Sustainable Potato Growth under Straw Mulching Practices
Abstract
:1. Introduction
2. The Growing Trend toward Organic Potato Practice
3. Agronomic Effects of Straw Mulch in Potatoes
3.1. Growing Potatoes Requires Abiotic Conditions
3.2. Straw Properties, Yield and Uses
3.3. Economic Costs and Benefits of Mulching for Potato Production
3.4. The Composition of Different Types of Mulches and Their Role in Potato Growth and Development
4. Straw Mulching and Soil Health
4.1. Straw Mulching and Soil Properties
4.2. Straw-Mulched Soil Chemical Properties
4.3. Straw Mulching and Soil Biota
The Effect of Straw Mulching on Soil Microorganisms
5. Nitrogen Dynamics, Weeds, Yield, and Soil Erosion in Organic Potatoes with Straw Mulch
6. Potato Diseases and Straw Mulching
6.1. Microclimate
6.2. Late Blight
6.3. Black Scurf
7. Advantages and Disadvantages of Mulches
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martiniello, G. Bitter Sugarification: Sugar Frontier and Contract Farming in Uganda. Globalizations 2021, 18, 355–371. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Zeng, F.; Yang, Y.; Xu, D.; Zhao, Y.-C.; Liu, X.; Kaur, L.; Liu, G.; Singh, J. Potato Processing Industry in China: Current Scenario, Future Trends and Global Impact. Potato Res. 2022, 66, 543–562. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.K. Nutritional Significance of Processed Potato Products. In Potato Nutrition and Food Security; Springer: Singapore, 2020; pp. 247–270. [Google Scholar]
- Xue, L.; Liu, X.; Lu, S.; Cheng, G.; Hu, Y.; Liu, J.; Dou, Z.; Cheng, S.; Liu, G. China’s Food Loss and Waste Embodies Increasing Environmental Impacts. Nat. Food 2021, 2, 519–528. [Google Scholar] [CrossRef]
- Anning, D.K.; Qiu, H.; Zhang, C.; Ghanney, P.; Zhang, Y.; Guo, Y. Maize Straw Return and Nitrogen Rate Effects on Potato (Solanum tuberosum L.) Performance and Soil Physicochemical Characteristics in Northwest China. Sustainability 2021, 13, 5508. [Google Scholar] [CrossRef]
- Tunio, M.H.; Gao, J.; Shaikh, S.A.; Lakhiar, I.A.; Qureshi, W.A.; Solangi, K.A.; Chandio, F.A. Potato Production in Aeroponics: An Emerging Food Growing System in Sustainable Agriculture Forfood Security. Chil. J. Agric. Res. 2020, 80, 118–132. [Google Scholar] [CrossRef] [Green Version]
- Ávila-Valdés, A.; Quinet, M.; Lutts, S.; Martínez, J.P.; Lizana, X.C. Tuber Yield and Quality Responses of Potato to Moderate Temperature Increase during Tuber Bulking under Two Water Availability Scenarios. Field Crops Res. 2020, 251, 107786. [Google Scholar] [CrossRef]
- Beillouin, D.; Schauberger, B.; Bastos, A.; Ciais, P.; Makowski, D. Impact of Extreme Weather Conditions on European Crop Production in 2018. Philos. Trans. R. Soc. B 2020, 375, 20190510. [Google Scholar] [CrossRef]
- Frische, T.; Egerer, S.; Matezki, S.; Pickl, C.; Wogram, J. 5-Point Programme for Sustainable Plant Protection. Environ. Sci. Eur. 2018, 30, 8. [Google Scholar] [CrossRef] [Green Version]
- Ansari, R.A.; Sumbul, A.; Rizvi, R.; Mahmood, I. Organic Soil Amendments: Potential Tool for Soil and Plant Health Management. In Plant Health under Biotic Stress: Volume 1: Organic Strategies; Springer: Singapore, 2019; pp. 1–35. [Google Scholar]
- Birch, P.R.; Bryan, G.; Fenton, B.; Gilroy, E.M.; Hein, I.; Jones, J.T.; Prashar, A.; Taylor, M.A.; Torrance, L.; Toth, I.K. Crops That Feed the World 8: Potato: Are the Trends of Increased Global Production Sustainable? Food Secur. 2012, 4, 477–508. [Google Scholar] [CrossRef]
- Goswami, S.B.; Mondal, R.; Mandi, S.K. Crop Residue Management Options in Rice–Rice System: A Review. Arch. Agron. Soil Sci. 2020, 66, 1218–1234. [Google Scholar] [CrossRef]
- Singh, S.P.; Mahapatra, B.; Pramanick, B.; Yadav, V.R. Effect of Irrigation Levels, Planting Methods and Mulching on Nutrient Uptake, Yield, Quality, Water and Fertilizer Productivity of Field Mustard (Brassica rapa L.) under Sandy Loam Soil. Agric. Water Manag. 2021, 244, 106539. [Google Scholar] [CrossRef]
- Majumdar, B.; Sarkar, S.; Chattopadhyay, L.; Barai, S. Impact of Conservation Agriculture Practices on Soil Microbial Diversity. In Conservation Agriculture and Climate Change; CRC Press: Boca Raton, FL, USA, 2022; pp. 335–350. ISBN 1-00-336466-7. [Google Scholar]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential Agricultural and Environmental Benefits of Mulches—A Review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Use of Plastic Mulch in Agriculture and Strategies to Mitigate the Associated Environmental Concerns. Adv. Agron. 2020, 164, 231–287. [Google Scholar]
