** |
(0.0593) | (0.0586) | (0.0584) | |
Widehand | 0.269 *** | ||
(0.0723) | |||
Smart city | 0.102 | ||
(0.0640) | |||
Inno | −0.101 *** | −0.0980 *** | −0.0797 ** |
(0.0354) | (0.0356) | (0.0348) | |
GDP | 0.179 * | 0.167 | 0.150 |
(0.102) | (0.101) | (0.0984) | |
Fina | −0.0695 | −0.0687 | −0.0648 |
(0.103) | (0.104) | (0.103) | |
Open | −0.0108 | −0.0127 | −0.0144 |
(0.0351) | (0.0351) | (0.0341) | |
Ur | −0.0508 | −0.0492 | −0.192 |
(0.605) | (0.602) | (0.607) | |
Constant | 1.259 | 1.316 | 2.145 |
(3.541) | (3.533) | (3.560) | |
Time fixed effect | Yes | Yes | Yes |
Individual fixation effect | Yes | Yes | Yes |
Observations | 3969 | 3969 | 3969 |
R-squared | 0.459 | 0.461 | 0.470 |
Number of Id | 284 | 284 | 284 |
Eastern | Central | Western | Northeastern | |
---|---|---|---|---|
Explained Variable | Dig | Dig | Dig | Dig |
DID | 0.185 * | 0.0459 | 0.149 | 0.141 |
(0.108) | (0.100) | (0.109) | (0.168) | |
Constant | 4.175 | 3.542 | 1.286 | −3.797 |
(17.36) | (2.534) | (3.243) | (5.485) | |
Control variable | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes |
Urban fixed effect | Yes | Yes | Yes | Yes |
Observations | 1204 | 1120 | 1169 | 476 |
R-squared | 0.898 | 0.714 | 0.772 | 0.764 |
Eastern | Eastern | Central | Central | Western | Western | Northeastern | Northeastern | |
---|---|---|---|---|---|---|---|---|
Explained Variable | Gov | Dig | Gov | Dig | Gov | Dig | Gov | Dig |
Gov | 0.0004 ** | 0.0016 ** | 0.000175 | 0.0014 ** | ||||
(0.00017) | (0.00065) | (0.00015) | (0.00054) | |||||
DID | 130.2 * | 0.132 | 8.031 | 0.0327 | 102.1 ** | 0.131 | −11.38 | 0.157 |
(75.76) | (0.104) | (40.02) | (0.0779) | (42.15) | (0.109) | (37.70) | (0.148) | |
Constant | −18,205 *** | 11.46 | −2665 *** | 7.916 *** | −4358 *** | 2.048 | −4275 ** | 2.082 |
(5788). | (19.49) | (943.7) | (2.167) | (1416) | (2.947) | (1805) | (3.641) | |
Control variable | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Urban fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 1204 | 1204 | 1120 | 1120 | 1169 | 1169 | 476 | 476 |
R-squared | 0.873 | 0.904 | 0.842 | 0.772 | 0.833 | 0.773 | 0.904 | 0.781 |
Eastern | Eastern | Central | Central | Western | Western | Northeastern | Northeastern | |
---|---|---|---|---|---|---|---|---|
Explained Variable | Hum | Dig | Hum | Dig | Hum | Dig | Hum | Dig |
Hum | 0.092 *** | 0.591 *** | 0.196 *** | −0.0344 | ||||
(0.024) | (0.193) | (0.0283) | (0.0947) | |||||
DID | 0.585 * | 0.131 | 0.148 | −0.0415 | 0.372 ** | 0.0761 | 0.199 * | 0.148 |
(0.314) | (0.101) | (0.124) | (0.0863) | (0.174) | (0.102) | (0.113) | (0.161) | |
Constant | −69.00 *** | 10.52 | −6.015 * | 7.099 *** | −17.30 | 4.671 * | −0.393 | −3.810 |
(20.54) | (18.33) | (3.332) | (1.928) | (14.56) | (2.705) | (5.613) | (5.471) | |
Control variable | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Urban fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 1204 | 1204 | 1120 | 1120 | 1169 | 1169 | 476 | 476 |
R-squared | 0.948 | 0.905 | 0.919 | 0.805 | 0.908 | 0.795 | 0.959 | 0.765 |
Resource-Based City | Non-Resource-Based City | |
---|---|---|
Explained Variable | Dig | Dig |
DID | 0.0253 | 0.133 * |
(0.0545) | (0.0731) | |
Constant | 3.553 *** | 0.556 |
(1.301) | (6.566) | |
Control variable | Yes | Yes |
Time fixed effect | Yes | Yes |
Urban fixed effect | Yes | Yes |
Observations | 1589 | 2380 |
R-squared | 0.717 | 0.875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ding, X.; Liu, Y. The Impact of Low-Carbon Pilot Cities on the Development of Digital Economy: Empirical Evidence from 284 Cities in China. Sustainability 2023, 15, 10392. https://doi.org/10.3390/su151310392
Zhang H, Ding X, Liu Y. The Impact of Low-Carbon Pilot Cities on the Development of Digital Economy: Empirical Evidence from 284 Cities in China. Sustainability. 2023; 15(13):10392. https://doi.org/10.3390/su151310392
Chicago/Turabian StyleZhang, Hongfeng, Xiangjiang Ding, and Yue Liu. 2023. "The Impact of Low-Carbon Pilot Cities on the Development of Digital Economy: Empirical Evidence from 284 Cities in China" Sustainability 15, no. 13: 10392. https://doi.org/10.3390/su151310392
APA StyleZhang, H., Ding, X., & Liu, Y. (2023). The Impact of Low-Carbon Pilot Cities on the Development of Digital Economy: Empirical Evidence from 284 Cities in China. Sustainability, 15(13), 10392. https://doi.org/10.3390/su151310392