Identifying the Full Carbon Sink of Forest Vegetation: A Case Study in the Three Northeast Provinces of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Data Sources
2.2.2. Vegetation Carbon Sink
2.2.3. Soil Carbon Sink
2.3. Driving Factors Analysis
3. Results
3.1. Full Carbon Sink of Forest Vegetation in the Three Northeastern Provinces
3.2. Spatial Differences of the Full Carbon Sink in the Three Northeastern Provinces
3.3. Driving Factors Influencing Carbon Sequestration in the Three Northeastern Provinces
4. Discussion
4.1. Characteristics of Carbon Sequestration in the Three Northeastern Provinces
4.2. Main Driving Factors Influencing Carbon Sequestration Ability in the Three Northeastern Provinces
4.3. Precision Analysis
4.4. Uncertainty
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Piao, S.L.; He, Y.; Wang, X.H. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Cai, W.X.; He, N.P.; Li, M.X.; Xu, L.; Wang, L.Z.; Zhu, J.H.; Zeng, N.; Yan, P.; Si, G.X.; Zhang, X.Q.; et al. Carbon sequestration of Chinese forests from 2010–2060: Spatiotemporal dynamics and its regulatory strategies. Sci. Bull. 2021, 67, 836–843. [Google Scholar] [CrossRef]
- Xi, J.P. Speech at the general debate of the seventy-fifth United Nations General Assembly. The People’s Daily, 23 September 2020. (In Chinese) [Google Scholar]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data. 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Yang, Y.H.; Shi, Y.; Sun, W.J.; Chang, J.F.; Zhu, J.X.; Chen, L.Y.; Wang, X.; Guo, Y.P.; Zhang, H.T. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Niu, X.; Tao, Y.Z. Methodology of Forest Ecology; China Forestry Publishing Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q.; Ci, L.J. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Schepaschenko, D.; Moltchanova, E.; Shvidenko, A.; Blyshchyk, V.; Dmitriev, E.; Martynenko, O.; See, L.; Kraxne, F. Improved Estimates of Biomass Expansion Factors for Russian Forests. Forests 2018, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Ankur, R.D.; Bailey, A.M.; Susanne, W.; Jonathan, T.; Brain, J.B.; Nikaan, K.A.; Andi, M.; Sreenath, P.; Ammarae, T.; Jess, T.; et al. Drivers of Decadal Carbon Fluxes Across Temperate Ecosystems. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG007014. [Google Scholar]
- Qubaja, R.; Grünzweig, J.M.; Rotenberg, E.; Yakir, D. Evidence for large carbon sink and long residence time in semiarid forests based on 15 year flux and inventory records. Glob. Change Biol. 2019, 26, 1626–1637. [Google Scholar] [CrossRef]
- Yu, G.R.; Zhu, X.J.; Fu, Y.L.; He, H.L.; Wang, Q.F.; Wen, X.F.; Li, X.R.; Zhang, L.M.; Zhang, L.; Su, W.; et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Change Biol. 2013, 19, 798–810. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Zhu, B.; Tan, K. Forest biomass carbon stocks in China over the past 2 decades: Estimation based on integrated inventory and satellite data. J. Geophys. Res. 2005, 110, G01006. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.X.; Zhou, T.; Luo, H.; Liu, X.; Shi, P.J.; Zhang, Y.J.; Zhang, J.Z.; Zhou, P.F.; Xu, Y.X. Global pattern of ecosystem respiration tendencies and its implications on terrestrial carbon sink potential. Earth’s Future 2022, 10, e2022EF002703. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A.; Thakur, T.K.; Sahoo, U.K.; Kumar, R.; Konsam, B.; Pandey, R. Soil organic carbon estimation along an altitudinal gradient of chir pine forests in the Garhwal Himalaya, India: A field inventory to remote sensing approach. Land Degrad. Dev. 2022, 33, 3387–3400. [Google Scholar] [CrossRef]
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Fang, J.; Yu, G.R.; Liu, L.L.; Hu, S.J.; Chaptin, F.S., III. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, Y.B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.D.; Birdsey, R.A.; Fang, J.Y.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Wang, D.; Niu, X. Past, present and future forest resources in China and the implications for carbon sequestration dynamics. J. Food Agric. Environ. 2013, 11, 801–806. [Google Scholar]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.X.; Bosch, H.; O’Dell, C.W.; Tang, X.P.; Yang, D.X.; Liu, L.X.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. China Forest Resources Report 2014–2018; China Forestry Publishing Press: Beijing, China, 2019. (In Chinese)
