A Review of Veterinary Drug Residue Detection: Recent Advancements, Challenges, and Future Directions
Abstract
:1. Introduction
2. Recent Advancements in Detection Technology for Veterinary Drug Residues
2.1. Sample Pretreatment Technology
2.1.1. Liquid–Liquid Extraction
2.1.2. Solid-Phase Extraction
2.1.3. QuEChERS
2.1.4. Accelerated Solvent Extraction
2.2. Detection Analytical Techniques
2.2.1. Gas Chromatography–Mass Spectrometry (GC–MS)
2.2.2. Liquid Chromatography (LC)
2.2.3. Liquid Chromatography–Mass Spectrometry (LC–MS)
2.2.4. Capillary Electrophoresis (CE)
2.2.5. Immunoassay
2.2.6. Biosensor Analysis
3. Challenges in Veterinary Drug Residue Detection
3.1. Few Applications of New Sample Pretreatment Technologies
3.2. Less Multi-Residue Detection Methods
3.3. Lack of High and New Detection Technology
4. Future Directions of Veterinary Drug Residue Detection
4.1. High-Throughput and High-Sensitivity Veterinary Drug Detection Technology
4.2. Sample Pretreatment Technology for Rapid Processing
4.3. Fusion of Multiple Detection Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, C.; Ryu, H.D.; Chung, E.G.; Kim, Y.; Lee, K.J. A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: Sample preparation, liquid chromatography, and mass spectrometry. J. Environ. Manag. 2018, 217, 629–645. [Google Scholar] [CrossRef] [PubMed]
- Zilio, M.; Orzi, V.; Chiodini, M.E.; Riva, C.; Acutis, M.; Boccasile, G.; Adani, F. Evaluation of ammonia and odour emissions from animal slurry and digestate storage in the Po Valley (Italy). Waste Manag. 2020, 103, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Gaballah, M.S.; Guo, J.B.; Sun, H.; Aboagye, D.; Sobhi, M.; Muhmood, A.; Dong, R.J. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook. Bioresour. Technol. 2021, 333, 125069. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Hakme, E.; Ninga, E.; Frandsen, H.L. Analysis of veterinary drug- and pesticide residues in pig muscle by LC-QTOF-MS. Food Control 2023, 148, 109656. [Google Scholar] [CrossRef]
- Gurmessa, B.; Pedretti, E.F.; Cocco, S.; Corti, G. Manure anaerobic digestion effects and the role of pre- and posttreatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. Sci. Total Environ. 2020, 721, 137532. [Google Scholar] [CrossRef]
- Chicoine, A.; Erdely, H.; Fattori, V.; Finnah, A.; Fletcher, S.; Lipp, M.; Sanders, P.; Scheid, S. Assessment of veterinary drug residues in food: Considerations when dealing with sub-optimal data. Regul. Toxicol. Pharmacol. 2020, 118, 104806. [Google Scholar] [CrossRef]
- Ye, Z.L.; Deng, Y.; Lou, Y.; Ye, X.; Chen, S. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed. Front. Environ. Sci. Eng. 2018, 12, 7. [Google Scholar] [CrossRef]
- Stolker, A.A.M.; Brinkman, U.A.T. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—A review. J. Chromatogr. A 2005, 1067, 15–53. [Google Scholar] [CrossRef]
- Baynes, R.E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J.E. Health concerns and management of select veterinary drug residues. Food Chem. Toxicol. 2016, 88, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.F.; Zhang, H.; Zhou, G.Y.; Zhang, S.W.; Chen, J.H.; Deng, X.J.; Qu, X.S.; Chen, Q.; Niu, B. Risk Assessment of Veterinary Drug Residues in Pork on the Market in the People’s Republic of China. J. Food Prot. 2022, 85, 815–827. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Y.J.; Jing, X.H.; Ma, W. SERS-active plasmonic metal NP-CsPbX3 films for multiple veterinary drug residues detection. Food Chem. 2023, 412, 135420. [Google Scholar] [CrossRef]
- Stolker, A.A.M.; Schwillens, P.L.W.J.; van Ginkel, L.A.; Brinkman, U.A.T. Comparison of different liquid chromatography methods for the determination of corticosteroids in biological matrices. J. Chromatogr. A 2000, 893, 55–67. [Google Scholar] [CrossRef]
