Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations
Abstract
:1. Introduction
1.1. Background of the Study
1.2. Traffic Management in Smart Cities
1.3. Internet of Things (IoT)-Based Intelligent Transportation System
1.4. Applications of the Intelligent Transportation System in Smart Cities
1.4.1. Detecting Transportation Incidences
1.4.2. Automated Ramp Control System
1.4.3. Traffic Signal Management
1.4.4. Effective Parking Management Tools in Smart Cities
1.4.5. Demand-Responsive Transport Management (DRTM)
1.4.6. Logistics Management
1.4.7. Special Provision to Vulnerable Road Commuters
1.4.8. Route Guidance
1.4.9. Cooperative Perception
1.5. Platooning
2. Models and Advanced AI Algorithms for Analysis of Traffic in Smart Cities
2.1. Models for Analysis of Traffic in Smart Cities
2.2. Application of an Advanced Al Algorithm to Smart Cities’ Operation
3. Traffic Management as a Decision-Making Process
3.1. Installation of Inductive Loop Detectors and Short-Range Communication
3.2. Short-Range Communication
3.3. Pedestrian Detection Systems
- Physical layer: This consists of physical parts of the systems, which are composed of smart devices and agents which are normally located within strategized locations along the roads for sensing, recording, and collecting information from roads, road users, and vehicles, and these data and information will be uploaded to the cloud with the help of a strong network connection.
- Network layer: Uploading and transmitting specified data of interest by the traffic officials is carried out by using a network layer; the uploaded data can be used to give a wider range of applications to road users.
- Application layer: This is usually a software which feeds with the information received from the first and second layers to assist road users with the real-time traffic condition of the cities.
4. Framework/Performance Measures for the Proper Management of Traffic in Smart Cities
4.1. Land Use Visioning/Scenario Planning
4.2. Long-Term Transportation Planning
4.3. Corridor Studies Programming
4.4. Environmental Review and Performance Monitoring
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Musa, A.A.; Dulawat, S.; Saleh, K.T.; Alhassan, I.A. Applicability of Utilizing Blockchain Technology in Smart Cities Development Smart City Infrastructure: The Blockchain Perspective; Scrivener Publishing LLC: Beverly, MA, USA, 2022; pp. 317–340. [Google Scholar]
- Moir, E.; Moonem, T.; Clark, G. What Are Future Cities? Origin Meaning and Uses Complied the Business of Cities for the Foresight Future of Cities Project and Future Cities Catapult; Government Office of Science: London, UK, 2014.
- Simpson, P.; Rocque, M. Smart Cities: Understanding the Challenges and Opportunities Smart Cities World in Association with Philips. 2017. Available online: www.smartcitiesworld.net (accessed on 3 February 2023).
- United Nations Sustainable Development Goal. Transforming Our World: The 2030 Agenda for Sustainable Development. In Proceedings of the UN Sustainable Development Summit, New York, NY, USA, 25–27 September 2015; Available online: https://sdsg.un.org (accessed on 3 February 2023).
- Chakwizira, J. The question of road traffic congestion and decongestion in the greater Johannesburg area: Some perspectives. In Proceedings of the SATC 2007—26th Annual South African Transportation Conference, Pretoria, South Africa, 9–12 July 2007; Challenges Implementation Policy. pp. 499–511. [Google Scholar]
- World Population Prospects, The 2015 Vision: Key Findings and Advance Tables; Department of Economics and Social Affairs (Population Division), United Nation: New York, NY, USA, 2015.
- World Bank. Available online: www.worldbank.org (accessed on 3 February 2023).
- IEA, World Energy Outlook 2, International. Energy Agency, 2018. Available online: https://www.iea.org/reports/world-energy-outlook-2018 (accessed on 7 February 2023).
- Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of artificial intelligence in transport: An overview. Sustainability 2019, 11, 189. [Google Scholar]
- World Health Organization. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018.
