Evaluation of the Implementation of Sustainable Stormwater Management Practices for Landed Residential Areas: A Case Study in Malaysia
Abstract
:1. Introduction
2. Research Methodology
2.1. Identification of Barriers towards Implementing Sustainable Stormwater Management Systems
2.2. Preliminary Investigation: Pilot Study
2.3. Survey: Questionnaire Distributions
- (A)
- Strength (S) factors: Helpful Internal factors
- S1: Captures and stores rainfall temporally.
- S2: Enhances infiltration and slows down the runoff flow.
- S3: Treats pollutants and improves water quality.
- S4: Increases the landscape value.
- S5: Cost-effective.
- (B)
- Weakness (W) factors: Harmful Internal factors
- W1: Lack of knowledge.
- W2: Lack of experts and implemented projects.
- W3: Limited available space.
- W4: Limited policies and public awareness.
- W5: Financial issues.
- (C)
- Opportunity (O) factors: Helpful External factors
- O1: Develops models that upgrade the stormwater management system.
- O2: Provides long-term solutions for stormwater management problems.
- O3: Encourages local stakeholders’ participation.
- O4: Develops new stormwater management procedures and planning routines.
- O5: Enables cost estimation.
- (D)
- Threat (T) factors: Harmful External factors
- T1: Compatibility with the existing practices.
- T2: Reluctant to accept these practices.
- T3: Different guidance and criteria.
- T4: Difficult to obtain permits or approvals.
- T5: Lack of cooperation between the participants.
- n = = 118 respondents
- n = sample size;
- N = population size;
- e = level of precision.
2.4. Data Analysis: Correlation Analysis
2.5. Observations
2.6. Interview Sessions
3. Results and Discussion
3.1. Preliminary Findings
3.2. Questionnaire Respondents
3.2.1. Data for Strength (S) Factors
3.2.2. Data for Weakness (W) Factors
3.2.3. Data for Opportunity (O) Factors
3.2.4. Data for Threat (T) Factors
3.3. Correlation Analysis
3.3.1. Correlation Analysis on Strength (S) Factors
3.3.2. Correlation Analysis on Weakness (W) Factors
3.3.3. Correlation Analysis on Opportunity (O) Factors
3.3.4. Correlation Analysis on Threat (T) Factors
3.4. Observations
3.5. Interview Sessions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Musarat, M.A.; Alaloul, W.S.; Irfan, M.; Sreenivasan, P.; Rabbani, M.B.A. Health and safety improvement through Indus-trial Revolution 4.0: Malaysian construction industry case. Sustainability 2022, 15, 201. [Google Scholar] [CrossRef]
- Musarat, M.A.; Alaloul, W.S.; Hameed, N.; Qureshi, A.H.; Wahab, M.M.A. Efficient Construction Waste Management: A Solution through Industrial Revolution (IR) 4.0 Evaluated by AHP. Sustainability 2022, 15, 274. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, L.; Wang, X.; Liu, D.; Zhu, L.; Zhou, B.; Sun, J.; Liu, J. The capacity of greening roof to reduce stormwater runoff and pollution. Landsc. Urban Plan. 2015, 144, 142–150. [Google Scholar] [CrossRef]
- Bodoque, J.M.; Amérigo, M.; Díez-Herrero, A.; García, J.A.; Cortés, B.; Ballesteros-Cánovas, J.A.; Olcina, J. Improvement of resilience of urban areas by integrating social perception in flash-flood risk management. J. Hydrol. 2016, 541, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Maqsoom, A.; Aslam, B.; Ismail, S.; Thaheem, M.J.; Ullah, F.; Zahoor, H.; Musarat, M.A.; Vatin, N.I. Assessing Rainwater Harvesting Potential in Urban Areas: A Building Information Modelling (BIM) Approach. Sustainability 2021, 13, 12583. [Google Scholar] [CrossRef]
- Wanielista, M.P.; Yousef, Y.A. Stormwater Management; John Wiley & Sons: Hoboken, NJ, USA, 1992. [Google Scholar]
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.; Fernandes, J.; David, L. Key issues for sustainable urban stormwater management. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef]
- Al-Hamati, A.A.; Ghazali, A.H.; Mohammed, T.A. Determination of storage volume required in a sub-surface storm-water detention/retention system. J. Hydro-Environ. Res. 2010, 4, 47–53. [Google Scholar] [CrossRef]
- Osman, M.; Yusof, K.W.; Takaijudin, H.; Goh, H.W.; Malek, M.A.; Azizan, N.A.; Ghani, A.A.; Abdurrasheed, A.S. A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System. Sustainability 2019, 11, 5415. [Google Scholar] [CrossRef] [Green Version]
- Sidek, I.D.L.M.; Ghani, A.A.; Azazi, N.; Zakaria, D.M.; Desa, N.; Othman, N. An Assessment of Stormwater Management Practices in Malaysia. Jurutera 2006. Available online: https://redac.eng.usm.my/html/publish/2006_02.pdf (accessed on 15 January 2022).
