Wind Power Forecasting Based on WaveNet and Multitask Learning
Abstract
:1. Introduction
- In machine learning, appropriate feature selection methods are crucial for model performance. Additionally, the presence of noise in the data can also impact the performance of the model.
- Although MSTF mitigates the issue of error accumulation commonly encountered in time series prediction tasks, it necessitates the careful selection of appropriate models to effectively capture and exploit the intricate patterns and trends present in time series data, thereby facilitating improved forecasting accuracy.
- The combination of MSTF and MTL, as well as their impact on prediction results, has not been investigated in the field of wind turbine power prediction.
- The MIC method is adopted to rank the correlation of features, effectively eliminating redundant information while retaining important features. Additionally, the wavelet transform technique is utilized to remove noise present in the data.
- By leveraging the MTL framework MMoE, the prediction of multiple temporally correlated information is treated as a set of related yet mutually independent tasks, enabling these tasks to be executed in parallel, effectively avoiding error accumulation. Moreover, it facilitates the information sharing among different tasks, thereby improving prediction accuracy.
- This paper investigates the integration of MSTF and MTL in the field of wind turbine power prediction, along with the challenges arising from increased complexity in the process.
2. Literature Review
3. Data Processing
3.1. Correlation Analysis Based on Maximum Information Coefficient
3.2. Min–Max Normalization
3.3. Wavelet Transform
4. The WaveNet–MMoE Architecture Based on WaveNet and MMoE
4.1. WaveNet
4.2. MMoE
4.3. WaveNet–MMoE
5. Experimental Analysis
5.1. Analysis of Forecast Results
5.2. Analysis of Forecast Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MMoE | multigate mixture-of-experts |
ML | machine learning |
MI | mutual information |
MIC | maximum information coefficient |
MSTF | multistep time series forecasting |
MTL | multitask learning |
STL | single-task learning |
AR | autoregressive |
ARMA | autoregressive moving average |
ARIMA | autoregressive integrated moving average |
ETS | exponential smoothing |
XGBoost | eXtreme gradient boosting |
CNN | convolutional neural networks |
RNN | recurrent neural networks |
TENT | Tensorial Encoder Transformer |
TCN | temporal convolutional networks |
DCCCN | dilated causal convolutional networks |
ADGCN | asynchronous dilated graph convolutional network |
SCTCN | self-calibrating temporal convolutional network |
RUL | remaining useful life |
WTA | winner-take-all |
ANN | artificial neural network |
ANOVA | analysis of variance |
PC | pearson correlation |
BE | backward elimination |
RF | random forest |
LASSO | least absolute shrinkage and selection operator |
LSTM | long short-term memory |
ConvLSTM | convolutional LSTM |
MTL-TCNN | multitask learning temporal convolutional neural network |
HA | historical average |
References
- Wu, Y.K.; Hong, J.S. A literature review of wind forecasting technology in the world. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 504–509. [Google Scholar]
- Lei, M.; Shiyan, L.; Chuanwen, J.; Hongling, L.; Yan, Z. A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 2009, 13, 915–920. [Google Scholar] [CrossRef]
- Oh, K.; Kim, E.J.; Park, C.Y. A Physical Model-Based Data-Driven Approach to Overcome Data Scarcity and Predict Building Energy Consumption. Sustainability 2022, 14, 9464. [Google Scholar] [CrossRef]
- Cox, D.R.; Gudmundsson, G.; Lindgren, G.; Bondesson, L.; Harsaae, E.; Laake, P.; Juselius, K.; Lauritzen, S.L. Statistical analysis of time series: Some recent developments [with discussion and reply]. Scand. J. Stat. 1981, 8, 93–115. [Google Scholar]
- Gomes, P.; Castro, R. Wind speed and wind power forecasting using statistical models: Autoregressive moving average (ARMA) and artificial neural networks (ANN). Int. J. Sustain. Energy Dev. 2012, 1, 41–50. [Google Scholar] [CrossRef]