- Luo, W.X.; Kim, S.H.; Zhao, X.H.; Ryu, D.; Jung, I.; Cho, H.; Harris, N.; Ghosh, S.; Zhang, C.Y.; Liang, J.J. New forest biomass carbon stock estimates in Northeast Asia based on multisource data. Glob. Change Biol. 2020, 26, 7045–7066. [Google Scholar] [CrossRef]
- Guo, H.P.; Xie, S.D.; Pan, C.L. The Impact of Planting Industry Structural Changes on Carbon Emissions in the Three Northeast Provinces of China. Int. J. Environ. Res. Public Health 2021, 18, 705. [Google Scholar] [CrossRef]
- Zheng, D. Study on the Ecogeographic Regional System of China; The Commercial Press: Shanghai, China, 2008. [Google Scholar]
- Zhang, X.S. Vegetation Map of the People’s Republic of China (1:1,000,000,000); Geology Press: Beijing, China, 2007. [Google Scholar]
- GB/T 38590-2020; State Forestry Administration. Technical Regulations for Continuous Forest Inventory. Standards Press of China: Beijing, China, 2020. (In Chinese)
- LY/T 2908-2017; State Forestry Administration. Regulations for Age-Class and Age-Group Division of Main Tree-Species. Standards Press of China: Beijing, China, 2017. (In Chinese)
- GB/T 33027-2016; State Forestry Administration. Methodology for Long-Term Observation of Forest Ecosystem. Standards Press of China: Beijing, China, 2016. (In Chinese)
- LY/T 1210-1275; State Forestry Administration. Forest Soil Analysis Methods. Standards Press of China: Beijing, China, 1999. (In Chinese)
- Liaoning Provincial Bureau of Statistics. Liaoning Statistical Yearbook 2020; China Statistic Press: Beijing, China, 2020. (In Chinese)
- Jilin Provincial Bureau of Statistics. Jilin Statistical Yearbook 2020; China Statistic Press: Beijing, China, 2020. (In Chinese)
- Heilongjiang Provincial Bureau of Statistics. Heilongjiang Statistical Yearbook 2020; China Statistic Press: Beijing, China, 2020. (In Chinese)
- Wang, Z.; Zhu, Y.B. Study on the Status of Carbon Emission in Provincial Scale of China and Countermeasures for Reducing its Emission. Bull. Chin. Acad. Sci. 2008, 23, 109–115. (In Chinese) [Google Scholar]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.; Augusto, L.; Cécillon, L.; Ferreira, G.W.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.P.; et al. Tamm review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Guo, J.; Wang, B.; Wang, G.B.; Wu, Y.Q.; Cao, F.L. Afforestation and agroforestry enhance soil nutrient status and carbon sequestration capacity in eastern China. Land Degrad. Dev. 2020, 31, 392–403. [Google Scholar] [CrossRef]
- Wu, Z.; Fan, C.; Zhang, C.Y.; Zhao, X.H.; Gadow, K. Effects of biotic and abiotic drivers on the growth rates of individual trees in temperate natural forests. For. Ecol. Manag. 2022, 503, 119769. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [Green Version]
- State Forestry Administration. 2016 National Report on Ecological Benefit Monitoring of Conversion of Cropland to Forest Project; China Forestry Publishing House: Beijing, China, 2018. (In Chinese)
- Wang, Y.F.; Liu, L.; Shangguan, Z.P. Carbon storage and carbon sequestration potential under the Grain for Green Program in Henan Province, China. Ecol. Eng. 2017, 100, 147–156. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, Z.P.; Gao, J.L.; Emanuele, L.; Ren, Y.Q.; Shao, M.A.; Wei, X.R. The Grain for Green project eliminated the effect of soil erosion on organic carbon on China’s Loess Plateau between 1980 and 2008. Agric. Ecosyst. Environ. 2021, 322, 107636. [Google Scholar] [CrossRef]
- State Forestry Administration. National Report on Ecological Benefit Monitoring of Key State-Owned Forest Regions in Northeast and Inner Mongolia of Natural Forest Resources Protection Project in 2015; China Forestry Publishing House: Beijing, China, 2016. (In Chinese)
- Sha, Z.Y.; Bai, Y.F.; Li, R.R.; Lan, H.; Zhang, X.L.; Li, J.; Liu, X.F.; Chang, S.J.; Xie, Y.C. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Commun. Earth Environ. 2022, 3, 8. [Google Scholar] [CrossRef]
- Zhu, K.; Song, Y.L.; Qin, C. Forest age improves understanding of the global carbon sink. Proc. Natl. Acad. Sci. USA 2019, 116, 3962–3964. [Google Scholar] [CrossRef] [Green Version]
- Li, M.J. Carbon stock and sink economic values of forest ecosystem in the forest industry region of Heilongjiang Province, China. J. For. Res. 2022, 33, 875–882. [Google Scholar] [CrossRef]