- Ayub, K.R.B. Green Roof Performance for Stormwater Management in Malaysia. Ph.D. Thesis, Universiti Sains Malaysia, Gelugor, Malaysia, 2020. [Google Scholar]
- Ismail, M.L.; Musa, S.M.S.; Kasim, N.; Zainal, R. MSMA Implementation Factors in Integrated Stormwater Management. IOP Conf. Ser. Earth Environ. Sci. 2022, 1022, 12068. [Google Scholar] [CrossRef]
- Hassan, H. Heavy Rain Causes Floods in Seven Malaysian States; More People Evacuated. 2022. Available online: https://www.straitstimes.com/asia/se-asia/heavy-rain-causes-floods-in-seven-malaysian-states-more-people-evacuated (accessed on 15 January 2022).
- Shafique, M.; Kim, R. Retrofitting the Low Impact Development Practices into Developed Urban areas Including Barriers and Potential Solution. Open Geosci. 2017, 9, 240–254. [Google Scholar] [CrossRef]
- Sharma, D.; Kansal, A. Sustainable city: A case study of stormwater management in economically developed urban catch-ments. In Mechanism Design for Sustainability: Techniques and Cases; Springer: Berlin/Heidelberg, Germany, 2013; pp. 243–263. [Google Scholar]
- Kordana, S.; Słyś, D. An analysis of important issues impacting the development of stormwater management systems in Poland. Sci. Total. Environ. 2020, 727, 138711. [Google Scholar] [CrossRef] [PubMed]
- Jaber, F. Bioretention and permeable pavement performance in clay soil. In International Low Impact Development Conference 2015: LID: It Works in All Climates and Soils; ASCE: Houston, TX, USA, 2015; pp. 151–160. [Google Scholar]
- Kok, K.H.; Mohd Sidek, L.; Chow, M.F.; Zainal Abidin, M.R.; Basri, H.; Hayder, G. Evaluation of green roof performances for urban stormwater quantity and quality controls. Int. J. River Basin Manag. 2015, 14, 1–7. [Google Scholar] [CrossRef]
- da Silva, M.; Najjar, M.K.; Hammad, A.W.A.; Haddad, A.; Vazquez, E. Assessing the Retention Capacity of an Experimental Green Roof Prototype. Water 2019, 12, 90. [Google Scholar] [CrossRef] [Green Version]
- Pęczkowski, G.; Kowalczyk, T.; Szawernoga, K.; Orzepowski, W.; Żmuda, R.; Pokładek, R. Hydrological Performance and Runoff Water Quality of Experimental Green Roofs. Water 2018, 10, 1185. [Google Scholar] [CrossRef] [Green Version]
- Romali, N.S.; Othman, S.N.; Muhd Ramli, N.N. The application of green roof for stormwater quantity and quality improvement. IOP Conf. Ser. Earth Environ. Sci. 2021, 682, 012029. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Z.; Shibata, S. Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan. Sustainability 2020, 12, 9982. [Google Scholar] [CrossRef]
- Rusli, N.; Majid, M.R.; Ludin, A.N.M. Low Impact Development: An Approach to Retrofit a Conventional Stormwater Management System. In Proceedings of the 5th South East Asian Technical University Consortium (SEATUC) Symposium, Hanoi, Vietnam, 24–25 February 2011; Available online: https://www.researchgate.net/publication/327200107_LOW_IMPACT_DEVELOPMENT_AN_APPROACH_TO_RETROFIT_A_CONVENTIONAL_STORMWATER_MANAGEMENT_SYSTEM (accessed on 15 January 2022).