- Khandelwal, I.; Adhikari, R.; Verma, G. Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition. Procedia Comput. Sci. 2015, 48, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Sapitang, M.; M. Ridwan, W.; Faizal Kushiar, K.; Najah Ahmed, A.; El-Shafie, A. Machine learning application in reservoir water level forecasting for sustainable hydropower generation strategy. Sustainability 2020, 12, 6121. [Google Scholar] [CrossRef]
- Solyali, D. A comparative analysis of machine learning approaches for short-/long-term electricity load forecasting in Cyprus. Sustainability 2020, 12, 3612. [Google Scholar] [CrossRef]
- Musarat, M.A.; Alaloul, W.S.; Rabbani, M.B.A.; Ali, M.; Altaf, M.; Fediuk, R.; Vatin, N.; Klyuev, S.; Bukhari, H.; Sadiq, A.; et al. Kabul river flow prediction using automated ARIMA forecasting: A machine learning approach. Sustainability 2021, 13, 10720. [Google Scholar] [CrossRef]
- Yousaf, A.; Asif, R.M.; Shakir, M.; Rehman, A.U.; S. Adrees, M. An improved residential electricity load forecasting using a machine-learning-based feature selection approach and a proposed integration strategy. Sustainability 2021, 13, 6199. [Google Scholar] [CrossRef]
- Pavlyshenko, B.M. Machine-learning models for sales time series forecasting. Data 2019, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Sun, Y.; Zhao, Y.; Song, M.; Wang, J. Deep learning-based feature engineering methods for improved building energy prediction. Appl. Energy 2019, 240, 35–45. [Google Scholar] [CrossRef]
- Chandra, R.; Ong, Y.S.; Goh, C.K. Co-evolutionary multi-task learning with predictive recurrence for multi-step chaotic time series prediction. Neurocomputing 2017, 243, 21–34. [Google Scholar] [CrossRef]
- Dong, G.; Fataliyev, K.; Wang, L. One-step and multi-step ahead stock prediction using backpropagation neural networks. In Proceedings of the 2013 9th International Conference on Information, Communications & Signal Processing, Beijing, China, 16–18 October 2013; pp. 1–5. [Google Scholar]
- Du, P.; Jin, Y.; Zhang, K. A hybrid multi-step rolling forecasting model based on ssa and simulated annealing—Adaptive particle swarm optimization for wind speed. Sustainability 2016, 8, 754. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R.; Goyal, S.; Gupta, R. Evaluation of deep learning models for multi-step ahead time series prediction. IEEE Access 2021, 9, 83105–83123. [Google Scholar] [CrossRef]
- Girard, A.; Rasmussen, C.; Candela, J.Q.; Murray-Smith, R. Gaussian process priors with uncertain inputs application to multiple-step ahead time series forecasting. Adv. Neural Inf. Process. Syst. 2002, 15, 545–552. [Google Scholar]
- Parthasarathy, S.; Busso, C. Jointly Predicting Arousal, Valence and Dominance with Multi-Task Learning. In Proceedings of the Interspeech, Stockholm, Sweden, 20–24 August 2017; Volume 2017, pp. 1103–1107. [Google Scholar]
- Lala, B.; Rizk, H.; Kala, S.M.; Hagishima, A. Multi-task learning for concurrent prediction of thermal comfort, sensation and preference in winters. Buildings 2022, 12, 750. [Google Scholar] [CrossRef]
- Ahmed, A.; Khalid, M. A review on the selected applications of forecasting models in renewable power systems. Renew. Sustain. Energy Rev. 2019, 100, 9–21. [Google Scholar] [CrossRef]
- Ssekulima, E.B.; Anwar, M.B.; Al Hinai, A.; El Moursi, M.S. Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: A review. IET Renew. Power Gener. 2016, 10, 885–989. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Cao, S.; Zhang, X.; Gao, S. A review of applications of artificial intelligent algorithms in wind farms. Artif. Intell. Rev. 2020, 53, 3447–3500. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Z.; Zheng, L. Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1480–1490. [Google Scholar] [CrossRef]
- Kavasseri, R.G.; Seetharaman, K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 2009, 34, 1388–1393. [Google Scholar] [CrossRef]
- Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405–1414. [Google Scholar] [CrossRef]