- Dresner, P.S.K. A Multiagent approach to Autonomous Intersection Management. J. Artif. Intell. Res. 2008, 31, 591–656. [Google Scholar]
- Troutbeck, R. Modelling Signalized and Un-Signalized Junctions. In Handbook of Transport Modelling Article Information; Emerald Group Publishing Limited: Bingley, UK, 2016; pp. 443–460. [Google Scholar]
- Khallouk, A.; Echab, H.; Ez-Zahraouy, H.; Lakouari, N. Traffic flow behaviour at Un-signalized intersection with crossing pedestrians. Phys. Lett. A 2018, 382, 566–573. [Google Scholar]
- Lee, R.; Blogg, M.; Myers, E.; Kyte, M.; Dixon, M.; List, G.; Flannery, A.; Troutbrck, R.; Brilon, W.; Werner, B.; et al. National Cooperative Highway Research Program (NCHRP) Report 572; Transportation Research Board of the National Academics: Washington, DC, USA, 2007; Volume 9. [Google Scholar]
- Ghasem-Aghaee, N. Tuncer Oren and Levent Yilmaz. In Simulation, Intelligence and Agent: Exploring the Synergy Current and Future Developments in Artificial Intelligence; Bentham Science Books Publisher: Bussum, The Netherland, 2019; pp. 1–58. [Google Scholar]
- Ferrara, A.; Sacone, S.; Siri, S. Fundamental of traffic dynamics. In freeway traffic modelling and control. Adv. Ind. Control. Ser. 2018, 1185, 44. [Google Scholar]
- U.S. Energy Information Administration. International Energy Outlook; U.S. Energy Information Administration: Washington, DC, USA, 2017.
- Othman, B.; De Nunzio, G.; Di Domenico, D.; Canudas-De-Wit, C. Ecological traffic management: A review of the modeling and control strategies for improving environmental sustainability of road transportation. Annu. Rev. Control. 2019, 48, 292–311. [Google Scholar] [CrossRef]
- Montella, A.; Turner, S.; Chiaradonna, S.; Aldridge, D. International overview of roundabout design practices and insights for improvement of the Italian standard. Can. J. Civ. Eng. 2013, 40, 1215–1226. [Google Scholar] [CrossRef]
- Ma, C.; He, R.; Zhang, W. Path optimization of taxi carpooling. PLoS ONE 2018, 13, e020322. [Google Scholar]
- Schrank, D.; Eisele, B. “Annual Urban Mobility Report”, Texas A&M University. 2021. Available online: http://mobility.tamu.edu/ums/ (accessed on 23 February 2023).
- Pu, H.; Li, Y.; Ma, C.; Mu, H. Analysis of the projective synchronization of the urban public transportation super network. Adv. Mech. Eng. 2017, 9, 1687814017702808. [Google Scholar]
- Misbahuddin, S.; Zubairi, J.A.; Saggaf, A.; Basuni, J.; Sulaiman, A.; Al-Sofi, A. IoT Based Dynamic Road Traffic Management for Smart Cities. In Proceedings of the 2015 12th International Conference on High-Capacity Optical Networks and Enabling/Emerging Technologies (HONET), Islamabad, Pakistan, 21–23 December 2015; pp. 142–146. [Google Scholar]
- Traffic Signaling Timing Manual. Publication Number: FHWA-HOP-08-024, 2008. Available online: https://ops.fhwa.dot.gov (accessed on 10 January 2023).