- Nuha, N.E.; Mohd Sidek, L. Stormwater Quality Performance using Bioretention System: A Preliminary Study. J. Intelek 2015, 9, 43–50. Available online: https://ir.uitm.edu.my/id/eprint/35301/1/35301.pdf (accessed on 15 January 2022).
- Xia, J.; Wang, H.; Stanford, R.L.; Pan, G.; Yu, S.L. Hydrologic and water quality performance of a laboratory scale bioretention unit. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y. Experiment and simulation of layered bioretention system for hydrological performance. J. Water Reuse Desalin. 2019, 9, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Sañudo-Fontaneda, L.A.; Charlesworth, S.M.; Castro-Fresno, D.; Andres-Valeri, V.C.A.; Rodriguez-Hernandez, J. Water qual-ityand quantity assessment of pervious pavements performance in experimental car park areas. Water Sci. Technol. 2014, 69, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Pilon, B.S.; Tyner, J.S.; Yoder, D.C.; Buchanan, J.R. The Effect of Pervious Concrete on Water Quality Parameters: A Case Study. Water 2019, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Gürel, E. Swot Analysis: A Theoretical Review. J. Int. Soc. Res. 2017, 10, 994–1006. [Google Scholar] [CrossRef]
- Zainordin, N. Barriers in the Incorporation and Implementation of Sustainable Development in Malaysia. In Proceedings of the 7th International Borneo Business Conference (IBBC), Kota Kinabalu Sabah, Malaysia, 7–8 September 2016. [Google Scholar]
- Chang, C.K.; Zakaria, N.A.; Othman, M.R. 2018 Integrated Urban Stormwater Management and Planning for New Township Development in Malaysia. MATEC Web Conf. 2018, 246, 01112. [Google Scholar] [CrossRef] [Green Version]
- Bohman, A.; Glaas, E.; Karlson, M. Integrating Sustainable Stormwater Management in Urban Planning: Ways Forward towards Institutional Change and Collaborative Action. Water 2020, 12, 203. [Google Scholar] [CrossRef] [Green Version]
- Bidhendi, G.N.; Zand, A.L.; Heir, A.V.; Bihendi, A.M. Prioritizing of Strategies for The Ecological Design of Urban Waste Transfer Stations Using SWOT Analysis. J. Environ. Sci. Stud. (JESS) 2020, 5, 2665–2672. [Google Scholar]
- Van Teijlingen, E.R.; Rennie, A.M.; Hundley, V.; Graham, W. The importance of conducting and reporting pilot studies: The example of the Scottish Births Survey. J. Adv. Nurs. 2001, 34, 289–295. [Google Scholar] [CrossRef]
- Matthews, B.; Ross, L. Research Methods; Longman: Harlow, UK, 2010. [Google Scholar]
- Saldana, J. Fundamentals of Qualitative Research; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Yamane, T. Statistics: An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1976. [Google Scholar]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 7: Correlation and regression. Crit. Care 2003, 7, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Kafle, S.C. Correlation and regression analysis using SPSS. Manag. Technol. Soc. Sci. 2019, 1, 126–132. [Google Scholar]
- Nathan, G. A non-essentialist model of culture. Int. J. Cross Cult. Manag. 2015, 15, 101–124. [Google Scholar] [CrossRef]
- McLeod, S. What a p-Value Tells You about Statistical Significance. 2019. Available online: https://www.simplypsychology.org/p-value.html (accessed on 15 January 2022).
- Das, K.R.; Uddin, K.S. How to Conduct Correlation and Regression through SPSS. Aust. J. Basic Appl. Sci. 2021, 15, 16–23. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Bevans, R. Understanding P-Value. 2020. Available online: https://www.scribbr.com/statistics/p-value/ (accessed on 15 January 2022).