- Chen, P.; Pedersen, T.; Bak-Jensen, B.; Chen, Z. ARIMA-based time series model of stochastic wind power generation. IEEE Trans. Power Syst. 2009, 25, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Chen, Y.; Xiao, L.; Jia, L.; He, Y. Design and analysis of a hybrid GNN-ZNN model with a fuzzy adaptive factor for matrix inversion. IEEE Trans. Ind. Inform. 2021, 18, 2434–2442. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, B.; Liao, B.; Yang, Z. Control of pendulum tracking (including swinging up) of IPC system using zeroing-gradient method. Nonlinear Dyn. 2017, 89, 1–25. [Google Scholar] [CrossRef]
- Jia, L.; Xiao, L.; Dai, J.; Qi, Z.; Zhang, Z.; Zhang, Y. Design and application of an adaptive fuzzy control strategy to zeroing neural network for solving time-variant QP problem. IEEE Trans. Fuzzy Syst. 2020, 29, 1544–1555. [Google Scholar] [CrossRef]
- Lei, Y.; Liao, B.; Chen, J. Comprehensive analysis of ZNN models for computing complex-valued time-dependent matrix inverse. IEEE Access 2020, 8, 91989–91998. [Google Scholar] [CrossRef]
- Lu, H.; Jin, L.; Luo, X.; Liao, B.; Guo, D.; Xiao, L. RNN for solving perturbed time-varying underdetermined linear system with double bound limits on residual errors and state variables. IEEE Trans. Ind. Inform. 2019, 15, 5931–5942. [Google Scholar] [CrossRef]
- Cioffi, R.; Travaglioni, M.; Piscitelli, G.; Petrillo, A.; De Felice, F. Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions. Sustainability 2020, 12, 492. [Google Scholar] [CrossRef] [Green Version]
- Alshboul, O.; Shehadeh, A.; Almasabha, G.; Almuflih, A.S. Extreme gradient boosting-based machine learning approach for green building cost prediction. Sustainability 2022, 14, 6651. [Google Scholar] [CrossRef]
- Li, W.; Han, L.; Xiao, X.; Liao, B.; Peng, C. A gradient-based neural network accelerated for vision-based control of an RCM-constrained surgical endoscope robot. Neural Comput. Appl. 2022, 34, 1329–1343. [Google Scholar] [CrossRef]
- Xiao, L.; Liao, B.; Li, S.; Zhang, Z.; Ding, L.; Jin, L. Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator. IEEE Trans. Ind. Informatics 2017, 14, 98–105. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Y. Solving time-varying inverse kinematics problem of wheeled mobile manipulators using Zhang neural network with exponential convergence. Nonlinear Dyn. 2014, 76, 1543–1559. [Google Scholar] [CrossRef]
- Khan, A.T.; Cao, X.; Liao, B.; Francis, A. Bio-Inspired Machine Learning for Distributed Confidential Multi-Portfolio Selection Problem. Biomimetics 2022, 7, 124. [Google Scholar] [CrossRef]
- Liao, B.; Wang, Y.; Li, W.; Peng, C.; Xiang, Q. Prescribed-time convergent and noise-tolerant Z-type neural dynamics for calculating time-dependent quadratic programming. Neural Comput. Appl. 2021, 33, 5327–5337. [Google Scholar] [CrossRef]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of conventional statistical methods with machine learning in medicine: Diagnosis, drug development, and treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, G.; Juneja, S.; Viriyasitavat, W.; Mohafez, H.; Hadizadeh, M.; Islam, M.A.; El Bayoumy, I.; Gulati, K. A novel machine-learning-based hybrid CNN model for tumor identification in medical image processing. Sustainability 2022, 14, 1447. [Google Scholar] [CrossRef]
- Kumar, M.; Singhal, S.; Shekhar, S.; Sharma, B.; Srivastava, G. Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning. Sustainability 2022, 14, 13998. [Google Scholar] [CrossRef]
- Khosravi Kazazi, A.; Amiri, F.; Rahmani, Y.; Samouei, R.; Rabiei-Dastjerdi, H. A New Hybrid Model for Mapping Spatial Accessibility to Healthcare Services Using Machine Learning Methods. Sustainability 2022, 14, 14106. [Google Scholar] [CrossRef]
- Robinson, C.; Dilkina, B.; Hubbs, J.; Zhang, W.; Guhathakurta, S.; Brown, M.A.; Pendyala, R.M. Machine learning approaches for estimating commercial building energy consumption. Appl. Energy 2017, 208, 889–904. [Google Scholar] [CrossRef]