- Toldrá, F.; Reig, M. Methods for rapid detection of chemical and veterinary drug residues in animal foods. Trends Food Sci. Technol. 2006, 17, 482–489. [Google Scholar] [CrossRef]
- Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Development of an improved high resolution mass spectrometry based multi-residue method for veterinary drugs in various food matrices. Anal. Chim. Acta 2011, 700, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Balizs, G.; Hewitt, A. Determination of veterinary drug residues by liquid chromatography and tandem mass spectrometry. Anal. Chim. Acta 2003, 492, 105–131. [Google Scholar] [CrossRef]
- Frenich, A.G.; Romero-González, R.; Aguilera-Luiz, M.M. Comprehensive analysis of toxics (pesticides, veterinary drugs and mycotoxins) in food by UHPLC-MS. TrAC Trends Anal. Chem. 2014, 63, 158–169. [Google Scholar] [CrossRef]
- Wu, D.; Du, D.; Lin, Y.H. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. TrAC Trends Anal. Chem. 2016, 83, 95–101. [Google Scholar] [CrossRef]
- Ahmed, S.; Ning, J.N.; Cheng, G.Y.; Ahmad, I.; Li, J.; Liu, M.Y.; Qu, W.; Iqbal, M.; Shabbir, M.A.B.; Yuan, Z.H. Receptor-based screening assays for the detection of antibiotics residues—A review. Talanta 2017, 166, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Teng, X.M.; Wang, Y.S.; Si, S.X.; Ju, J.; Pan, W.; Wang, J.P.; Sun, X.B.; Wang, W.J. Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application. TrAC Trends Anal. Chem. 2021, 144, 116430. [Google Scholar] [CrossRef]
- Owusu-Doubreh, B.; Appaw, W.O.; Abe-Inge, V. Antibiotic residues in poultry eggs and its implications on public health: A review. Sci. Afr. 2023, 19, e01456. [Google Scholar] [CrossRef]
- Imamoglu, H.; Olgun, E.Q. Analysis of Veterinary Drug and Pesticide Residues Using the Ethyl Acetate Multiclass/Multiresidue Method in Milk by Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Methods Chem. 2016, 2016, 2170165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Ren, X.L.; Diao, Y.Y.; Chen, Y.; Wang, Q.L.; Jin, W.T.; Zhou, P.; Fan, Q.Q.; Zhang, Y.B.; Liu, H.M. Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 257, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Melekhin, A.O.; Tolmacheva, V.V.; Goncharov, N.O.; Apyari, V.V.; Dmitrienko, S.G.; Shubina, E.G.; Grudev, A.I. Multi-class, multi-residue determination of 132 veterinary drugs in milk by magnetic solid-phase extraction based on magnetic hypercrosslinked polystyrene prior to their determination by high-performance liquid chromatography-tandem mass spectrometry. Food Chem. 2022, 387, 132866. [Google Scholar] [CrossRef]
- Casado, N.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Application of a hybrid ordered mesoporous silica as sorbent for solid-phase multi-residue extraction of veterinary drugs in meat by ultra-high-performance liquid chromatography coupled to ion-trap tandem mass spectrometry. J. Chromatogr. A 2016, 1459, 24–37. [Google Scholar] [CrossRef]
- Stubbings, G.; Bigwood, T. The development and validation of a multiclass liquid chromatography tandem mass spectrometry (LC–MS/MS) procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) approach. Anal. Chim. Acta 2009, 637, 68–78. [Google Scholar] [CrossRef]
- Kang, H.S.; Kim, M.K.; Kim, E.J.; Choe, W.J. Determination of 66 pesticide residues in livestock products using QuEChERS and GC-MS/MS. Food Sci. Biotechnol. 2020, 29, 1473–1586. [Google Scholar] [CrossRef]
- Han, C.; Hu, B.Z.; Jin, N.; Jin, J.C.; Yu, Z.L.; Huang, C.Q.; Shen, Y. Accelerated solvent extraction-gel permeation chromatography-gas chromatography-tandem mass spectrometry to rapid detection of clotrimazole residue in animal-derived food. LWT-Food Sci. Technol. 2021, 144, 111248. [Google Scholar] [CrossRef]