- Miles, M.; Huberman, M. Qualitative Data Analysis, 4th ed.; Sage Publications: New York, NY, USA, 1994. [Google Scholar]
- Chang, N.-B.; Lu, J.-W.; Chui, T.F.M.; Hartshorn, N. Global policy analysis of low impact development for stormwater management in urban regions. Land Use Policy 2018, 70, 368–383. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Perera, V.M.M.; Muthukumaran, S. Rainwater as an alternative drinking water source for the Chronic Kidney Disease Of Uncertain etiology (CKDu) prone areas: A case study for Girandurukotte, Sri Lanka. J. Water Sanit. Hyg. Dev. 2020, 10, 539–548. [Google Scholar] [CrossRef]
- Ghofrani, Z.; Sposito, V.; Faggian, R. Modelling the impacts of blue-green infrastructure on rainfall runoff: A case study of Eastern Victoria, Australia. Int. J. Water 2019, 13, 151–172. [Google Scholar] [CrossRef]
- D’ambrosio, R.; Longobardi, A.; Mobilia, M. Temporal Changes of Green Roofs Retention Capacity. In Computational Science and Its Applications—ICCSA 2022; Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; Volume 13376. [Google Scholar] [CrossRef]
Practices | References | Parameters | |
---|---|---|---|
Water Quantity | Water Quality | ||
Green Roof | [19] | Peak discharge reduced up to 26% | An average Water Quality Index (WQI) of 92 (Class I) |
[20] |
| - | |
[21] |
| The total nitrogen and phosphate depended on the additional fertilization | |
[22] |
|
| |
Rain Garden/Bioretention System | [23] |
| Contaminant reduction for a three-year return period |
[24] |
| - | |
[25] | - | Water samples reached the Water Quality Index’s Class I and Class II levels | |
[26] | Outflow peaks were delayed by 52% for at least 13 min | TP and COD removal by means of:
| |
[27] |
| ||
Porous Pavement | [18] | Reduced runoff by up to 65% | Improved water quality |
[28] | No generation of surface runoff under rainfall intensities of five minutes duration | Limestone aggregates performed better in terms of water quality | |
[29] | Decreased the total suspended solids, nitrite, chemical oxygen demand, and polycyclic aromatic hydrocarbons concentration |
Reference | SWOT Variables | |||
---|---|---|---|---|
Strength (S) | Weakness (W) | Opportunity (O) | Threat (T) | |
[15] | 1. Able to collect and store runoff. 2. Mitigates the adverse effects of urbanization. | 1. Limited space available for LID implementation. 2. Limited information on LID technology. 3. Lack of technical power and manpower, and less financial power. | 1. Identifies the basic function of each LID practice. 2. Considers the suitable LID practices. | 1. Compatibility with existing practices. 2. Misperceptions about the retrofitting LID practices. |
[32] | 1. Minimizes the amount of pollution. 2. Reduces stormwater runoff peaks and volumes. | 1. Adverse impacts on downstream properties. 2. Damages stormwater systems due to greater runoff volumes. | 1. Formulates long- term solutions for the flooding and stormwater management problems. 2. Protects and enhances the natural water-dependent ecosystems. | 1. Alteration in the storm annual recurrent interval (ARI) for future development. 2. Authority approval for the runoff diversion. |