- Reganold, J.P.; Wachter, J.M. Organic Agriculture in the Twenty-First Century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Sievers-Glotzbach, S.; Euler, J.; Frison, C.; Gmeiner, N.; Kliem, L.; Mazé, A.; Tschersich, J. Beyond the Material: Knowledge Aspects in Seed Commoning. Agric. Hum. Values 2021, 38, 509–524. [Google Scholar] [CrossRef]
- Toungos, M.D.; Bulus, Z.W. Cover Crops Dual Roles: Green Manure and Maintenance of Soil Fertility, a Review. Int. J. Innov. Agric. Biol. Res. 2019, 7, 47–59. [Google Scholar]
- Díaz, M.G.; Lucas-Borja, M.E.; Gonzalez-Romero, J.; Plaza-Alvarez, P.A.; Navidi, M.; Liu, Y.-F.; Wu, G.-L.; Zema, D.A. Effects of Post-Fire Mulching with Straw and Wood Chips on Soil Hydrology in Pine Forests under Mediterranean Conditions. Ecol. Eng. 2022, 182, 106720. [Google Scholar] [CrossRef]
- Adhikari, P.; Araya, H.; Aruna, G.; Balamatti, A.; Banerjee, S.; Baskaran, P.; Barah, B.; Behera, D.; Berhe, T.; Boruah, P. System of Crop Intensification for More Productive, Resource-Conserving, Climate-Resilient, and Sustainable Agriculture: Experience with Diverse Crops in Varying Agroecology. Int. J. Agric. Sustain. 2018, 16, 1–28. [Google Scholar] [CrossRef]
- Dhaliwal, S.; Naresh, R.; Mandal, A.; Singh, R.; Dhaliwal, M. Dynamics and Transformations of Micronutrients in Agricultural Soils as Influenced by Organic Matter Build-up: A Review. Environ. Sustain. Indic. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Uroić Štefanko, A.; Leszczynska, D. Impact of Biomass Source and Pyrolysis Parameters on Physicochemical Properties of Biochar Manufactured for Innovative Applications. Front. Energy Res. 2020, 8, 138. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, Y.; Xiao, D.; Cheng, J.; Zhao, J. A Biodegradable Water-Triggered Chitosan/Hydroxypropyl Methylcellulose Pesticide Mulch Film for Sustained Control of Phytophthora sojae in Soybean (Glycine max L. Merr.). J. Clean. Prod. 2020, 245, 118943. [Google Scholar] [CrossRef]
- Halterman, D.; Charkowski, A.; Verchot, J. Potato, Viruses, and Seed Certification in the USA to Provide Healthy Propagated Tubers. Pest Technol. 2012, 6, 1–14. [Google Scholar]
- Bisognin, D.A. Breeding Vegetatively Propagated Horticultural Crops. Crop Breed. Appl. Biotechnol. 2011, 11, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Farooq, M.; Bhattacharya, S.S.; Gogoi, N. Management Strategies for Sustainable Yield of Potato Crop under High Temperature. Arch. Agron. Soil Sci. 2017, 63, 276–287. [Google Scholar] [CrossRef]
- Ram, R.; Pathak, R. Organic Approaches for Sustainable Production of Horticultural Crops: A Review. Progress. Hortic. 2016, 48, 1–16. [Google Scholar] [CrossRef]
- Biswal, P.; Swain, D.K.; Jha, M.K. Straw Mulch with Limited Drip Irrigation Influenced Soil Microclimate in Improving Tuber Yield and Water Productivity of Potato in Subtropical India. Soil Tillage Res. 2022, 223, 105484. [Google Scholar] [CrossRef]
- MacRae, R.J.; Frick, B.; Martin, R.C. Economic and Social Impacts of Organic Production Systems. Can. J. Plant Sci. 2007, 87, 1037–1044. [Google Scholar] [CrossRef]
- Mzoughi, N. Farmers Adoption of Integrated Crop Protection and Organic Farming: Do Moral and Social Concerns Matter? Ecol. Econ. 2011, 70, 1536–1545. [Google Scholar] [CrossRef]
- Rana, A.; Jhilta, P. Improved Practices Through Biological Means for Sustainable Potato Production. In Microbial Biotechnology in Crop Protection; Springer: Singapore, 2021; pp. 189–207. [Google Scholar]
- Fiers, M.; Chatot, C.; Edel-Hermann, V.; Le Hingrat, Y.; Konate, A.Y.; Gautheron, N.; Guillery, E.; Alabouvette, C.; Steinberg, C. Diversity of Microorganisms Associated with Atypical Superficial Blemishes of Potato Tubers and Pathogenicity Assessment. Eur. J. Plant Pathol. 2010, 128, 353–371. [Google Scholar] [CrossRef]
- Wright, P.; Falloon, R.; Hedderley, D. Different Vegetable Crop Rotations Affect Soil Microbial Communities and Soilborne Diseases of Potato and Onion: Literature Review and a Long-Term Field Evaluation. N. Z. J. Crop Hortic. Sci. 2015, 43, 85–110. [Google Scholar] [CrossRef]
- GunactÕ, H.; ErkÕlÕc, A.; Ozgonen, H. Status of Potato Wart Disease (Synchytrium endobioticum) in Turkey and Control Methods. Eur. J. Plant Sci. Biotechnol. 2012, 7, 25–28. [Google Scholar]
- Döring, T. Organic Production of Wheat and Spelt. In Achieving Sustainable Cultivation of Wheat Volume 2; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 203–234. ISBN 1-351-11428-X. [Google Scholar]
- Keijzer, P.; Van Bueren, E.L.; Engelen, C.; Hutten, R. Breeding Late Blight Resistant Potatoes for Organic Farming—A Collaborative Model of Participatory Plant Breeding: The Bioimpuls Project. Potato Res. 2021, 65, 349–377. [Google Scholar] [CrossRef]
