Does Environmental Decentralization Promote Renewable Energy Development? A Local Government Competition Perspective
Abstract
:1. Introduction
2. Literature Review and Theoretical Analysis
2.1. Environmental Decentralization versus Environmental Centralization
2.2. Environmental Decentralization and Renewable Energy Development
2.3. Role of Local Government Competition
3. Methodology and Data
3.1. Model Setting
3.2. Variable Selection
3.3. Variable Description
4. Empirical Results and Discussion
4.1. Baseline Regression Analysis
4.2. Empirical Analysis of the Moderating Effect
4.3. Empirical Analysis of Robustness Test
4.4. Empirical Analysis of Regional Heterogeneity
4.5. Empirical Analysis of Threshold Effect
5. Conclusions and Policy Implications
- Environmental decentralization significantly hinders renewable energy development in the region, and local governments neglect the role of renewable energy in long-term environmental governance because of short-sightedness.
- The impact factor of environmental decentralization on renewable energy is −1.481, which is not conducive to optimizing and upgrading energy structure. The higher the level of environmental decentralization, the less conducive to the sustainable development of renewable energy. However, although decentralization of environmental administrative power hinders the development of renewable energy, the decentralization of environmental monitoring power promotes renewable energy development, with impact coefficients of −0.235 and 0.443, respectively.
- Local government competition as a moderating variable influences the relationship between environmental decentralization and renewable energy. Intergovernmental competition can distort the effectiveness of energy policy implementation and increase the obstacles to energy transformation caused by environmental decentralization.
- The environmental decentralization and local government competition for renewable energy has regional heterogeneity. The estimated structure is significantly negative at the 1% level for eastern and western regions, indicating that environmental decentralization significantly inhibits renewable energy development. In contrast, the estimation of the central region is not important.
- With competition between local governments, the inhibitory effect of environmental decentralization on renewable energy development is becoming increasingly significant. Different forms of environmental decentralization have varied effects.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
RE | Renewable energy | OECD | Organization for Economic Cooperation and Development |
LGC | Local government competition | Popu | Population density |
ED | Environmental decentralization | GDP | Economic growth |
ED_LGC | Cross-term of ED and LGC | RD | R&D investment intensity |
EAD | Environmental administrative decentralization | Second | Secondary industry output |
EMD | Environmental monitoring decentralization | Regu | Environmental regulation |
ESD | Environmental supervisory decentralization | Urban | Urbanization rate |
References
- Fan, Y.; Xia, Y. Exploring energy consumption and demand in China. Energy 2012, 40, 23–30. [Google Scholar] [CrossRef]
- Deng, J.; Li, X.; Wang, Z.; Ren, Q.; Li, Z.; Wang, K. An energy storage allocation method for renewable energy stations based on standardized supply curve. Energy Rep. 2023, 9, 973–982. [Google Scholar] [CrossRef]
- Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% renewable energy systems. Energy 2019, 175, 471–480. [Google Scholar] [CrossRef]