- Cai, C. Adaptive Traffic Signal Control Using Approximate Dynamic Programming. Ph.D. Thesis, University College, London, UK, 2009. [Google Scholar]
- Wen, W. A dynamic and automatic traffic light control expert system for solving the road congestion problem. Expert Syst. Appl. 2008, 34, 2370–2381. [Google Scholar]
- Collotta, M.; Sun, Y.; Di Persio, L.; Ebeid, E.S.M.; Muradore, R. Smart Green Applications: From Renewable Energy Management to Intelligent Transportation Systems. Energies 2018, 11, 1317. [Google Scholar]
- Sharma, V.; You, I.; Pau, G.; Collotta, M.; Lim, J.D.; Kim, J.N. LoRaWAN-Based Energy-Efficient Surveillance by Drones for Intelligent Transportation Systems. Energies 2018, 11, 573. [Google Scholar]
- Sun, Y.; Song, H. Secure and Trustworthy Transportation Cyber-Physical Systems; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Jacobsen, R.H.; Aliu, D.; Ebeid, E. A Low-Cost Vehicle Tracking Platform Using Secure SMS. In Proceedings of the Porto: 2nd International Conference on Internet of Things, Big Data and Security, Porto, Portugal, 24–26 April 2017. [Google Scholar]
- Mukti, I.Y.; Prambudia, Y. Challenges in Governing the Digital Transportation Ecosystem in Jakarta: A Research Direction in Smart City Frameworks. Challenges 2018, 9, 14. [Google Scholar]
- Jacobsen, R.H.; Gabioud, D.; Basso, G.; Alet, P.J.; Azar, A.G.; Ebeid, E. SEMIAH An Aggregator Framework for European Demand Response Programs. In Proceedings of the Euromicro Conference on Digital System Design (DSD), Madeira, Portugal, 26–28 August 2015; pp. 470–477. [Google Scholar]
- Ersoy, P.; Börühan, G. Intelligent Transportation Systems and Their Applications in Road Transportation Industry in Turkey. In Proceedings of the 12th International Conference on Logistics & Sustainable Transport, Celje, Slovenia, 11–13 June 2015. [Google Scholar]
- Pau, G.; Campisi, T.; Canale, A.; Severino, A.; Collotta, M.; Tesoriere, G. Smart Pedestrian Crossing Management at Traffic Light Junctions through a Fuzzy-Based Approach. Futur. Internet 2018, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Intelligent Transport Systems Reference Material for Competence, Steer Program of the EU, Intelligent Energy; 2006. Available online: https://elitis.org (accessed on 13 March 2023).
- Liu, J.; Li, J.; Niu, X.; Cui, X.; Sun, Y. GreenOCR: An Energy-Efficient Optimal Clustering Routing Protocol. Comput. J. 2014, 58, 1344–1359. [Google Scholar] [CrossRef]
- Lara, T.; Yáñez, A.; Céspedes, S.; Hafid, A.S. Impact of Safety Message Generation Rules on the Awareness of Vulnerable Road Users. Sensors 2021, 21, 3375. [Google Scholar] [CrossRef]
- Gu, B.; Liu, J.; Xiong, H.; Li, T.; Pan, Y. ECPC-ICP: A 6D Vehicle Pose Estimation Method by Fusing the Roadside Lidar Point Cloud and Road Feature. Sensors 2021, 21, 3489. [Google Scholar] [CrossRef]
- Fukatsu, R.; Sakaguchi, K. Automated Driving with Cooperative Perception Using Millimeter-Wave V2V Communications for Safe Overtaking. Sensors 2021, 21, 2659. [Google Scholar] [CrossRef]
- Shan, M.; Narula, K.; Wong, Y.F.; Worrall, S.; Khan, M.; Alexander, P.; Nebot, E. Demonstrations of Cooperative Perception: Safety and Robustness in Connected and Automated Vehicle Operations. Sensors 2020, 21, 200. [Google Scholar] [CrossRef]
- Baek, M.; Mun, J.; Kim, W.; Choi, D.; Yim, J.; Lee, S. Driving Environment Perception Based on the Fusion of Vehicular Wireless Communications and Automotive Remote Sensors. Sensors 2021, 21, 1860. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, D.; Zhang, Q.; Liu, W. A Multi-GNSS/IMU Data Fusion Algorithm Based on the Mixed Norms for Land Vehicle Applications. Remote. Sens. 2023, 15, 2439. [Google Scholar] [CrossRef]
- Huang, S.; Tan, K.K.; Lee, T.H. Fault Diagnosis and Fault-Tolerant Control in Linear Drives Using the Kalman Filter. IEEE Trans. Ind. Electron. 2012, 59, 4285–4292. [Google Scholar] [CrossRef]