[33] | 1. Flood protection, and minimizes pollution. 2. Groundwater recharged. 3. Rainwater harvesting. | 1. Lack of informal institutions. 2. Lack of trust between different sectors. 3. Lack of experienced teams for the implementation. | 1. Develops new working procedures and planning routines. 2. Regulative changes towards cooperative institutional mechanisms | 1. Lack of a supportive legal framework and political mandate. 2. Cooperation and great need for social capital from various sectors. |
[34] | 1. Slows down and minimizes runoff. 2. Minimizes erosion and recharges groundwater resources. | 1. Financial issue-design, construction, operation, and maintenance. 2. Reluctance to accept new approaches for sustainability. | 1. Prepares the complete design standards. 2. Prepares plans to manage the system facilities after construction. | 1. Comparison with existing storm water management systems. 2. Misperceptions about the practices retrofiring |
No. | Variables | Factors | Score (1–5) | Mean | ||
---|---|---|---|---|---|---|
Respondent 1 | Respondent 2 | Respondent 3 | ||||
1 | Strength (S) | Captures and stores rainfall temporally. | 4 | 4 | 5 | 4.3 |
2 | Enhances infiltration and slows down runoff flow. | 4 | 5 | 5 | 4.7 | |
3 | Treats pollutants and improves water quality. | 5 | 5 | 4 | 4.7 | |
4 | Increases the landscape value. | 5 | 5 | 4 | 4.7 | |
5 | Cost-effective. | 3 | 3 | 4 | 3.3 | |
6 | Weakness (W) | Lack of knowledge. | 5 | 5 | 5 | 5.0 |
7 | Lack of experts and implemented projects. | 4 | 4 | 4 | 4.0 | |
8 | Limited available space. | 5 | 5 | 5 | 5.0 | |
9 | Limited policies and public awareness. | 4 | 4 | 4 | 4.0 | |
10 | Financial issues. | 5 | 5 | 5 | 5.0 | |
11 | Opportunity (O) | Develops models that upgrade the stormwater management system. | 4 | 3 | 4 | 3.7 |
12 | Provides long-term solutions for stormwater management problems. | 4 | 4 | 4 | 4.0 | |
13 | Encourages local stakeholders’ participations. | 4 | 5 | 5 | 4.7 | |
14 | Develops new stormwater management procedures and planning routines. | 4 | 4 | 4 | 4.0 | |
15 | Enables cost estimation. | 4 | 5 | 5 | 4.7 | |
16 | Threat (T) | Compatibility with the conventional practices. | 4 | 4 | 4 | 4.0 |
17 | Reluctant to accept these practices. | 5 | 4 | 4 | 4.3 | |
18 | Different guidance and criteria | 5 | 4 | 5 | 4.7 | |
19 | Difficult to obtain the permits or approvals. | 4 | 4 | 4 | 4.0 | |
20 | Lack of cooperation between participants. | 5 | 5 | 4 | 4.7 |
Sector | Percentage |
---|---|
Government Agency | 50% |
Private Agency | 50% |
Designation | Percentage |
Developer | 21.2% |
Project Director/Manager/Assistant Manager | 35.6% |
Engineer/QAQC | 43.2% |
Working Experience | Percentage |
<5 years | 26.3% |
5–10 years | 31.4% |
11–15 years | 29.7% |
>15 years | 12.7% |
Practices | Green Roof | Rain Garden/Bioretention System | Porous Pavement | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scale | SD (1) | D (2) | N (3) | A (4) | SA (5) | SD (1) | D (2) | N (3) | A (4) | SA (5) | SD (1) | D (2) | N (3) | A (4) | SA (5) | |
Factors | ||||||||||||||||
S1 | 1 | 2 | 24 | 52 | 38 | 0 | 3 | 20 | 55 | 40 | 3 | 5 | 27 | 55 | 28 | |
S2 | 2 | 4 | 20 | 53 | 39 | 0 | 1 | 21 | 48 | 48 | 10 | 18 | 21 | 60 | 9 | |
S3 | 0 | 2 | 22 | 51 | 43 | 0 | 1 | 19 | 47 | 51 | 25 | 53 | 23 | 12 | 5 | |
S4 | 1 | 0 | 23 | 50 | 44 | 0 | 0 | 25 | 43 | 50 | 3 | 3 | 39 | 64 | 9 | |
S5 | 1 | 10 | 29 | 64 | 14 | 1 | 8 | 27 | 71 | 11 | 2 | 3 | 29 | 67 | 17 |