- Yu, H.; Tao, Y.F.; Chen, D.M.; Wang, Y.L.; Yuan, Z.H. Development of an HPLC–UV method for the simultaneous determination of tetracyclines in muscle and liver of porcine, chicken and bovine with accelerated solvent extraction. Food Chem. 2011, 124, 1131–1138. [Google Scholar] [CrossRef]
- Na, T.W.; Seo, H.J.; Jang, S.N.; Kim, H.; Yun, H.; Kim, H.; Ahn, J.; Cho, H.; Hong, S.H.; Kim, H.J.; et al. Multi-residue analytical method for detecting pesticides, veterinary drugs, and mycotoxins in feed using liquid- and gas chromatography coupled with mass spectrometry. J. Chromatogr. A 2022, 1676, 463257. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharyya, A.; Shinde, R.; Dhanshetty, M.; Elliott, C.; Banerjee, K. Development and validation of a multiresidue method for pesticides and selected veterinary drugs in animal feed using liquid- and gas chromatography with tandem mass spectrometry. J. Chromatogr. A 2020, 1627, 461416. [Google Scholar] [CrossRef]
- Núñez, O.; Gallart-Ayala, H.; Martins, C.P.B.; Lucci, P. New trends in fast liquid chromatography for food and environmental analysis. J. Chromatogr. A 2012, 1228, 298–323. [Google Scholar] [CrossRef] [Green Version]
- Boix, C.; Ibáñez, M.; Sancho, J.V.; León, N.; Yusá, V.; Hernández, F. Qualitative screening of 116 veterinary drugs in feed by liquid chromatography–high resolution mass spectrometry: Potential application to quantitative analysis. Food Chem. 2014, 160, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masiá, A.; Suarez-Varela, M.M.; Llopis-Gonzalez, A.; Picó, Y. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal. Chim. Acta 2016, 936, 40–61. [Google Scholar] [CrossRef] [PubMed]
- Castilla-Fernández, D.; Moreno-González, D.; Bouza, M.; Saez-Gómez, A.; Ballesteros, E.; García-Reyes, J.F.; Molina-Díaz, A. Assessment of a specific sample cleanup for the multiresidue determination of veterinary drugs and pesticides in salmon using liquid chromatography/tandem mass spectrometry. Food Control 2021, 130, 108311. [Google Scholar] [CrossRef]
- León, N.; Pastor, A.; Yusà, V. Target analysis and retrospective screening of veterinary drugs, ergot alkaloids, plant toxins and other undesirable substances in feed using liquid chromatography–high resolution mass spectrometry. Talanta 2016, 149, 43–52. [Google Scholar] [CrossRef]
- Kowalski, P.; Oledzka, I.; Lamparczyk, H. Capillary electrophoresis in analysis of veterinary drugs. J. Pharm. Biomed. Anal. 2003, 32, 937–947. [Google Scholar] [CrossRef]
- Yang, S.X.; Ma, S.u.Y.; Zhu, K.L.; Wang, M.L.; Li, J.H.; Arabi, M.; Liu, H.T.; Li, Y.; Chen, L.X. Simultaneous enrichment/determination of six sulfonamides in animal husbandry products and environmental waters by pressure-assisted electrokinetic injection coupled with capillary zone electrophoresis. J. Food Compos. Anal. 2020, 88, 103462. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Hu, S.; Lai, X.C.; Peng, J.; Lai, W.H. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci. Technol. 2021, 111, 68–88. [Google Scholar] [CrossRef]
- Li, R.; Lin, Z.J.; Yang, J.Y.; Xu, Z.L.; Wang, H.; Lei, H.T.; Sun, Y.M.; Shen, Y.D. An Indirect Competitive Enzyme-linked Immunosorbent Assay for Simultaneous Determination of Florfenicol and Thiamphenicol in Animal Meat and Urine. Chin. J. Anal. Chem. 2018, 46, 1321–1328. [Google Scholar] [CrossRef]
- Yin, X.Y.; Li, H.; Wu, S.M.; Lu, Y.R.; Yang, Y.L.; Qin, L.N.; Li, L.; Xiao, J.X.; Liang, J.X.; Si, Y.; et al. A sensitive and specific enzyme-linked immunosorbent assay for the detection of pymetrozine in vegetable, cereal, and meat. Food Chem. 2023, 1, 135949. [Google Scholar] [CrossRef]