- Kapsa, J.S. Important Threats in Potato Production and Integrated Pathogen/Pest Management. Potato Res. 2008, 51, 385–401. [Google Scholar] [CrossRef]
- Bernard, J.C.; Bernard, D.J. Comparing Parts with the Whole: Willingness to Pay for Pesticide-Free, Non-GM, and Organic Potatoes and Sweet Corn. J. Agric. Resour. Econ. 2010, 35, 457–475. [Google Scholar]
- Demissie, Y.T. Integrated Potato (Solanum tuberosum L.) Late Blight (Phytophthora infestans) Disease Management in Ethiopia. Am. J. BioSci. 2019, 7, 123–130. [Google Scholar] [CrossRef]
- Zayan, S.A. Impact of Climate Change on Plant Diseases and IPM Strategies. In Plant Diseases-Current Threats and Management Trends; IntechOpen: London, UK, 2019. [Google Scholar]
- Demirel, U.; Morris, W.L.; Ducreux, L.J.; Yavuz, C.; Asim, A.; Tindas, I.; Campbell, R.; Morris, J.A.; Verrall, S.R.; Hedley, P.E. Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes. Front. Plant Sci. 2020, 11, 169. [Google Scholar] [CrossRef]
- Rykaczewska, K. The Impact of High Temperature during Growing Season on Potato Cultivars with Different Response to Environmental Stresses. Am. J. Plant Sci. 2013, 2013, 412295. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.G.; Audsley, E.; Sandars, D.L. Environmental Burdens of Producing Bread Wheat, Oilseed Rape and Potatoes in England and Wales Using Simulation and System Modelling. Int. J. Life Cycle Assess. 2010, 15, 855–868. [Google Scholar] [CrossRef] [Green Version]
- Wagg, C.; Hann, S.; Kupriyanovich, Y.; Li, S. Timing of Short Period Water Stress Determines Potato Plant Growth, Yield, and Tuber Quality. Agric. Water Manag. 2021, 247, 106731. [Google Scholar] [CrossRef]
- Pampana, S.; Rossi, A.; Arduini, I. Biosolids Benefit Yield and Nitrogen Uptake in Winter Cereals without Excess Risk of N Leaching. Agronomy 2021, 11, 1482. [Google Scholar] [CrossRef]
- Tabak, M.; Lepiarczyk, A.; Filipek-Mazur, B.; Lisowska, A. Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization. Agronomy 2020, 10, 1304. [Google Scholar] [CrossRef]
- Doan, T.T.; Henry-des-Tureaux, T.; Rumpel, C.; Janeau, J.-L.; Jouquet, P. Impact of Compost, Vermicompost, and Biochar on Soil Fertility, Maize Yield and Soil Erosion in Northern Vietnam: A Three Year Mesocosm Experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef]
- Achtnicht, M.; Germeshausen, R.; von Graevenitz, K. Does the Stick Make the Carrot More Attractive? State Mandates and Uptake of Renewable Heating Technologies. State Mandates and Uptake of Renewable Heating Technologies; ZEW–Center for European Economic Research: Mannheim, Gemany, 2017; pp. 17–067. [Google Scholar]
- Ren, J.; Yu, P.; Xu, X. Straw Utilization in China—Status and Recommendations. Sustainability 2019, 11, 1762. [Google Scholar] [CrossRef] [Green Version]
- N’Dayegamiye, A.; Tran, T.S. Effects of Green Manures on Soil Organic Matter and Wheat Yields and N Nutrition. Can. J. Soil Sci. 2001, 81, 371–382. [Google Scholar] [CrossRef]
- Ghaffar, S.H.; Fan, M. Lignin in Straw and Its Applications as an Adhesive. Int. J. Adhes. Adhes. 2014, 48, 92–101. [Google Scholar] [CrossRef]
- Peng, Y.; Lau, A.K. Improving the Quality of Crop Residues by the Reduction of Ash Content and Inorganic Constituents. J. Biobased Mater. Bioenergy 2020, 14, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Alcántara, J.C.; González, I.; Pareta, M.M.; Vilaseca, F. Biocomposites from Rice Straw Nanofibers: Morphology, Thermal and Mechanical Properties. Materials 2020, 13, 2138. [Google Scholar] [CrossRef]
- Zhao, X.; Virk, A.L.; Ma, S.-T.; Kan, Z.-R.; Qi, J.-Y.; Pu, C.; Yang, X.-G.; Zhang, H.-L. Dynamics in Soil Organic Carbon of Wheat-Maize Dominant Cropping System in the North China Plain under Tillage and Residue Management. J. Environ. Manag. 2020, 265, 110549. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Skalicky, M.; Hossain, A.; Brestic, M.; Saha, S.; Garai, S.; Ray, K.; Brahmachari, K. Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability. Sustainability 2020, 12, 9808. [Google Scholar] [CrossRef]
- Alghamdi, R.S.; Cihacek, L. Do Post-harvest Crop Residues in No-till Systems Provide for Nitrogen Needs of Following Crops? Agron. J. 2022, 114, 835–852. [Google Scholar] [CrossRef]
- Yan, C.; Yan, S.-S.; Jia, T.-Y.; Dong, S.-K.; Ma, C.-M.; Gong, Z.-P. Decomposition Characteristics of Rice Straw Returned to the Soil in Northeast China. Nutr. Cycl. Agroecosyst. 2019, 114, 211–224. [Google Scholar] [CrossRef]
- Meena, V.; Dotaniya, M.; Coumar, V.; Rajendiran, S.; Ajay; Kundu, S.; Subba Rao, A. A Case for Silicon Fertilization to Improve Crop Yields in Tropical Soils. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 505–518. [Google Scholar] [CrossRef]