Practices | Green Roof | Rain Garden/Bioretention System | Porous Pavement | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scale | SD (1) | D (2) | N (3) | A (4) | SA (5) | SD (1) | D (2) | N (3) | A (4) | SA (5) | SD (1) | D (2) | N (3) | A (4) | SA (5) | |
Factors | ||||||||||||||||
W1 | 1 | 5 | 26 | 61 | 25 | 0 | 17 | 30 | 56 | 15 | 2 | 13 | 32 | 58 | 13 | |
W2 | 2 | 6 | 23 | 59 | 28 | 2 | 2 | 28 | 55 | 31 | 1 | 12 | 30 | 58 | 17 | |
W3 | 1 | 7 | 26 | 72 | 12 | 0 | 3 | 28 | 69 | 18 | 6 | 27 | 26 | 49 | 10 | |
W4 | 2 | 2 | 24 | 62 | 28 | 2 | 0 | 24 | 65 | 27 | 2 | 3 | 24 | 69 | 20 | |
W5 | 0 | 1 | 27 | 65 | 25 | 0 | 4 | 27 | 69 | 18 | 1 | 2 | 29 | 66 | 20 |
Practices | Green Roof | Rain Garden/Bioretention System | Porous Pavement | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scale | SD (1) | D (2) | N (3) | A (4) | SA (5) | SD (1) | D (2) | N (3) | A (4) | SA (5) | SD (1) | D (2) | N (3) | A (4) | SA (5) | |
Factors | ||||||||||||||||
O1 | 2 | 1 | 22 | 48 | 45 | 1 | 1 | 25 | 46 | 45 | 0 | 3 | 24 | 47 | 44 | |
O2 | 3 | 1 | 24 | 42 | 48 | 0 | 1 | 23 | 42 | 52 | 1 | 2 | 26 | 43 | 46 | |
O3 | 2 | 2 | 22 | 41 | 51 | 0 | 1 | 22 | 45 | 50 | 0 | 4 | 24 | 41 | 49 | |
O4 | 2 | 1 | 21 | 38 | 56 | 0 | 1 | 24 | 39 | 54 | 0 | 2 | 26 | 39 | 51 | |
O5 | 2 | 1 | 24 | 39 | 52 | 1 | 1 | 23 | 40 | 53 | 1 | 3 | 24 | 40 | 50 |
Practices | Green Roof | Rain Garden/Bioretention System | Porous Pavement | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scale | SD (1) | D (2) | N (3) | A (4) | SA (5) | SD (1) | D (2) | N (3) | A (4) | SA (5) | SD (1) | D (2) | N (3) | A (4) | SA (5) | |
Factors | ||||||||||||||||
T1 | 2 | 0 | 25 | 52 | 39 | 1 | 2 | 26 | 52 | 37 | 0 | 5 | 25 | 54 | 34 | |
T2 | 2 | 3 | 28 | 48 | 37 | 3 | 4 | 29 | 49 | 33 | 2 | 4 | 28 | 53 | 31 | |
T3 | 0 | 3 | 28 | 51 | 36 | 1 | 4 | 28 | 50 | 35 | 0 | 6 | 30 | 53 | 29 | |
T4 | 0 | 2 | 25 | 55 | 36 | 1 | 5 | 24 | 58 | 30 | 0 | 2 | 26 | 61 | 29 | |
T5 | 2 | 2 | 29 | 51 | 34 | 1 | 1 | 23 | 40 | 53 | 1 | 3 | 24 | 40 | 50 |
S1 | S2 | S3 | S4 | S5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 1.000 | 1.000 | 1.000 | ||||||||||||
S2 | 0.832 | 0.818 | 0.753 | 1.000 | 1.000 | 1.000 | |||||||||
S3 | 0.708 | 0.719 | 0.693 | 0.748 | 0.784 | 0.759 | 1.000 | 1.000 | 1.000 | ||||||
S4 | 0.518 | 0.500 | 0.528 | 0.613 | 0.650 | 0.613 | 0.673 | 0.686 | 0.632 | 1.000 | 1.000 | 1.000 | |||
S5 | 0.576 | 0.591 | 0.692 | 0.570 | 0.594 | 0.655 | 0.572 | 0.664 | 0.665 | 0.676 | 0.560 | 0.507 | 1.000 | 1.000 | 1.000 |
W1 | W2 | W3 | W4 | W5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | 1.000 | 1.000 | 1.000 | ||||||||||||
W2 | 0.415 | 0.405 | 0.459 | 1.000 | 1.000 | 1.000 | |||||||||
W3 | 0.472 | 0.464 | 0.294 | 0.358 | 0.315 | 0.365 | 1.000 | 1.000 | 1.000 | ||||||
W4 | 0.496 | 0.353 | 0.374 | 0.464 | 0.449 | 0.449 | 0.401 | 0.207 | 0.425 | 1.000 | 1.000 | 1.000 | |||
W5 | 0.483 | 0.479 | 0.404 | 0.469 | 0.386 | 0.418 | 0.433 | 0.339 | 0.186 | 0.408 | 0.339 | 0.256 | 1.000 | 1.000 | 1.000 |
O1 | O2 | O3 | O4 | O5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O1 | 1.000 | 1.000 | 1.000 | ||||||||||||
O2 | 0.876 | 0.853 | 0.875 | 1.000 | 1.000 | 1.000 | |||||||||
O3 | 0.893 | 0.844 | 0.862 | 0.901 | 0.937 | 0.851 | 1.000 | 1.000 | 1.000 | ||||||