- Byzova, N.A.; Serchenya, T.S.; Vashkevich, I.I.; Zherdev, A.V.; Sviridov, O.V.; Dzantiev, B.B. Lateral flow immunoassay for rapid qualitative and quantitative control of the veterinary drug bacitracin in milk. Microchem. J. 2020, 156, 104884. [Google Scholar] [CrossRef]
- Wei, C.H.; Wu, A.H.; Xu, L.G.; Xu, C.L.; Liu, L.Q.; Kuang, H.; Xu, X.X. Recent progress on lateral flow immunoassays in foodborne pathogen detection. Food Biosci. 2023, 52, 102475. [Google Scholar] [CrossRef]
- Li, Z.B.; Cui, P.L.; Liu, J.; Liu, J.X.; Wang, J.P. Production of generic monoclonal antibody and development of chemiluminescence immunoassay for determination of 32 sulfonamides in chicken muscle. Food Chem. 2020, 311, 125966. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lv, C.J.; Fan, J.Q.; Zhao, Y.; Jiang, L.L.; Sun, X.M.; Zhang, Q.; Jin, M.L. Development of a chemiluminescence immunoassay to accurately detect African swine fever virus antibodies in serum. J. Virol. Methods 2021, 298, 114269. [Google Scholar] [CrossRef]
- Sun, Y.L.; Dai, Y.X.; Zhu, X.D.; Han, R.; Wang, X.Y.; Luo, C.N. A nanocomposite prepared from bifunctionalized ionic liquid, chitosan, graphene oxide and magnetic nanoparticles for aptamer-based assay of tetracycline by chemiluminescence. Microchim. Acta 2019, 187, 3–13. [Google Scholar] [CrossRef]
- Wang, K.P.; Zhang, Y.C.; Zhang, X.; Shen, L. Green preparation of chlorine-doped graphene and its application in electrochemical sensor for chloramphenicol detection. SN Appl. Sci. 2019, 1, 157. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Park, H.; Kang, H.S.; Cho, B.H.; Oh, J.H. Comparison of sample preparation and determination of 60 veterinary drug residues in flatfish using liquid chromatography-tandem mass spectrometry. Molecules 2020, 25, 1206. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, M.; Takatsu, A.; Ito, R.; Nakazawa, H. Applications of stir-bar sorptive extraction to food analysis. TrAC Trends Anal. Chem. 2013, 45, 280–293. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.X.; Zhang, Q.L.; Zang, L.J.; Chen, B.B.; Hu, B. Stir bar sorptive extraction and its application. J. Chromatogr. A 2021, 1637, 461810. [Google Scholar] [CrossRef]
- Teixeira, R.A.; Dinali, L.A.F.; Silva, C.F.; de Oliveira, H.L.; da Silva, A.T.M.; Nascimento, C.S.; Borges, K.B. Microextraction by packed molecularly imprinted polymer followed by ultra-high performance liquid chromatography for determination of fipronil and fluazuron residues in drinking water and veterinary clinic wastewater. Microchem. J. 2021, 168, 106405. [Google Scholar] [CrossRef]
- Wang, S.H.; Zang, X.H.; Zhang, S.H.; Wang, J.P. Determination of benzimidazoles in beef by molecularly imprinted boron nitride composite based dispersive solid phase microextraction and ultra performance liquid chromatography. Microchem. J. 2022, 179, 107523. [Google Scholar] [CrossRef]
- Jiang, W.X.; Beloglazova, N.V.; Wang, Z.H.; Jiang, H.Y.; Wen, K.; de Saeger, S.; Luo, P.J.; Wu, Y.N.; Shen, J.Z. Development of a multiplex flow-through immunoaffinity chromatography test for the on-site screening of 14 sulfonamide and 13 quinolone residues in milk. Biosens. Bioelectron. 2015, 66, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.H.; Wang, Y.; Shan, W.C.; Zhang, Y.; Feng, H.B.; Sai, J.Y.; Wang, Q.G.; Zhao, Y. Development of ELISA for detection of Rh1 and Rg2 and potential method of immunoaffinity chromatography for separation of epimers. J. Chromatogr. B 2015, 985, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.J.; Braden, S.E.; Reyes-Herrera, I.; Donoghue, D.J. Simultaneous determination of fluoroquinolones and tetracyclines in chicken muscle using HPLC with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 846, 8–13. [Google Scholar] [CrossRef]