- Chen, S.P.; Wang, W.T.; Xu, W.T.; Wang, Y.; Wan, H.W.; Chen, D.; Tang, Z.Y.; Tang, X.L.; Zhou, G.Y.; Xie, Z.Q.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, G.R.; Chen, D.M.; Wu, Y.; Liu, L.; Liu, C.J. Spatial patterns and estimates of global forest litterfall. Ecosphere 2019, 10, e02587. [Google Scholar] [CrossRef] [Green Version]
- Yue, Q.M.; Hao, M.H.; Geng, Y.; Wang, X.R.; Gadow, K.; Zhang, C.Y.; Zhao, X.H.; Gao, L.S. Evaluating alternative hypotheses behind biodiversity and multifunctionality relationships in the forests of Northeastern China. For. Ecosyst. 2022, 9, 100027. [Google Scholar] [CrossRef]
- Cai, W.X.; He, N.P.; Xu, L.; Li, M.X.; Wen, D.; Liu, S.R.; Sun, O.J. Spatial-temporal variation of the carbon sequestration rate of afforestation in China: Implications for carbon trade and planning. Sci. Total Environ. 2023, 884, 163792. [Google Scholar] [CrossRef]
- Ge, R.; He, H.; Ren, X.; Zhang, L.; Yu, G.R.; Smallman, T.L.; Zhou, T.; Yu, S.Y.; Luo, Y.Q.; Xie, Z.Q.; et al. Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation. Glob. Change Biol. 2019, 25, 938–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.X.; Wang, C.K.; Zhou, Z.; Zhou, G.Y.; Hu, X.Y.; Jiang, L.; Li, Y.D.; Liu, G.H.; Ji, C.J.; Zhao, S.Q.; et al. Increasing soil carbon stocks in eight permanent forest plots in China. Biogeosciences 2020, 17, 715–726. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Saatchi, S.S.; Yang, Y.; Yu, Y.F.; Pongratz, J.; Bloom, A.A.; Bowman, K.; Worden, J.; Liu, J.J.; Yin, Y.; et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 2021, 7, eabe9829. [Google Scholar] [CrossRef]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Bond-Lamberty, B. Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis. Agric. For. Meteorol. 2017, 247, 93–103. [Google Scholar] [CrossRef]
- Wu, T.; Wang; Yu, C.J.; Chiarawipa, R.; Zhang, X.Z.; Han, Z.H.; Wu, L.H. Carbon Sequestration by Fruit Trees—Chinese Apple Orchards as an Example. PLoS ONE 2012, 7, e38883. [Google Scholar] [CrossRef]
- Yulistyarini, T.; Hadiah, J.T. Carbon stock potential of Indonesian local fruit trees, some collections of Purwodadi Botanic Garden. IOP Conf. Ser. Earth Environ. Sci. 2022, 976, 012057. [Google Scholar] [CrossRef]
Provinces | Total | Arbor Trees | Shrub | Sparse Forest Land | Unclosed Forest Land | Nursery | Non Forested Land | Forest Suitable Land | Scattered Trees | Surrounding Trees (Number) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Special Bushes | Other Shrubs | ||||||||||
Heilongjiang | 24.54 | 19.84 | 0.06 | 0.20 | 0.08 | 0.15 | 0.02 | 0.05 | 4.14 | 1.41 | 6710 |
Proportion | 100.00% | 80.87% | 0.25% | 0.83% | 0.31% | 0.60% | 0.06% | 0.21% | 16.87% | ||
Jilin | 9.05 | 7.75 | 0.10 | 0.08 | 0.02 | 0.13 | 0.0022 | 0.02 | 0.95 | 0.39 | 2991 |
Proportion | 100.00% | 85.62% | 1.13% | 0.83% | 0.23% | 1.49% | 0.02% | 0.24% | 10.44% | ||
Liaoning | 7.37 | 4.26 | 1.46 | 0.35 | 0.04 | 0.17 | 0.03 | 0.13 | 0.93 | 0.03 | 22,588 |
Proportion | 100.00% | 57.83% | 19.88% | 4.81% | 0.51% | 2.27% | 0.34% | 1.72% | 12.65% |
a | b | c | d | e | f | g | |
---|---|---|---|---|---|---|---|
a | 1 | 0.354 | 0.323 | 0.339 | −0.036 | −0.463 * | −0.325 |
b | 0.354 | 1 | −0.183 | 0.749 | 0.602 | −0.349 | −0.687 ** |
c | 0.323 | −0.183 | 1 | 0.009 | −0.348 | −0.066 | 0.163 |
d | 0.339 | 0.749 ** | 0.009 | 1 | 0.301 | −0.28 | −0.547 * |
e | −0.036 | 0.602 ** | −0.348 | 0.301 | 1 | −0.315 | −0.385 |
f | −0.463 * | −0.349 | −0.066 | −0.28 | −0.315 | 1 | 0.434 * |
g | −0.325 | −0.687 ** | 0.163 | −0.547 ** | −0.385 | 0.434 * | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Niu, X.; Xu, T. Identifying the Full Carbon Sink of Forest Vegetation: A Case Study in the Three Northeast Provinces of China. Sustainability 2023, 15, 10396. https://doi.org/10.3390/su151310396
Wang B, Niu X, Xu T. Identifying the Full Carbon Sink of Forest Vegetation: A Case Study in the Three Northeast Provinces of China. Sustainability. 2023; 15(13):10396. https://doi.org/10.3390/su151310396
Chicago/Turabian StyleWang, Bing, Xiang Niu, and Tingyu Xu. 2023. "Identifying the Full Carbon Sink of Forest Vegetation: A Case Study in the Three Northeast Provinces of China" Sustainability 15, no. 13: 10396. https://doi.org/10.3390/su151310396
APA StyleWang, B., Niu, X., & Xu, T. (2023). Identifying the Full Carbon Sink of Forest Vegetation: A Case Study in the Three Northeast Provinces of China. Sustainability, 15(13), 10396. https://doi.org/10.3390/su151310396