- Acaroğlu, H.; García Márquez, F.P. A life-cycle cost analysis of High Voltage Direct Current utilization for solar energy systems: The case study in Turkey. J. Clean. Prod. 2022, 360, 132128. [Google Scholar] [CrossRef]
- Acaroğlu, H.; García Márquez, F.P. High voltage direct current systems through submarine cables for offshore wind farms: A life-cycle cost analysis with voltage source converters for bulk power transmission. Energy 2022, 249, 123713. [Google Scholar] [CrossRef]
- An, Y.; Kim, J.; Joo, H.; Han, G.; Kim, H.; Lee, W.; Kim, M. Retrofit of renewable energy systems in existing community for positive energy community. Energy Rep. 2023, 9, 3733–3744. [Google Scholar] [CrossRef]
- Kutan, A.M.; Paramati, S.R.; Ummalla, M.; Zakari, A. Financing renewable energy projects in major emerging market economies: Evidence in the perspective of sustainable economic development. Emerg. Mark. Financ. Tr. 2018, 54, 1761–1777. [Google Scholar] [CrossRef] [Green Version]
- Yolcan, O.O. World energy outlook and state of renewable energy: 10-Year evaluation. Innov. Green Dev. 2023, 2, 100070. [Google Scholar] [CrossRef]
- Li, Y. How does economic recovery impact the development of green finance and renewable energy? Empirical evidence from selected Asian economies. Renew. Energ. 2023, 208, 538–545. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Does fiscal decentralization improve energy and environmental performance? New perspective on vertical fiscal imbalance. Appl. Energ. 2021, 302, 117495. [Google Scholar] [CrossRef]
- Feng, S.; Sui, B.; Liu, H.; Li, G. Environmental decentralization and innovation in China. Econ. Model. 2020, 93, 660–674. [Google Scholar] [CrossRef]
- Lin, B.; Xu, C. Does environmental decentralization aggravate pollution emissions? Microscopic evidence from Chinese industrial enterprises. Sci. Total Environ. 2022, 829, 154640. [Google Scholar] [CrossRef]
- Millimet, D.L. Environmental federalism: A survey of the empirical literature. Case W. Res. L. Rev. 2013, 64, 1669. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y.; Hao, Y.; Ren, S.; Zhang, P. Environmental decentralization, local government competition, and regional green development: Evidence from China. Sci. Total Environ. 2020, 708, 135085. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; LÃ Wenstein, W.; Ferrari, M. Privatization and the Role of Sub-National Governments in the Latin American Power Sector: A Plea for Less Subsidiarity? Int. J. Energy Econ. Policy 2018, 8, 95–103. [Google Scholar]
- Zhao, X.; Si Mohammed, K.; Wang, Y.; Stępień, P.; Mentel, G. Effect of geopolitical risk and economic uncertainty indices on renewable energy. Geosci. Front. 2023, 14, 101655. [Google Scholar] [CrossRef]
- Song, M.; Du, J.; Tan, K.H. Impact of fiscal decentralization on green total factor productivity. Int. J. Prod. Econ. 2018, 205, 359–367. [Google Scholar] [CrossRef]
- Li, G.; Guo, F.; Di, D. Regional competition, environmental decentralization, and target selection of local governments. Sci. Total Environ. 2021, 755, 142536. [Google Scholar] [CrossRef]
- Li, T.; Du, T. Vertical fiscal imbalance, transfer payments, and fiscal sustainability of local governments in China. Int. Rev. Econ. Financ. 2021, 74, 392–404. [Google Scholar] [CrossRef]
- Xia, S.; You, D.; Tang, Z.; Yang, B. Analysis of the Spatial Effect of Fiscal Decentralization and Environmental Decentralization on Carbon Emissions under the Pressure of Officials’ Promotion. Energies 2021, 14, 1878. [Google Scholar] [CrossRef]
- Kassouri, Y. Fiscal decentralization and public budgets for energy RD&D: A race to the bottom? Energy Policy 2022, 161, 112761. [Google Scholar]