- Novair, S.B.; Hosseini, H.M.; Etesami, H.; Razavipour, T. Rice Straw and Composted Azolla Alter Carbon and Nitrogen Mineralization and Microbial Activity of a Paddy Soil under Drying–Rewetting Cycles. Appl. Soil Ecol. 2020, 154, 103638. [Google Scholar] [CrossRef]
- Thomas, C.L.; Acquah, G.E.; Whitmore, A.P.; McGrath, S.P.; Haefele, S.M. The Effect of Different Organic Fertilizers on Yield and Soil and Crop Nutrient Concentrations. Agronomy 2019, 9, 776. [Google Scholar] [CrossRef] [Green Version]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The Immediate Effectiveness of Barley Straw Mulch in Reducing Soil Erodibility and Surface Runoff Generation in Mediterranean Vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stigter, K.; Ramesh, K.; Upadhyay, P.K. Mulching for Microclimate Modifications in Farming-An Overview. Indian J. Agron. 2018, 63, 255–263. [Google Scholar]
- Yadav, G.S.; Das, A.; Lal, R.; Babu, S.; Meena, R.S.; Patil, S.B.; Saha, P.; Datta, M. Conservation Tillage and Mulching Effects on the Adaptive Capacity of Direct-Seeded Upland Rice (Oryza sativa L.) to Alleviate Weed and Moisture Stresses in the North Eastern Himalayan Region of India. Arch. Agron. Soil Sci. 2018, 64, 1254–1267. [Google Scholar] [CrossRef]
- Deka, A.; Sheikh, I.; Pathak, D.; Prahraj, C. Effect of Tillage Practices and Mulching on Growth, Yield of Chickpea (Cicer arietinum L.) in Rice-Chickpea Based Cropping System under Rainfed Condition of Assam. J. Crop Weed 2021, 17, 9–16. [Google Scholar] [CrossRef]
- Sapre, N.; Kewat, M.; Sharma, A.; Singh, P. Effect of Tillage and Weed Management on Weed Dynamics and Yield of Rice in Rice-Wheat-Greengram Cropping System in Vertisols of Central India. Int. J. Oper. Res. 2022, 54, 233–239. [Google Scholar] [CrossRef]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable Weed Management for Conservation Agriculture: Options for Smallholder Farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Tariq, H.; Abbas, S.; Arshad, M.; Mumtaz, A.; Ahmed, I. Organic and Synthetic Mulching: Effects on Soil-Plant Productivity and Environment. In Mulching in Agroecosystems: Plants, Soil & Environment; Springer: Singapore, 2022; pp. 329–351. [Google Scholar]
- Kader, M.; Senge, M.; Mojid, M.; Ito, K. Recent Advances in Mulching Materials and Methods for Modifying Soil Environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Tariq, M.; Akhtar, K. Mulching Is an Approach for a Significant Decrease in Soil Erosion. In Mulching in Agroecosystems: Plants, Soil & Environment; Springer: Singapore, 2022; pp. 59–70. [Google Scholar]
- Lutaladio, N.; Ortiz, O.; Caldiz, D. Sustainable Potato Production. Guidelines for Developing Countries; Food and Agriculture Organization: Rome, Italy, 2009; ISBN 92-5-106409-1. [Google Scholar]
- Masak, S. Studies on Utilization of Decomposed Solid Waste Combined with Cow Dung and Poultry Manure for Urban Agriculture in the Tamale Metropolis. Ph.D. Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2012. [Google Scholar]
- Heyman, H.; Bassuk, N.; Bonhotal, J.; Walter, T. Compost Quality Recommendations for Remediating Urban Soils. Int. J. Environ. Res. Public Health 2019, 16, 3191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjan, P.; Patel, G.; Prem, M.; Solanke, K. Organic Mulching—A Water Saving Technique to Increase the Production of Fruits and Vegetables. Curr. Agric. Res. J. 2017, 5, 371–380. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.; Shalaby, T.A.; Ramadan, K.M.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Hayes, D.G.; Anunciado, M.B.; DeBruyn, J.M.; Bandopadhyay, S.; Schaeffer, S.; English, M.; Ghimire, S.; Miles, C.; Flury, M.; Sintim, H.Y. Biodegradable Plastic Mulch Films for Sustainable Specialty Crop Production. In Polymers for Agri-Food Applications; Springer: Cham, Switzerland, 2019; pp. 183–213. [Google Scholar]
- Waheed, A.; Haxim, Y.; Kahar, G.; Islam, W.; Ullah, A.; Khan, K.A.; Ghramh, H.A.; Ali, S.; Asghar, M.A.; Zhao, Q. Jasmonic Acid Boosts Physio-Biochemical Activities in Grewia asiatica L. under Drought Stress. Plants 2022, 11, 2480. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Soil Structure and Organic Carbon Relationships Following 10 Years of Wheat Straw Management in No-Till. Soil Tillage Res. 2007, 95, 240–254. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop Residue Removal Impacts on Soil Productivity and Environmental Quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Suriyagoda, L.; De Costa, W.; Lambers, H. Growth and Phosphorus Nutrition of Rice When Inorganic Fertiliser Application Is Partly Replaced by Straw under Varying Moisture Availability in Sandy and Clay Soils. Plant Soil 2014, 384, 53–68. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.; Tang, X.; Guan, Z.; Reid, B.J.; Rajapaksha, A.U.; Ok, Y.S.; Sun, H. Biochar Increased Water Holding Capacity but Accelerated Organic Carbon Leaching from a Sloping Farmland Soil in China. Environ. Sci. Pollut. Res. 2016, 23, 995–1006. [Google Scholar] [CrossRef]