- Zhao, Y. Performance evaluation of Cubature Kalman filter in a GPS/IMU tightly-coupled navigation system. Signal Process. 2016, 119, 67–79. [Google Scholar] [CrossRef]
- Impraimakis, M.; Smyth, A.W. An unscented Kalman filter method for real time input-parameter-state estimation. Mech. Syst. Signal Process. 2022, 162, 108026. [Google Scholar] [CrossRef]
- Lu, F. HRegNet: A hierarchical network for large-scale outdoor LiDAR point cloud registration. In Proceedings of the IEEE International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 15994–16003. [Google Scholar]
- Papaioannidis, C.; Mademlis, I.; Pitas, I. (2021) Autonomous UAV safety by visual human crowd detection using multi-task deep neural networks. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11074–11080. [Google Scholar]
- Liu, W.; Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic. IEEE Sensors J. 2021, 21, 21675–21687. [Google Scholar] [CrossRef]
- Xia, X.; Hashemi, E.; Xiong, L.; Khajepour, A. Autonomous Vehicle Kinematics and Dynamics Synthesis for Sideslip Angle Estimation Based on Consensus Kalman Filter. IEEE Trans. Control Syst. Technol. 2022, 31, 179–192. [Google Scholar] [CrossRef]
- Liu, W.; Quijano, K.; Crawford, M.M. YOLOv5-Tassel: Detecting Tassels in RGB UAV Imagery With Improved YOLOv5 Based on Transfer Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2022, 15, 8085–8094. [Google Scholar] [CrossRef]
- IEA. The Future of Trucks; IEA: Paris, France, 2017; p. 167. [Google Scholar]
- Ling, T.; Deng, L.; He, W.; Wu, H.; Deng, J. Load Effect of Automated Truck Platooning on Highway Bridges and Loading Strategy. Sensors 2022, 22, 7704. [Google Scholar] [CrossRef]
- Birgisson, B.; Morgan, C.; Yarnold, M.; Warner, J.; Glover, B.; Steadman, M.; Srinivasa, S.; Cai, S.; Lee, D. Evaluate Potential Impacts, Benefits, Impediments, and Solutions of Automated Trucks and Truck Platooning on Texas Highway Infrastructure: Technical Report; Texas A&M Transportation Institute: Austin, TX, USA, 2020. [Google Scholar]
- Robertson, F.H.; Bourriez, F.; He, M.; Soper, D.; Baker, C.; Hemida, H.; Sterling, M. An experimental investigation of the aerodynamic flows created by lorries travelling in a long platoon. J. Wind. Eng. Ind. Aerodyn. 2019, 193, 103966. [Google Scholar] [CrossRef]
- Janssen, R.; Zwijnenberg, H.; Blankers, I.; de Kruijff, J. Truck Platooning Driving the Future of Transportation; The Neighbourhood Organization (TNO): Delft, The Netherlands, 2015. [Google Scholar]
- Correia, A.G.; Cortez, P.; Tinoco, J.; Marques, R. Artificial Intelligence Applications in Transportation Geotechnics. Geotech. Geol. Eng. 2013, 31, 861–879. [Google Scholar]
- Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.; Shearer, C.; Wirth, R. CRISP-DM 1.0: “Step-by-Step Data Mining Guide; CRISP-DM Consortium; SPSS Inc.: Chicago, IL, USA, 2000. [Google Scholar]
- Fayyad, U.; Piattetsky-Shapiro, G.; Smyth, P. The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 1996, 39, 27–34. [Google Scholar]
- Ferrara, A.; Sacone, S.; Siri, S. Microscopic and Mesoscopic Traffic Models; Freeway Traffic Modelling and Control. Advances in Industrial Control Series, Freeway Traffic Modeling and Control; Springer: Cham, Switzerland, 2008; pp. 113–143. [Google Scholar]
- Sheikh, M.S.; Peng, Y. A Comprehensive Review on Traffic Control Modeling for Obtaining Sustainable Objectives in a Freeway Traffic Environment. J. Adv. Transp. 2022, 1–22. [Google Scholar]
- Bando, M.; Hasebe, K.; Nakayama, A.; Shibata, A.; Sugiyama, Y. Dynamical model of traffic congestion and numerical simulation. Phys. Rev. A 1995, 51, 1035–1042. [Google Scholar]
- Gazis, D.C.; Herman, R.; Rothery, R.W.; Ni, D.; Leonard, J.D.; Jia, C.; Wang, J.; Mahmassani, H.S.; Sun, D.; Elefteriadou, L.; et al. Nonlinear Follow-the-Leader Models of Traffic Flow. Oper. Res. 1961, 9, 545–567. [Google Scholar] [CrossRef]