- Zhang, C.; Zhou, D.; Wang, Q.; Ding, H.; Zhao, S. Will fiscal decentralization stimulate renewable energy development? Evidence from China. Energ. Policy 2022, 164, 112893. [Google Scholar] [CrossRef]
- Oates, W.E.; Portney, P.R. Chapter 8—The Political Economy of Environmental Policy. In Handbook of Environmental Economics; Mäler, K., Vincent, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 1, pp. 325–354. [Google Scholar]
- Millimet, D.L. Assessing the empirical impact of environmental federalism. J. Reg. Sci. 2003, 43, 711–733. [Google Scholar] [CrossRef]
- Woods, N.D. Environmental Federalism: Empirics. In Encyclopedia of Energy, Natural Resource, and Environmental Economics; Shogren, J.F., Ed.; Elsevier: Waltham, MA, USA, 2013; pp. 271–277. [Google Scholar]
- Blundell, W.; Evans, M.F.; Stafford, S.L. Regulating hazardous wastes under U.S. environmental federalism: The role of state resources. J. Environ. Econ. Manag. 2021, 108, 102464. [Google Scholar] [CrossRef]
- Oates, W.E. A Reconsideration of Environmental Federalism; Edward Elgar Publishing: Cheltenham, UK, 2004; pp. 125–156. [Google Scholar]
- Zhang, B.; Chen, X.; Guo, H. Does central supervision enhance local environmental enforcement? Quasi-experimental evidence from China. J. Public. Econ. 2018, 164, 70–90. [Google Scholar] [CrossRef]
- Ghosh, S. Environmental standards and political federalism: Do labor legislations matter? Environ. Dev. 2015, 16, 15–30. [Google Scholar] [CrossRef]
- Han, C.; Tian, X. Less pollution under a more centralized environmental system: Evidence from vertical environmental reforms in China. Energ. Econ. 2022, 112, 106121. [Google Scholar] [CrossRef]
- Shahbaz, M.; Abbas Rizvi, S.K.; Dong, K.; Vo, X.V. Fiscal decentralization as new determinant of renewable energy demand in China: The role of income inequality and urbanization. Renew. Energ. 2022, 187, 68–80. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, P.; Razzaq, A. How does fiscal decentralization lead to renewable energy transition and a sustainable environment? Evidence from highly decentralized economies. Renew. Energ. 2023, 206, 1064–1074. [Google Scholar] [CrossRef]
- Su, C.; Umar, M.; Khan, Z. Does fiscal decentralization and eco-innovation promote renewable energy consumption? Analyzing the role of political risk. Sci. Total Environ. 2021, 751, 142220. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Pan, X.F.; Li, M.N. The nonlinear influence of innovation efficiency on carbon and haze co-control: The threshold effect of environmental decentralization. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Hong, T.; Yu, N.; Mao, Z. Does environment centralization prevent local governments from racing to the bottom?--Evidence from China. J. Clean. Prod. 2019, 231, 649–659. [Google Scholar] [CrossRef]
- Manello, A. Productivity growth, environmental regulation and win–win opportunities: The case of chemical industry in Italy and Germany. Eur. J. Oper. Res. 2017, 262, 733–743. [Google Scholar] [CrossRef]
- Wen, S.; Lin, B.; Zhou, Y. Does financial structure promote energy conservation and emission reduction? Evidence from China. Int. Rev. Econ. Financ. 2021, 76, 755–766. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energ. Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Lin, B.; Moubarak, M. Renewable energy consumption—Economic growth nexus for China. Renew. Sustain. Energy Rev. 2014, 40, 111–117. [Google Scholar] [CrossRef]
- Stewart, R.B. Pyramids of Sacrifice--Problems of Federalism in Mandating State Implementations of National Environmental Policy. Yale Lj 1976, 86, 1196. [Google Scholar] [CrossRef] [Green Version]