- Jenni, S.; Brault, D.; Stewart, K. Degradable Mulch as an Alternative for Weed Control in Lettuce Produced on Organic Soils. In Proceedings of the XXVI International Horticultural Congress: Sustainability of Horticultural Systems in the 21st Century, Toronto, Canada, 11–17 August 2002; pp. 111–118. [Google Scholar]
- Nwosisi, S.; Nandwani, D.; Pokharel, B. Yield Performance of Organic Sweetpotato Varieties in Various Mulches. Horticulturae 2017, 3, 48. [Google Scholar] [CrossRef] [Green Version]
- Gholami, L.; Sadeghi, S.H.; Homaee, M. Straw Mulching Effect on Splash Erosion, Runoff, and Sediment Yield from Eroded Plots. Soil Sci. Soc. Am. J. 2013, 77, 268–278. [Google Scholar] [CrossRef]
- Abrantes, J.R.; Prats, S.A.; Keizer, J.J.; de Lima, J.L. Effectiveness of the Application of Rice Straw Mulching Strips in Reducing Runoff and Soil Loss: Laboratory Soil Flume Experiments under Simulated Rainfall. Soil Tillage Res. 2018, 180, 238–249. [Google Scholar] [CrossRef]
- Niziolomski, J.C.; Simmons, R.W.; Rickson, R.J.; Hann, M.J. Efficacy of Mulch and Tillage Options to Reduce Runoff and Soil Loss from Asparagus Interrows. Catena 2020, 191, 104557. [Google Scholar] [CrossRef]
- Shrestha, D.P.; Jetten, V.G. Modelling Erosion on a Daily Basis, an Adaptation of the MMF Approach. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 117–131. [Google Scholar] [CrossRef]
- Mo, F.; Han, J.; Wen, X.; Wang, X.; Li, P.; Vinay, N.; Jia, Z.; Xiong, Y.; Liao, Y. Quantifying Regional Effects of Plastic Mulch on Soil Nitrogen Pools, Cycles, and Fluxes in Rain-fed Agroecosystems of the Loess Plateau. Land Degrad. Dev. 2020, 31, 1675–1687. [Google Scholar] [CrossRef]
- Sinkevičienė, A.; Jodaugienė, D.; Pupalienė, R.; Urbonienė, M. The Influence of Organic Mulches on Soil Properties and Crop Yield. Agron. Res. 2009, 7, 485–491. [Google Scholar]
- Wang, J.; Chen, Z.; Xu, C.; Elrys, A.S.; Shen, F.; Cheng, Y.; Chang, S.X. Organic Amendment Enhanced Microbial Nitrate Immobilization with Negligible Denitrification Nitrogen Loss in an Upland Soil. Environ. Pollut. 2021, 288, 117721. [Google Scholar] [CrossRef] [PubMed]
- Dossou-Yovo, E.R.; Brüggemann, N.; Ampofo, E.; Igue, A.M.; Jesse, N.; Huat, J.; Agbossou, E.K. Combining No-Tillage, Rice Straw Mulch and Nitrogen Fertilizer Application to Increase the Soil Carbon Balance of Upland Rice Field in Northern Benin. Soil Tillage Res. 2016, 163, 152–159. [Google Scholar] [CrossRef]
- Webber, S.M.; Bailey, A.P.; Huxley, T.; Potts, S.G.; Lukac, M. Traditional, and Cover Crop-Derived Mulches Enhance Soil Ecosystem Services in Apple Orchards. Appl. Soil Ecol. 2022, 178, 104569. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, H.; Xie, W.; Yang, Z.; Lv, Q. Long-Term Effects of Maize Straw Return and Manure on the Microbial Community in Cinnamon Soil in Northern China Using 16S RRNA Sequencing. PLoS ONE 2021, 16, e0249884. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Z.; Zhou, J.; Xu, X.; Zhu, Y. Long-Term Straw Mulching with Nitrogen Fertilization Increases Nutrient and Microbial Determinants of Soil Quality in a Maize–Wheat Rotation on China’s Loess Plateau. Sci. Total Environ. 2021, 775, 145930. [Google Scholar] [CrossRef]
- Padalia, K.; Bargali, S.S.; Bargali, K.; Manral, V. Soil Microbial Biomass Phosphorus under Different Land Use Systems of Central Himalaya. Trop. Ecol. 2022, 63, 30–48. [Google Scholar] [CrossRef]
- Mahmud, K.; Missaoui, A.; Lee, K.; Ghimire, B.; Presley, H.W.; Makaju, S. Rhizosphere Microbiome Manipulation for Sustainable Crop Production. Curr. Plant Biol. 2021, 27, 100210. [Google Scholar] [CrossRef]
- Bertola, M.; Ferrarini, A.; Visioli, G. Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation By-Omics Approaches: A Perspective for the Environment, Food Quality, and Human Safety. Microorganisms 2021, 9, 1400. [Google Scholar] [CrossRef]
- Schonbeck, M.; Tillage, B. Principles of Sustainable Weed Management in Organic Cropping Systems; Clemson University: Clemson, SC, USA, 2011; Volume 3, pp. 1–24. [Google Scholar]