- Newell, G. A simplified car-following theory: A lower order model. Transp. Res. Part B Methodol. 2002, 36, 195–205. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Y.; Hu, R.; Wang, Z.; Zhao, B.; Yao, Z. Flow with Connected Automated Vehicles: A Cell Transmission Model Approach. J. Adv. Transp. 2022. [Google Scholar]
- Qian, Z.; Li, J.; Li, X.; Zhang, M.; Wang, H. Modeling heterogeneous traffic flow: A pragmatic approach. Transp. Res. Part B Methodol. 2017, 99, 183–204. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, C.; Liu, X.; Jabari, S.E.; Lu, L. Analyzing the impact of automated vehicles on uncertainty and stability of the mixed traffic flow. Transp. Res. Part C Emerg. Technol. 2020, 112, 203–219. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Y.; Hu, R.; Wang, Z.; Zhao, B.; Yao, Z. Modeling and Simulation of Traffic Congestion for Mixed Traffic Flow with Connected Automated Vehicles: A Cell Transmission Model Approach. J. Adv. Transp. 2022. [Google Scholar]
- Carey, M.; Balijepalli, C.; Watling, D. Extending the Cell Transmission Model to Multiple Lanes and Lane-Changing. Networks Spat. Econ. 2013, 15, 507–535. [Google Scholar] [CrossRef]
- Canudas-De-Wit, C.; Ferrara, A. A variable-length Cell Transmission Model for road traffic systems. Transp. Res. Part C Emerg. Technol. 2018, 97, 428–455. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Yao, Z.; Jiang, Y.; Yang, T. Fundamental Diagram Model of Considering Reaction Time in Environment of Intelligent Connected Vehicles. Gonglu Jiaotong Keji/J. Highw. Transp. Res. Dev. 2020, 37, 108–117. [Google Scholar]
- Yang, H.; Jin, W.L. A control theoretic formulation of green driving strategies based on inter-vehicle communications. Transp. Res. Part C Emerg. Technol. 2014, 41, 48–60. [Google Scholar]
- Wu, C.; Bayen, A.M.; Mehta, A. Stabilizing traffic with autonomous vehicles. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, QLD, Australia, 21–25 May 2018; pp. 1–7. [Google Scholar]
- Jiang, Y.; Wang, S.; Yao, Z.; Zhao, B.; Wang, Y. A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons. Phys. A Stat. Mech. Its Appl. 2021, 582, 126262. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, B.; Liu, M.; Yao, Z. A Two-Level Model for Traffic Signal Timing and Trajectories Planning of Multiple CAVs in a Random Environment. J. Adv. Transp. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Hegyi, A.; Hoogendoorn, S.P.; Schreuder, M.; Stoelhorst, H.; Viti, F. Specialist: A dynamic speed limit control algorithm based on shock wave theory. In Proceedings of the International IEEE Conference on Intelligent Transportation Systems, Beijing, China, 12–15 October 2008; pp. 827–832. [Google Scholar]
- Zegeye, S.K.; De Schutter, B.; Hellendoorn, J.; Breunesse, E.A.; Hegyi, A. A Predictive Traffic Controller for Sustainable Mobility Using Parameterized Control Policies. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1420–1429. [Google Scholar] [CrossRef]
- Zhu, F.; Ukkusuri, S.V. Accounting for dynamic speed limit control in a stochastic traffic environment: A reinforcement learning approach. Transp. Res. Part C Emerg. Technol. 2014, 41, 30–47. [Google Scholar]
- Kavitha, D.; Ravikumar, S. Retracted article: Designing an IoT based autonomous vehicle meant for detecting speed bumps and lanes on roads. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 7417–7426. [Google Scholar]
- Park, J.H.; Salim, M.; Jo, J.H.; Sicato, J.C.S.; Rathore, S.; Park, J.H. CIoT-Net: A scalable cognitive IoT based smart city network architecture. Hum.-Cent. Comput. Inf. Sci. 2019, 19, 1–20. [Google Scholar]
- Kuppusamy, P.; Kalpana, R.; Rao, P.V.V. Optimized traffic control and data processing using IoT. Clust. Comput. 2018, 22, 2169–2178. [Google Scholar] [CrossRef]