- Mosavi, A.; Salimi, M.; Faizollahzadeh Ardabili, S.; Rabczuk, T.; Shamshirband, S.; Varkonyi-Koczy, A.R. State of the art of machine learning models in energy systems, a systematic review. Energies 2019, 12, 1301. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Jeon, J.; Choi, D.; Park, J.Y. Application of machine learning techniques in injection molding quality prediction: Implications on sustainable manufacturing industry. Sustainability 2021, 13, 4120. [Google Scholar] [CrossRef]
- Yousaf, A.; Asif, R.M.; Shakir, M.; Rehman, A.U.; Alassery, F.; Hamam, H.; Cheikhrouhou, O. A novel machine learning-based price forecasting for energy management systems. Sustainability 2021, 13, 12693. [Google Scholar] [CrossRef]
- Ding, L.; She, J.; Peng, S. An integrated prediction model for network traffic based on wavelet transformation. Elektron. Ir Elektrotechnika 2013, 19, 73–76. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y. An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm. Renew. Energy 2018, 123, 694–705. [Google Scholar] [CrossRef]
- Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H.; Liu, H. Multi-step wind speed forecasting using EWT decomposition, LSTM principal computing, RELM subordinate computing and IEWT reconstruction. Energy Convers. Manag. 2018, 167, 203–219. [Google Scholar] [CrossRef]
- Ruiz, L.G.B.; Cuéllar, M.P.; Calvo-Flores, M.D.; Jiménez, M.D.C.P. An application of non-linear autoregressive neural networks to predict energy consumption in public buildings. Energies 2016, 9, 684. [Google Scholar] [CrossRef] [Green Version]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar]
- Liu, J.; Shi, Q.; Han, R.; Yang, J. A hybrid GA–PSO–CNN model for ultra-short-term wind power forecasting. Energies 2021, 14, 6500. [Google Scholar] [CrossRef]
- Elsaraiti, M.; Merabet, A. A comparative analysis of the arima and lstm predictive models and their effectiveness for predicting wind speed. Energies 2021, 14, 6782. [Google Scholar] [CrossRef]
- Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Huggingface’s transformers: State-of-the-art natural language processing. arXiv 2019, arXiv:1910.03771. [Google Scholar]
- Gao, X.; Li, X.; Zhao, B.; Ji, W.; Jing, X.; He, Y. Short-term electricity load forecasting model based on EMD-GRU with feature selection. Energies 2019, 12, 1140. [Google Scholar] [CrossRef] [Green Version]
- Bilgin, O.; Mąka, P.; Vergutz, T.; Mehrkanoon, S. TENT: Tensorized Encoder Transformer for temperature forecasting. arXiv 2021, arXiv:2106.14742. [Google Scholar]
- Qi, T.; Li, G.; Chen, L.; Xue, Y. Adgcn: An asynchronous dilation graph convolutional network for traffic flow prediction. IEEE Internet Things J. 2021, 9, 4001–4014. [Google Scholar] [CrossRef]
- Zhu, R.; Liao, W.; Wang, Y. Short-term prediction for wind power based on temporal convolutional network. Energy Rep. 2020, 6, 424–429. [Google Scholar] [CrossRef]
- He, K.; Su, Z.; Tian, X.; Yu, H.; Luo, M. RUL prediction of wind turbine gearbox bearings based on self-calibration temporal convolutional network. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G. Variable selection in time series forecasting using random forests. Algorithms 2017, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Yang, S. On feature selection for traffic congestion prediction. Transp. Res. Part C Emerg. Technol. 2013, 26, 160–169. [Google Scholar] [CrossRef]
- Liu, J.; Sun, H.; Li, Y.; Fang, W.; Niu, S. An improved power system transient stability prediction model based on mRMR feature selection and WTA ensemble learning. Appl. Sci. 2020, 10, 2255. [Google Scholar] [CrossRef] [Green Version]
- Naik, N.; Mohan, B.R. Optimal feature selection of technical indicator and stock prediction using machine learning technique. In Proceedings of the Emerging Technologies in Computer Engineering: Microservices in Big Data Analytics: Second International Conference, ICETCE 2019, Jaipur, India, 1–2 February 2019; Springer: Singapore, 2019; pp. 261–268. [Google Scholar]
- Bagherzadeh, F.; Mehrani, M.J.; Basirifard, M.; Roostaei, J. Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance. J. Water Process Eng. 2021, 41, 102033. [Google Scholar] [CrossRef]
- Nettleton, D.F.; Orriols-Puig, A.; Fornells, A. A study of the effect of different types of noise on the precision of supervised learning techniques. Artif. Intell. Rev. 2010, 33, 275–306. [Google Scholar] [CrossRef]