- Stubbings, G.; Tarbin, J.; Cooper, A. A multi-residue cation-exchange clean up procedure for basic drugs in produce of animal orion. Anal. Chim. Acta 2005, 547, 262–268. [Google Scholar] [CrossRef]
- Chen, J.X.; Xu, F.; Jiang, H.Y.; Hou, Y.; Rao, Q.; Guo, P.; Ding, S. A Novel quantum dot based fluoroimmunoassay method for detection of enrofloxacin residue in chicken muscle tissue. Food Chem. 2009, 113, 1197–1201. [Google Scholar] [CrossRef]
- Ding, S.Y.; Chen, J.X.; Jiang, H.Y.; He, J.H.; Shi, W.M.; Zhao, W.S.; Shen, J.Z. Application of quantum dot-antibody conjugates for detection of sulfamethazine residue in chicken muscle tissue. J. Agric. Food Chem. 2006, 54, 6139–6142. [Google Scholar] [CrossRef]
- Nichkova, M.; Dosev, D.; Davies, A.E.; Gee, S.J.; Kennedy, I.M.; Hammock, B.D. Quantum Dots as Reporters in Multiplexed Immunoassays for Biomarkers of Exposure to Agrochemicals. Anal. Lett. 2007, 40, 1423–1433. [Google Scholar] [CrossRef] [Green Version]
- Li, X.H.; Xie, Z.H.; Min, H.; Li, C.X.; Liu, M.C.; Xian, Y.Z.; Jin, L.T. Development of quantum dots modified acetylcholinesterase biosensor for the detection of trichlorfon. Electroanalysis 2006, 18, 2163–2167. [Google Scholar] [CrossRef]
- Du, D.; Chen, W.J.; Zhang, W.Y.; Liu, D.L.; Li, H.B.; Lin, Y.H. Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion. Biosens. Bioelectron. 2010, 25, 1370–1375. [Google Scholar] [CrossRef]
- Zheng, Z.Z.; Li, X.Y.; Dai, Z.F. Detection of mixed organ ophosphorus pesticides in real samples using quantum dots/bi-enzyme assembly multilayers. J. Mater. Chem. 2011, 21, 16955–16962. [Google Scholar] [CrossRef]
- Li, H.B.; Li, Y.L.; Cheng, J. Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids. Chem. Mater. 2010, 22, 2451–2457. [Google Scholar] [CrossRef]
- Liu, J.X.; Chen, H.; Lin, Z.; Lin, J.M. Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal. Chem. 2010, 82, 7380–7386. [Google Scholar] [CrossRef]
- Ge, S.G.; Zhang, C.C.; Yu, F.; Yan, M.; Yu, J. Layer-by-layer self-assembly CdTe quantum dots and molecularly imprinted polymers modified chemiluminescence sensor for deltamethrin detection. Sens. Actuators B Chem. 2011, 156, 222–227. [Google Scholar] [CrossRef]
- Constantine, C.A.; Gattas-Asfura, K.M.; Mello, S.V.; Crespo, G.; Rastogi, V.; Cheng, T.C.; DeFrank, J.J.; Leblanc, R.M. Layer-by-layer biosensor assembly incorporating functionalized quantum dots. Langmuir 2003, 19, 9863–9867. [Google Scholar] [CrossRef]
- Qu, F.G.; Zhou, X.F.; Xu, J.; Li, H.B.; Xie, G.Y. Luminescence switching of CdTe quantum dots in presence of p-sulfonatocalix [4]arene to detect pesticides in aqueous solution. Talanta 2009, 78, 1359–1363. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.S.; Kore, K.B.; Puneet, K. Nanotechnology and its applications in veterinary and animal science. Vet World 2009, 2, 475–477. [Google Scholar] [CrossRef]
- Hanafy, M.H. Myconanotechnology in veterinary sector: Status quo and future perspectives. Int. J. Vet. Sci. Med. 2018, 6, 270–273. [Google Scholar] [CrossRef]
- Kinsella, B.; O’mahony, J.; Malone, E.; Moloney, M.; Cantwell, H.; Furey, A.; Danaher, M. Current trends in sample preparation for growth promoter and veterinary drug residue analysis. J. Chromatogr. A 2009, 1216, 7977–8015. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- De Alwis, H.; Heller, D.N. Multiclass, multiresidue method for the detection of antibiotic residues in distillers grains by liquid chromatography and ion trap tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 3076–3084. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Petrović, M.; Barceló, D. Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 2006, 70, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.J.; Ying, G.G.; Liu, S.; Zhao, J.L.; Chen, F.; Zhang, R.Q.; Peng, F.Q.; Zhang, Q.Q. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2012, 1244, 123–138. [Google Scholar] [CrossRef]