- Tilt, B. The political ecology of pollution enforcement in China: A case from Sichuan’s rural industrial sector. China Q. 2007, 192, 915–932. [Google Scholar] [CrossRef] [Green Version]
- Van Rooij, B.; Lo, C.W.H. Fragile convergence: Understanding variation in the enforcement of China’s industrial pollution law. Law. Policy 2010, 32, 14–37. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, L.; Guo, Y.; Wu, H. The inducing factors of environmental emergencies: Do environmental decentralization and regional corruption matter? J. Environ. Manag. 2022, 302, 114098. [Google Scholar] [CrossRef]
- Bhujabal, P.; Sethi, N.; Padhan, P.C. ICT, foreign direct investment and environmental pollution in major Asia Pacific countries. Environ. Sci. Pollut. R. 2021, 28, 42649–42669. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wu, H.; Ying, S.X. Environmental regulation, market forces, and corporate environmental responsibility: Evidence from the implementation of cleaner production standards in China. J. Bus. Res. 2022, 150, 606–622. [Google Scholar] [CrossRef]
- Ramanathan, R.; Black, A.; Nath, P.; Muyldermans, L. Impact of environmental regulations on innovation and performance in the UK industrial sector. Manag. Decis. 2010, 48, 1493–1513. [Google Scholar] [CrossRef]
- Ren, S.; Du, M.; Bu, W.; Lin, T. Assessing the impact of economic growth target constraints on environmental pollution: Does environmental decentralization matter? J. Environ. Manag. 2023, 336, 117618. [Google Scholar] [CrossRef]
- Wen, H.; Wen, C.; Lee, C.C. Impact of digitalization and environmental regulation on total factor productivity. Inf. Econ. Policy 2022, 61, 101007. [Google Scholar] [CrossRef]
- Lai, Y. Environmental policy competition and heterogeneous capital endowments. Reg. Sci. Urban. Econ. 2019, 75, 107–119. [Google Scholar] [CrossRef]
- Pu, Z.; Fu, J. Economic growth, environmental sustainability and China mayors’ promotion. J. Clean. Prod. 2018, 172, 454–465. [Google Scholar] [CrossRef]
- Konte, M.; Vincent, R.C. Mining and quality of public services: The role of local governance and decentralization. World Dev. 2021, 140, 105350. [Google Scholar] [CrossRef]
- Lopez, R.; Mitra, S. Corruption, pollution, and the Kuznets environment curve. J. Environ. Econ. Manag. 2000, 40, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, X.; Guo, X. Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors. Energ. Policy 2019, 132, 611–619. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. How do economic growth targets affect energy consumption? The role of Chinese-style fiscal decentralization. Process Saf. Environ. 2023, 169, 736–745. [Google Scholar] [CrossRef]
- Tang, P.; Feng, Y.; Li, M.; Zhang, Y. Can the performance evaluation change from central government suppress illegal land use in local governments? A new interpretation of Chinese decentralisation. Land. Use Policy 2021, 108, 105578. [Google Scholar] [CrossRef]
- Wei, L.; Lin, B.; Zheng, Z.; Wu, W.; Zhou, Y. Does fiscal expenditure promote green technological innovation in China? Evidence from Chinese cities. Environ. Impact Asses 2023, 98, 106945. [Google Scholar] [CrossRef]
- Bu, M.; Li, S.; Jiang, L. Foreign direct investment and energy intensity in China: Firm-level evidence. Energy Econ. 2019, 80, 366–376. [Google Scholar] [CrossRef]
- Klinlampu, C.; Chimprang, N.; Sirisrisakulchai, J. The sufficient level of growth in renewable energy generation for coal demand reduction. Energy Rep. 2023, 9, 843–849. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Awosusi, A.A.; Bekun, F.V.; Altuntaş, M. Coal energy consumption beat renewable energy consumption in South Africa: Developing policy framework for sustainable development. Renew. Energy 2021, 175, 1012–1024. [Google Scholar] [CrossRef]