- Bierwirth, C.; Meisel, F. A follow-Up survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. 2014, 244, 675–689. [Google Scholar]
- Santos, A.; Gomes, A.; Mendes, A.J. Integrating New Technologies and Existing Tools to Promote Programming Learning. Algorithms 2010, 3, 183–196. [Google Scholar] [CrossRef]
- Dulebenets, M.A.; Kavoosi, M.; Abioye, O.; Pasha, J. A Self-Adaptive Evolutionary Algorithm for the Berth Scheduling Problem: Towards Efficient Parameter Control. Algorithms 2018, 11, 100. [Google Scholar] [CrossRef] [Green Version]
- Kavoosi, M.; Dulebenets, M.A.; Abioye, O.; Pasha, J.; Theophilus, O.; Wang, H.; Kampmann, R.; Mikijeljevi, M. Berth scheduling at marine container terminals A universal island-based metaheuristic approach. Marit. Bus. Rev. 2019, 5, 30–66. [Google Scholar] [CrossRef]
- Theophilus, O.; Dulebenets, M.A.; Pasha, J.; Abioye, O.F.; Kavoosi, M. Truck Scheduling at Cross-Docking Terminals: A Follow-Up State-Of-The-Art Review. Sustainability 2019, 11, 5245. [Google Scholar] [CrossRef] [Green Version]
- Dulebenets, M.A. A Diploid Evolutionary Algorithm for Sustainable Truck Scheduling at a Cross-Docking Facility. Sustainability 2018, 10, 1333. [Google Scholar] [CrossRef] [Green Version]
- Dulebenets, M.A. An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal. Inf. Sci. 2021, 565, 390–421. [Google Scholar] [CrossRef]
- Okwu, M.O.; Chukwu, V.U.; Oguoma, O.N. Application of Artificial Neural Network Model for Cost Optimization in a Single-source, Multi-destination System with Non-Deterministic Inputs. IWANN 2019 Adv. Comput. Intell. 2019, 11507, 539–554. [Google Scholar]
- Walraven, E.; Spaan, M.T.; Bakker, B. Traffic flow optimization: A reinforcement learning approach. Eng. Appl. Artif. Intell. 2016, 52, 203–212. [Google Scholar] [CrossRef]
- Olayode, I.O.; Tartibu, L.K.; Okwu, M.O.; Uchechi, U.F. Intelligent transportation systems, un-signalized road intersections and traffic congestion in Johannesburg: A systematic review. Procedia CIRP 2020, 91, 844–850. [Google Scholar]
- Humayun, M.; Afsar, S.; Almufareh, M.F.; Jhanjhi, N.Z.; AlSuwailem, M. Smart Traffic Management System for Metropolitan Cities of Kingdom Using Cutting Edge Technologies. Hindawi J. Adv. Transp. 2022, 2022. [Google Scholar]
- Liu, Z.; Wu, Y.; Cao, S.; Zhu, L.; Shen, G. A Ramp Metering Method Based on Congestion Status in the Urban Freeway. IEEE Access 2020, 8, 76823–76831. [Google Scholar] [CrossRef]
- Guide to Sustainable Transportation Performance Measures United. States Environmental Protection Agency EPA by ICF International EPA 231-K-10-004 August 2011. Available online: www.epa.gov/smartgrowth (accessed on 2 March 2023).
Country | Population | |
---|---|---|
2010 | 2020 | |
Australia | 67.45 | 85.90 |
Turkey | 70.48 | 75.60 |
England | 79.50 | 83.70 |
Germany | 73.81 | 76.40 |
Holland | 82.74 | 92.50 |
Japan | 90.54 | 91.40 |
Sweden | 85.05 | 87.70 |
Norway | 79.10 | 83.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musa, A.A.; Malami, S.I.; Alanazi, F.; Ounaies, W.; Alshammari, M.; Haruna, S.I. Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations. Sustainability 2023, 15, 9859. https://doi.org/10.3390/su15139859
Musa AA, Malami SI, Alanazi F, Ounaies W, Alshammari M, Haruna SI. Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations. Sustainability. 2023; 15(13):9859. https://doi.org/10.3390/su15139859
Chicago/Turabian StyleMusa, Auwal Alhassan, Salim Idris Malami, Fayez Alanazi, Wassef Ounaies, Mohammed Alshammari, and Sadi Ibrahim Haruna. 2023. "Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations" Sustainability 15, no. 13: 9859. https://doi.org/10.3390/su15139859
APA StyleMusa, A. A., Malami, S. I., Alanazi, F., Ounaies, W., Alshammari, M., & Haruna, S. I. (2023). Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations. Sustainability, 15(13), 9859. https://doi.org/10.3390/su15139859