- Llompart, M.; Celeiro, M.; Dagnac, T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. TrAC Trends Anal. Chem. 2019, 116, 136–150. [Google Scholar] [CrossRef]
- Liu, G.J.; Zhu, B.Q.; Wang, F.; Ren, X.J.; Li, Y.S.; Zhang, F.M.; Wang, J. Quantitative analysis of impurities in leucomycin bulk drugs and tablets: A high performance liquid chromatography-charged aerosol detection method and its conversion to ultraviolet detection method. J. Pharm. Biomed. Anal. 2021, 202, 114148. [Google Scholar] [CrossRef] [PubMed]
- Teglia, C.M.; Peltzer, P.M.; Seib, S.N.; Lajmanovich, R.C.; Culzoni, M.J.; Goicoechea, H.C. Simultaneous multi-residue determination of twenty-one veterinary drugs in poultry litter by modeling three-way liquid chromatography with fluorescence and absorption detection data. Talanta 2017, 167, 442–452. [Google Scholar] [CrossRef]
- Tamim, A.A.; Alzahrani, S.; Al-Subaie, S.; Almutairi, M.A.; Jaber, A.A.; Alowaifeer, A.M. Fast simultaneous determination of 23 veterinary drug residues in fish, poultry, and red meat by liquid chromatography/tandem mass spectrometry. Arab. J. Chem. 2022, 15, 104116. [Google Scholar] [CrossRef]
- Jongedijk, E.; Fifeik, M.; Arrizabalaga-Larrañaga, A.; Polzer, J.; Blokland, M.; Sterk, S. Use of high-resolution mass spectrometry for veterinary drug multi-residue analysis. Food Control 2023, 145, 109488. [Google Scholar] [CrossRef]
- Corrales, J.L.; Cwiklinski, K.; Verissimo, C.D.M.; Dorey, A.; Lalor, R.; Jewhurst, H.; McEvoy, A.; Diskin, M.; Duffy, C.; Cosby, S.L.; et al. Diagnosis of sheep fasciolosis caused by Fasciola hepatica using cathepsin L enzyme-linked immunosorbent assays (ELISA). Vet. Parasitol. 2021, 298, 109517. [Google Scholar] [CrossRef]
- Situ, C.; Crooks, S.R.H.; Baxter, A.G.; Ferguson, J.; Elliott, C.T. On-line detection of sulfamethazine and sulfadiazine in porcine bile using a multi-channel high-throughput SPR biosensor. Anal. Chim. Acta 2002, 473, 143–149. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages | |
---|---|---|---|
Pretreatment | Liquid–liquid extraction [21,22] |
|
|
Solid-phase extraction [23,24] |
|
| |
QuEChERS [25,26] |
|
| |
Accelerated solvent extraction [27,28] |
|
| |
Detection analysis | Gas chromatography–mass spectrometry [29,30] |
|
|
Liquid chromatography [31,32] |
|
| |
Liquid chromatography–mass spectrometry [33,34,35] |
|
| |
Capillary electrophoresis [36,37] |
|
| |
Immunoassay [38,39,40,41,42,43,44] |
|
| |
Biosensor analysis [45,46] |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Zhao, J.; Wan, J. A Review of Veterinary Drug Residue Detection: Recent Advancements, Challenges, and Future Directions. Sustainability 2023, 15, 10413. https://doi.org/10.3390/su151310413
Wu H, Zhao J, Wan J. A Review of Veterinary Drug Residue Detection: Recent Advancements, Challenges, and Future Directions. Sustainability. 2023; 15(13):10413. https://doi.org/10.3390/su151310413
Chicago/Turabian StyleWu, Haoting, Junfang Zhao, and Jianqing Wan. 2023. "A Review of Veterinary Drug Residue Detection: Recent Advancements, Challenges, and Future Directions" Sustainability 15, no. 13: 10413. https://doi.org/10.3390/su151310413
APA StyleWu, H., Zhao, J., & Wan, J. (2023). A Review of Veterinary Drug Residue Detection: Recent Advancements, Challenges, and Future Directions. Sustainability, 15(13), 10413. https://doi.org/10.3390/su151310413