O4 | 0.873 | 0.837 | 0.847 | 0.874 | 0.912 | 0.839 | 0.938 | 0.905 | 0.883 | 1.000 | 1.000 | 1.000 | |||
O5 | 0.875 | 0.823 | 0.857 | 0.865 | 0.887 | 0.846 | 0.942 | 0.880 | 0.866 | 0.900 | 0.920 | 0.898 | 1.000 | 1.000 | 1.000 |
T1 | T2 | T3 | T4 | T5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 1.000 | 1.000 | 1.000 | ||||||||||||
T2 | 0.503 | 0.472 | 0.444 | 1.000 | 1.000 | 1.000 | |||||||||
T3 | 0.501 | 0.201 | 0.246 | 0.426 | 0.375 | 0.310 | 1.000 | 1.000 | 1.000 | ||||||
T4 | 0.425 | 0.373 | 0.484 | 0.506 | 0.419 | 0.221 | 0.382 | 0.437 | 0.234 | 1.000 | 1.000 | 1.000 | |||
T5 | 0.490 | 0.462 | 0.387 | 0.376 | 0.462 | 0.115 | 0.466 | 0.416 | 0.245 | 0.460 | 0.210 | 0.115 | 1.000 | 1.000 | 1.000 |
Residence Criteria | Taman Meru Perdana | Taman Meru Suria | Taman Lakeville | Taman Gemilang |
---|---|---|---|---|
Location | Ipoh | Ipoh | Seri Iskandar | Seri Iskandar |
Total Area (sf) | 320,500 | 220,500 | 340,000 | 210,500 |
Type of Housing | Landed | Landed | Landed | Landed |
Total House (unit) | 224 | 186 | 255 | 140 |
Total Population (4 people per house) | 896 | 744 | 1020 | 560 |
Type of sustainable stormwater management | Retention Pond | Retention Pond | Retention Pond | Detention Pond |
Size of the sustainable practices (m2) | 250 | 280 | 550 | 230 |
Location of the sustainable practice in the residential area | East | South- East | South | South- East |
Participant Criteria | Interviewee 1 | Interviewee 2 | Interviewee 3 |
---|---|---|---|
Location | DID Ampang | DID Cheras | DID Kuala Langat |
Designation | Civil Engineer | Civil Engineer | Assistant Director |
Working experience | 2 Years | >10 years | >10 years |
Knowledge on sustainable stormwater management systems | ü | ü | ü |
Involvement in sustainable stormwater management projects | û | ü | ü |
Opinion on the performance of the existing stormwater system | Good | Good | Good |
Reasons for flood occurrence and other water-related problems |
|
|
|
Agreement on the implementation | ü | ü | û |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Khadir, F.K.B.; Yee, N.C.; Takaijudin, H.B.; Zawawi, N.A.W.A.; Alaloul, W.S.; Musarat, M.A. Evaluation of the Implementation of Sustainable Stormwater Management Practices for Landed Residential Areas: A Case Study in Malaysia. Sustainability 2023, 15, 10414. https://doi.org/10.3390/su151310414
Abdul Khadir FKB, Yee NC, Takaijudin HB, Zawawi NAWA, Alaloul WS, Musarat MA. Evaluation of the Implementation of Sustainable Stormwater Management Practices for Landed Residential Areas: A Case Study in Malaysia. Sustainability. 2023; 15(13):10414. https://doi.org/10.3390/su151310414
Chicago/Turabian StyleAbdul Khadir, Fatin Khalida Binti, Ng Cheng Yee, Husna Binti Takaijudin, Noor Amila Wan Abdullah Zawawi, Wesam Salah Alaloul, and Muhammad Ali Musarat. 2023. "Evaluation of the Implementation of Sustainable Stormwater Management Practices for Landed Residential Areas: A Case Study in Malaysia" Sustainability 15, no. 13: 10414. https://doi.org/10.3390/su151310414
APA StyleAbdul Khadir, F. K. B., Yee, N. C., Takaijudin, H. B., Zawawi, N. A. W. A., Alaloul, W. S., & Musarat, M. A. (2023). Evaluation of the Implementation of Sustainable Stormwater Management Practices for Landed Residential Areas: A Case Study in Malaysia. Sustainability, 15(13), 10414. https://doi.org/10.3390/su151310414