- Yan, H.; Ouyang, H. Financial time series prediction based on deep learning. Wirel. Pers. Commun. 2018, 102, 683–700. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, J.B.; Roh, M.I.; Han, K.M.; Lee, G.H. Prediction of ocean weather based on denoising autoencoder and convolutional LSTM. J. Mar. Sci. Eng. 2020, 8, 805. [Google Scholar] [CrossRef]
- Samal, K.K.R.; Babu, K.S.; Das, S.K. Temporal convolutional denoising autoencoder network for air pollution prediction with missing values. Urban Clim. 2021, 38, 100872. [Google Scholar] [CrossRef]
- Syfert, M.M.; Smith, M.J.; Coomes, D.A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 2013, 8, e55158. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Q. An overview of multi-task learning. Natl. Sci. Rev. 2018, 5, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, Q. A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. 2021, 34, 5586–5609. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, F.; Wang, X.; Sun, L.; Tang, H.; Lv, Y. Taxi demand prediction using parallel multi-task learning model. IEEE Trans. Intell. Transp. Syst. 2020, 23, 794–803. [Google Scholar] [CrossRef]
- Crichton, G.; Pyysalo, S.; Chiu, B.; Korhonen, A. A neural network multi-task learning approach to biomedical named entity recognition. BMC Bioinform. 2017, 18, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Gong, S.; Liu, Y.; Lin, Z.; Qu, Y. A multi-task learning model for daily activity forecast in smart home. Sensors 2020, 20, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Prediction Window Size | Method | Metrics | ||||
---|---|---|---|---|---|---|
MAE | MAPE | MSE | RMSE | |||
3 | CNN | 0.079 | 1.340 | 0.014 | 0.118 | 0.474 |
FNN | 0.073 | 1.293 | 0.012 | 0.110 | 0.544 | |
CNN-LSTM | 0.070 | 1.278 | 0.011 | 0.105 | 0.566 | |
LSTM | 0.070 | 1.275 | 0.011 | 0.105 | 0.567 | |
Transformer | 0.066 | 0.689 | 0.013 | 0.113 | 0.515 | |
Decision Tree | 0.077 | 1.010 | 0.017 | 0.130 | 0.335 | |
CNN-Tree | 0.108 | 1.690 | 0.029 | 0.170 | −0.109 | |
WaveNet | 0.056 | 0.712 | 0.009 | 0.095 | 0.645 | |
WaveNet–MMoE | 0.052 | 0.556 | 0.009 | 0.095 | 0.656 | |
6 | CNN | 0.084 | 1.454 | 0.016 | 0.126 | 0.406 |
FNN | 0.072 | 1.064 | 0.012 | 0.110 | 0.528 | |
CNN-LSTM | 0.076 | 1.307 | 0.014 | 0.118 | 0.482 | |
LSTM | 0.075 | 1.357 | 0.013 | 0.114 | 0.501 | |
Transformer | 0.075 | 0.782 | 0.017 | 0.130 | 0.360 | |
Decision Tree | 0.090 | 1.278 | 0.023 | 0.152 | 0.137 | |
CNN-Tree | 0.113 | 1.794 | 0.032 | 0.179 | −0.219 | |
WaveNet | 0.063 | 0.803 | 0.012 | 0.110 | 0.557 | |
WaveNet–MMoE | 0.060 | 0.736 | 0.011 | 0.105 | 0.572 |
Type of Datasets | Model | Metrics | ||
---|---|---|---|---|
MAE | MAPE | RMSE | ||
Original | Decision Tree | 0.0933 | 1.3522 | 0.1493 |
Transformer | 0.1259 | 2.4574 | 0.1762 | |
WaveNet | 0.1064 | 0.8091 | 0.1571 | |
WaveNet–MMoE | 0.0765 | 0.6420 | 0.1184 | |
MIC | Decision Tree | 0.0782 | 1.0515 | 0.1344 |
Transformer | 0.0664 | 0.7162 | 0.1143 | |
WaveNet | 0.0604 | 0.7621 | 0.1016 | |
WaveNet–MMoE | 0.0529 | 0.5628 | 0.0956 | |
MIC + Wavelet | Decision Tree | 0.0773 | 1.0103 | 0.1305 |
Transformer | 0.0659 | 0.6894 | 0.1128 | |
WaveNet | 0.0559 | 0.7117 | 0.0965 | |
WaveNet–MMoE | 0.0520 | 0.5561 | 0.0950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Peng, C.; Liao, B.; Cao, X.; Li, S. Wind Power Forecasting Based on WaveNet and Multitask Learning. Sustainability 2023, 15, 10816. https://doi.org/10.3390/su151410816
Wang H, Peng C, Liao B, Cao X, Li S. Wind Power Forecasting Based on WaveNet and Multitask Learning. Sustainability. 2023; 15(14):10816. https://doi.org/10.3390/su151410816
Chicago/Turabian StyleWang, Hao, Chen Peng, Bolin Liao, Xinwei Cao, and Shuai Li. 2023. "Wind Power Forecasting Based on WaveNet and Multitask Learning" Sustainability 15, no. 14: 10816. https://doi.org/10.3390/su151410816
APA StyleWang, H., Peng, C., Liao, B., Cao, X., & Li, S. (2023). Wind Power Forecasting Based on WaveNet and Multitask Learning. Sustainability, 15(14), 10816. https://doi.org/10.3390/su151410816