- Liu, Q.; Liu, X.; Bian, C.; Ma, C.; Lang, K.; Han, H.; Li, Q. Response of Soil CO2 Emission and Summer Maize Yield to Plant Density and Straw Mulching in the North China Plain. Sci. World J. 2014, 2014, 180219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant Phenology and Global Climate Change: Current Progresses and Challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Liu, G.; Bai, Z.; Shah, F.; Cui, G.; Xiao, Z.; Gong, H.; Li, D.; Lin, Y.; Li, B.; Ji, G. Compositional and Structural Changes in Soil Microbial Communities in Response to Straw Mulching and Plant Revegetation in an Abandoned Artificial Pasture in Northeast China. Glob. Ecol. Conserv. 2021, 31, e01871. [Google Scholar] [CrossRef]
- Amare, G.; Desta, B. Coloured Plastic Mulches: Impact on Soil Properties and Crop Productivity. Chem. Biol. Technol. Agric. 2021, 8, 4. [Google Scholar] [CrossRef]
- Shah, M.A.; Naga, K.C.; Subhash, S.; Sharma, S.; Kumar, R. Use of Petroleum-Derived Spray Oils for the Management of Vector-Virus Complex in Potato. Potato Res. 2022, 65, 1–19. [Google Scholar] [CrossRef]
- Singh, H.; Batish, D.R.; Kohli, R. Allelopathic Interactions and Allelochemicals: New Possibilities for Sustainable Weed Management. Crit. Rev. Plant Sci. 2003, 22, 239–311. [Google Scholar] [CrossRef]
- Gheshm, R.; Brown, R.N. Organic Mulch Effects on High Tunnel Lettuce in Southern New England. HortTechnology 2018, 28, 485–491. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Khan, A.; Ren, G.; Afridi, M.Z.; Feng, Y.; Yang, G. Wheat Straw Mulching Offset Soil Moisture Deficient for Improving Physiological and Growth Performance of Summer Sown Soybean. Agric. Water Manag. 2019, 211, 16–25. [Google Scholar] [CrossRef]
- Sosnowski, M.; Fletcher, J.; Daly, A.; Rodoni, B.; Viljanen-Rollinson, S. Techniques for the Treatment, Removal, and Disposal of Host Material during Programmes for Plant Pathogen Eradication. Plant Pathol. 2009, 58, 621–635. [Google Scholar] [CrossRef]
- Kirchner, S.; Hiltunen, L.; Santala, J.; Döring, T.; Ketola, J.; Kankaala, A.; Virtanen, E.; Valkonen, J. Comparison of Straw Mulch, Insecticides, Mineral Oil, and Birch Extract for Control of Transmission of Potato Virus Y in Seed Potato Crops. Potato Res. 2014, 57, 59–75. [Google Scholar] [CrossRef]
- Döring, T.F.; Brandt, M.; Heß, J.; Finckh, M.R.; Saucke, H. Effects of Straw Mulch on Soil Nitrate Dynamics, Weeds, Yield and Soil Erosion in Organically Grown Potatoes. Field Crops Res. 2005, 94, 238–249. [Google Scholar] [CrossRef]
- Balkcom, K.; Schomberg, H.; Reeves, W.; Clark, A.; Baumhardt, L.; Collins, H.; Delgado, J.; Duiker, S.; Kaspar, T.; Mitchell, J. Managing Cover Crops in Conservation Tillage Systems. Manag. Cover Crops Profitab. 2007, 3, 44–61. [Google Scholar]
- Jez, J.M.; Topp, C.N.; Schlautman, B.; Bartel, C.; Diaz-Garcia, L.; Fei, S.; Flynn, S.; Haramoto, E.; Moore, K.; Raman, D.R. Perennial Groundcovers: An Emerging Technology for Soil Conservation and the Sustainable Intensification of Agriculture. Emerg. Top. Life Sci. 2021, 5, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Rolot, J.-L.; Seutin, H.; Deveux, L. Assessment of Treatments to Control the Spread of PVY in Seed Potato Crops: Results Obtained in Belgium through a Multi-Year Trial. Potato Res. 2021, 64, 435–458. [Google Scholar] [CrossRef]
- Alyokhin, A. Colorado Potato Beetle Management on Potatoes: Current Challenges and Future Prospects. Fruit Veg. Cereal Sci. Biotechnol. 2009, 3, 10–19. [Google Scholar]
- Teame, G.; Tsegay, A.; Abrha, B. Effect of Organic Mulching on Soil Moisture, Yield, and Yield Contributing Components of Sesame (Sesamum indicum L.). Int. J. Agron. 2017, 2017, 4767509. [Google Scholar] [CrossRef] [Green Version]
- Sekhon, K.; Kaur, A.; Thaman, S.; Sidhu, A.; Garg, N.; Choudhary, O.; Buttar, G.; Chawla, N. Irrigation Water Quality and Mulching Effects on Tuber Yield and Soil Properties in Potato (Solanum tuberosum L.) under Semi-Arid Conditions of Indian Punjab. Field Crops Res. 2020, 247, 107544. [Google Scholar] [CrossRef]
- Si, C.; Qi, F.; Ding, X.; He, F.; Gao, Z.; Feng, Q.; Zheng, L. CFD Analysis of Solar Greenhouse Thermal and Humidity Environment Considering Soil–Crop–Back Wall Interactions. Energies 2023, 16, 2305. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhang, J.; Liu, W.; Dang, Z.; Cao, W.; Qiang, Q. Effects of Mulch, N Fertilizer, and Plant Density on Wheat Yield, Wheat Nitrogen Uptake, and Residual Soil Nitrate in a Dryland Area of China. Nutr. Cycl. Agroecosyst. 2009, 85, 109–121. [Google Scholar] [CrossRef]
- Eberbach, P.; Humphreys, E.; Kukal, S. The Effect of Rice Straw Mulch on Evapotranspiration, Transpiration, and Soil Evaporation of Irrigated Wheat in Punjab, India. Agric. Water Manag. 2011, 98, 1847–1855. [Google Scholar]