- Bloch, H.; Rafiq, S.; Salim, R. Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution. Econ. Model. 2015, 44, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Lee, C.C.; Wang, F.; Chang, Y.F. Does green finance promote renewable energy? Evidence from China. Resour. Policy 2023, 82, 103439. [Google Scholar] [CrossRef]
- Lin, B.; Wu, Y.; Zhang, L. Estimates of the potential for energy conservation in the Chinese steel industry. Energy Policy 2011, 39, 3680–3689. [Google Scholar] [CrossRef]
- Ran, Q.; Zhang, J.; Hao, Y. Does environmental decentralization exacerbate China’s carbon emissions? Evidence based on dynamic threshold effect analysis. Sci. Total Environ. 2020, 721, 137656. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.H.; Nie, L. Is environmental decentralization really exacerbating haze pollution. China Popul. Resour. Environ. 2017, 27, 59–69. [Google Scholar]
- Song, M.; Zhao, X.; Shang, Y. The impact of low-carbon city construction on ecological efficiency: Empirical evidence from quasi-natural experiments. Resour. Conserv. Recycl. 2020, 157, 104777. [Google Scholar] [CrossRef]
- Wang, J.; Lei, P. The tournament of Chinese environmental protection: Strong or weak competition? Ecol. Econ. 2021, 181, 106888. [Google Scholar] [CrossRef]
- Pan, X.; Ai, B.; Li, C.; Pan, X.; Yan, Y. Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China. Technol. Forecast. Soc. 2019, 144, 428–435. [Google Scholar] [CrossRef]
- Yang, Q.; Song, D. How does environmental regulation break the resource curse: Theoretical and empirical study on China. Resour. Policy 2019, 64, 101480. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Understanding the institutional logic of urban environmental pollution in China: Evidence from fiscal autonomy. Process Saf. Environ. 2022, 164, 57–66. [Google Scholar] [CrossRef]
- Sjöberg, E.; Xu, J. An empirical study of US environmental federalism: RCRA enforcement from 1998 to 2011. Ecol. Econ. 2018, 147, 253–263. [Google Scholar] [CrossRef]
- Meng, H.; Huang, X.; Yang, H.; Chen, Z.; Yang, J.; Zhou, Y.; Li, J. The influence of local officials’ promotion incentives on carbon emission in Yangtze River Delta, China. J. Clean. Prod. 2019, 213, 1337–1345. [Google Scholar] [CrossRef]
- Oates, W.E.; Schwab, R.M. Economic competition among jurisdictions: Efficiency enhancing or distortion inducing? J. Public Econ. 1988, 35, 333–354. [Google Scholar] [CrossRef]
- Wheeler, D. Racing to the bottom? Foreign investment and air pollution in developing countries. J. Environ. Dev. 2001, 10, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Sadik-Zada, E.R.; Gatto, A. Civic engagement and energy transition in the Nordic-Baltic Sea Region: Parametric and nonparametric inquiries. Socio-Econ. Plan. Sci. 2023, 87, 101347. [Google Scholar] [CrossRef]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in Honor of Peter Schmidt: Econometric Methods and Applications; Sickles, R.C., Horrace, W.C., Eds.; Springer: New York, NY, USA, 2014; pp. 281–314. [Google Scholar]
- Shin, Y.; Yu, B. An ARDL approach to an analysis of asymmetric long-run cointegrating relationships. Leeds Univ. Bus. Sch. 2004, unpublished manuscript. [Google Scholar]
- Wen, H.; Lee, C.C. Impact of fiscal decentralization on firm environmental performance: Evidence from a county-level fiscal reform in China. Environ. Sci. Pollut. Res. 2020, 27, 36147–36159. [Google Scholar] [CrossRef]