- Snyder, K.; Grant, A.; Murray, C.; Wolff, B. The Effects of Plastic Mulch Systems on Soil Temperature and Moisture in Central Ontario. HortTechnology 2015, 25, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Lehsten, V.; Wiik, L.; Hannukkala, A.; Andreasson, E.; Chen, D.; Ou, T.; Liljeroth, E.; Lankinen, Å.; Grenville-Briggs, L. Earlier Occurrence and Increased Explanatory Power of Climate for the First Incidence of Potato Late Blight Caused by Phytophthora Infestans in Fennoscandia. PLoS ONE 2017, 12, e0177580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.S.; Fennimore, S.A. Weed and Crop Response to Colored Plastic Mulches in Strawberry Production. HortScience 2005, 40, 1371–1375. [Google Scholar] [CrossRef] [Green Version]
- Finckh, M.; Junge, S.; Schmidt, J.; Weedon, O. Disease and Pest Management in Organic Farming: A Case for Applied Agroecology. In Improving Organic Crop Cultivation; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 291–322. ISBN 1-351-11457-3. [Google Scholar]
- Alyokhin, A.; Nault, B.; Brown, B. Soil Conservation Practices for Insect Pest Management in Highly Disturbed Agroecosystems—A Review. Entomol. Exp. Appl. 2020, 168, 7–27. [Google Scholar] [CrossRef]
- Fitt, B.D.; Hu, B.; Li, Z.; Liu, S.; Lange, R.; Kharbanda, P.; Butterworth, M.; White, R. Strategies to Prevent Spread of Leptosphaeria maculans (Phoma Stem Canker) onto Oilseed Rape Crops in China; Costs and Benefits. Plant Pathol. 2008, 57, 652–664. [Google Scholar] [CrossRef]
- Chalker-Scott, L. Impact of Mulches on Landscape Plants and the Environment—A Review. J. Environ. Hortic. 2007, 25, 239–249. [Google Scholar] [CrossRef]
- Shtienberg, D.; Elad, Y.; Bornstein, M.; Ziv, G.; Grava, A.; Cohen, S. Polyethylene Mulch Modifies Greenhouse Microclimate and Reduces Infection of Phytophthora Infestans in Tomato and Pseudoperonospora Cubensis in Cucumber. Phytopathology 2010, 100, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Bezabeh, M.W.; Haile, M.; Sogn, T.; Eich-Greatorex, S. Wheat (Triticum aestivum) Production and Grain Quality Resulting from Compost Application and Rotation with Faba Bean. J. Agric. Food Res. 2022, 10, 100425. [Google Scholar] [CrossRef]
- Lutz, S.; Thuerig, B.; Oberhaensli, T.; Mayerhofer, J.; Fuchs, J.G.; Widmer, F.; Freimoser, F.M.; Ahrens, C.H. Harnessing the Microbiomes of Suppressive Composts for Plant Protection: From Metagenomes to Beneficial Microorganisms and Reliable Diagnostics. Front. Microbiol. 2020, 11, 1810. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.; Gamliel, A.; Finckh, M.R. Plant Disease Management in Organic Farming Systems. Pest Manag. Sci. 2016, 72, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Nagarajan, S.; Aggarwal, P.; Gupta, V.; Tomar, R.; Garg, R.; Sahoo, R.; Sarkar, A.; Chopra, U.K.; Sarma, K.S. Effect of Mulching on Soil and Plant Water Status, and the Growth and Yield of Wheat (Triticum aestivum L.) in a Semi-Arid Environment. Agric. Water Manag. 2008, 95, 1323–1334. [Google Scholar] [CrossRef]
- Chopra, M.; Koul, B. Comparative Assessment of Different Types of Mulching in Various Crops: A Review. Plant Arch 2020, 20, 1620–1626. [Google Scholar]
- Patil Shirish, S.; Kelkar Tushar, S.; Bhalerao Satish, A. Mulching: A Soil and Water Conservation Practice. Res. J. Agric. For. Sci. 2013, 2320, 6063. [Google Scholar]
- Kaur, R.; Bains, S.; Sethi, M. Environment-Friendly Mulch Mats from Paddy Straw. Int. J. Farm Sci. 2020, 10, 28–31. [Google Scholar] [CrossRef]
- SK, P.G.P.; Debnath, S.; Maitra, S. Mulching: Materials, Advantages and Crop Production. In Protected Cultivation and Smart Agriculture; Maitra, S., Gaikwad, D.J., Tanmoy, S., Eds.; New Delhi Publishers: New Delhi, India, 2020; pp. 55–66. [Google Scholar]
- Chakraborty, D.; Garg, R.; Tomar, R.; Singh, R.; Sharma, S.; Singh, R.; Trivedi, S.; Mittal, R.; Sharma, P.; Kamble, K. Synthetic, and Organic Mulching and Nitrogen Effect on Winter Wheat (Triticum aestivum L.) in a Semi-Arid Environment. Agric. Water Manag. 2010, 97, 738–748. [Google Scholar] [CrossRef]
- Thomas, R. Opportunities to Reduce the Vulnerability of Dryland Farmers in Central and West Asia and North Africa to Climate Change. Agric. Ecosyst. Environ. 2008, 126, 36–45. [Google Scholar] [CrossRef]
- Flury, M.; Narayan, R. Biodegradable Plastic as an Integral Part of the Solution to Plastic Waste Pollution of the Environment. Curr. Opin. Green Sustain. Chem. 2021, 30, 100490. [Google Scholar] [CrossRef]
- Moursy, F.S.; Mostafa, F.A.; Solieman, N.Y. Polyethylene, and Rice Straw as Soil Mulching: Reflection of Soil Mulch Type on Soil Temperature, Soil Borne Diseases, Plant Growth and Yield of Tomato. Glob. J. Adv. Res. 2015, 2, 1497–1519. [Google Scholar]
- Meng, F.; Fan, T.; Yang, X.; Riksen, M.; Xu, M.; Geissen, V. Effects of Plastic Mulching on the Accumulation and Distribution of Macro and Micro Plastics in Soils of Two Farming Systems in Northwest China. PeerJ 2020, 8, e10375. [Google Scholar] [CrossRef] [PubMed]
- Begum, A.; Alam, S.; Jalal Uddin, M. Management of Pesticides: Purposes, Uses, and Concerns. In Pesticide Residue in Foods: Sources, Management, and Control; Springer: Cham, Switzerland, 2017; pp. 53–86. [Google Scholar]
Types of Much | Role | Composition | References |
---|---|---|---|
Straw mulch | Straw mulch is inexpensive and offers decent defense against frost, weeds, and soil erosion while being easy to apply. Because it is an insulator, the straw ensures the soil stays warm during winter and cool during summer. Additionally, it helps retain moisture, which is essential for the growth of potatoes. | The dried stalks of wheat, oats, or rice are the primary components of straw mulch. | [70,71] |
Compost mulch | Compost is a good mulch for potatoes since it enriches the soil. Compost mulch enhances soil quality, lowers soil erosion, and aids in moisture retention. It is made up of degraded organic materials. | Organic waste, such as food scraps, leaves, and yard clippings, is broken down into a nutrient-rich soil supplement. | [72,73] |
Leaf mulch: | Rich in nutrients and organic matter, leaf mulch is an excellent choice for potatoes. Leaf mulch helps retain soil moisture, improves soil aeration, and inhibits vegetation growth. It consists of decomposing foliage. | It is produced by stacking dried leaves and permitting them to decompose over time. | [74] |
Hay mulch | Hay is another popular potato mulch. It helps maintain soil moisture and inhibits vegetation growth. | Hay mulch is composed primarily of dried grasses and is simple to apply. | [75] |
Wood chip mulch | Wood chips, a frequently employed mulching material for potatoes, offer exceptional moisture retention, weed inhibition, and enhancement of soil composition. | These products are composed of fragmented wood chips. | [76] |
Advantages | Disadvantages | References |
---|---|---|
Mulches help plants get a head start by keeping the soil toasty and retaining heat from the sun. Compared to crops produced without mulch, those grown on it are ready for harvest 14–21 days earlier. | Special equipment and expertise are required for applying plastic mulches in fields. | [130,131] |
The use of mulches significantly reduces nutrient loss due to soil surface runoff. Mulches aid in water conservation because they prevent water from evaporating. | Black film’s high temperature increases the risk of “burning” or “scorching” young plants and seedlings. | [132,133] |
Mulching preserves soil compactivity, resulting in easily broken up and eroded soil. Plants growing in a mulched field have a more robust root system because the soil is better able to hold air. | Organic mulches increase soil acidity, which further affects crop productivity. | [134,135] |
Mulching reduces soil and water erosion, which is crucial for agriculture in dry locations. Mulching aids in crop yield in dryland environments. | The removal and disposal of polyethylene mulches pose significant agronomic, financial, and environmental constraints. | [136,137] |
Mulching reduces soil-borne diseases, improving both crop quality and productivity. | Plastic mulch is hard to recover and use again. | [138,139] |
Mulches slow the development of weeds and pests | Mulches in some areas are attractive to pests like slugs and rats and other rodents. | [102,140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waheed, A.; Li, C.; Muhammad, M.; Ahmad, M.; Khan, K.A.; Ghramh, H.A.; Wang, Z.; Zhang, D. Sustainable Potato Growth under Straw Mulching Practices. Sustainability 2023, 15, 10442. https://doi.org/10.3390/su151310442
Waheed A, Li C, Muhammad M, Ahmad M, Khan KA, Ghramh HA, Wang Z, Zhang D. Sustainable Potato Growth under Straw Mulching Practices. Sustainability. 2023; 15(13):10442. https://doi.org/10.3390/su151310442
Chicago/Turabian StyleWaheed, Abdul, Chuang Li, Murad Muhammad, Mushtaq Ahmad, Khalid Ali Khan, Hamed A. Ghramh, Zhongwei Wang, and Daoyuan Zhang. 2023. "Sustainable Potato Growth under Straw Mulching Practices" Sustainability 15, no. 13: 10442. https://doi.org/10.3390/su151310442
APA StyleWaheed, A., Li, C., Muhammad, M., Ahmad, M., Khan, K. A., Ghramh, H. A., Wang, Z., & Zhang, D. (2023). Sustainable Potato Growth under Straw Mulching Practices. Sustainability, 15(13), 10442. https://doi.org/10.3390/su151310442