- Li, G.; Wen, H. The low-carbon effect of pursuing the honor of civilization? A quasi-experiment in Chinese cities. Econ. Anal. Policy 2023, 78, 343–357. [Google Scholar] [CrossRef]
Variables | Description | Observations | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
RE | Renewable Energy | 660 | 0.242 | 0.233 | 0.0001 | 0.919 |
ED | Environmental Decentralization | 660 | 0.977 | 0.356 | 0.414 | 2.290 |
LGC | Local Government Competition | 660 | 0.0272 | 0.0223 | 0.0001 | 0.146 |
Popu | Population Density | 660 | 437.168 | 623.228 | 6.677 | 3950.794 |
GDP | Economic Growth | 660 | 38,433.19 | 30,400.73 | 2759 | 183,980 |
RD | R&D Investment Intensity | 660 | 0.0142 | 0.0112 | 0.0015 | 0.0662 |
Second | Secondary Industry Output | 660 | 44.77 | 8.405 | 15.80 | 61.50 |
Regu | Environmental Regulation | 660 | 0.004 | 0.0036 | 0.0001 | 0.0285 |
Urban | Urbanization Rate | 660 | 52.401 | 15.601 | 19.23 | 89.60 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
ED | −1.481 *** (−5.21) | |||
EAD | −0.235 ** (−2.33) | |||
EMD | 0.101 (1.12) | |||
ESD | 0.443 *** (3.26) | |||
Popu | 1.093 (1.58) | 1.696 ** (2.45) | 1.819 *** (2.62) | 2.482 *** (3.44) |
GDP | 0.091 (0.25) | −0.435 (−1.21) | −0.524 (−1.42) | −0.278 (−0.77) |
RD | 0.778 *** (4.00) | 0.576 *** (2.82) | 0.687 *** (3.46) | 0.816 *** (4.09) |
Second | −1.539 *** (−3.09) | −0.997 ** (−2.01) | −0.928 * (−1.84) | −0.848 * (−1.71) |
Regu | 0.08 (1.19) | 0.116 * (1.70) | 0.109 (1.61) | 0.141 ** (2.07) |
Urban | −0.115 (−0.21) | −0.769 (−1.45) | −1.129 ** (−2.16) | −1.235 ** (−2.39) |
Constants | 0.704 (0.13) | 1.74 (0.31) | 3.416 (0.62) | −1.484 (−0.26) |
Time Effects | YES | YES | YES | YES |
Regional Effects | YES | YES | YES | YES |
R-squared | 0.366 | 0.343 | 0.339 | 0.349 |
Observations | 660 | 660 | 660 | 660 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
ED | −4.436 *** (−6.66) | −4.001 *** (−6.00) | −4.408 *** (−6.64) | −4.322 *** (−6.45) |
LGC | 0.011 (0.20) | 0.046 (0.86) | 0.01 (0.19) | 0.013 (0.25) |
ED_LGC | −0.668 *** (−4.09) | −0.694 *** (−4.29) | −0.761 *** (−4.72) | −0.754 *** (−4.65) |
Popu | 1.536 ** (2.29) | 1.13 * (1.70) | 1.138 * (1.66) | |
GDP | −0.785 *** (−2.68) | −0.097 (−0.27) | −0.062 (−0.17) | |
RD | 0.911 *** (4.74) | 0.886 *** (4.54) | ||
Second | −1.391 *** (−2.94) | −1.321 *** (−2.69) | ||
Regu | 0.06 (0.91) | |||
Urban | −0.235 (−0.44) | |||
Constants | −3.097 *** (−12.30) | −4.165 (−0.84) | 1.578 (0.32) | 1.991 (0.71) |
Time Effect | YES | YES | YES | YES |
Regional Effects | YES | YES | YES | YES |
R-squared | 0.344 | 0.362 | 0.388 | 0.389 |
Observations | 660 | 660 | 660 | 660 |
Variables | (1) Alternative Measures | (2) Lag One Period | (3) Lag Two Period | (4) Instrumental Variable |
---|---|---|---|---|
ED | −1.689 ** (−3.58) | −3.876 *** (−5.82) | −4.106 *** (−5.89) | −4.330 *** (−5.27) |
LGC | −0.049 (−1.29) | −0.012 (−0.23) | −0.038 (−0.67) | 0.008 (0.18) |
ED_LGC | −0.328 ** (−2.24) | −0.679 *** (−4.19) | −0.754 *** (−4.42) | −0.817 *** (−5.00) |
Popu | −0.762 (−1.58) | 1.540 ** (2.19) | 1.785 ** (2.29) | 1.243 (1.51) |
GDP | 0.036 (0.14) | 0.108 (0.30) | 0.484 (1.25) | −0.283 (−0.83) |
RD | 0.733 *** (5.34) | 0.724 *** (3.85) | 0.816 *** (4.32) | 0.702 *** (4.06) |
Second | −0.882 ** (−2.55) | −1.594 *** (−3.33) | −1.357 *** (−2.80) | −1.119 ** (−2.20) |
Regu | 0.156 *** (3.35) | 0.082 (1.27) | 0.067 (0.98) | 0.045 (0.73) |
Urban | 0.55 (1.47) | 0.616 (1.20) | 0.068 (0.13) | −0.164 (−0.23) |
Constants | 12.629 *** (3.36) | −3.963 (−0.72) | −7.788 (−1.25) | −3.238 (−0.51) |
Time Effect | YES | YES | YES | YES |
Regional Effects | YES | YES | YES | YES |
Cragg-Donald Wald F Statistics | 602.583 | |||
R-squared | 0.752 | 0.383 | 0.397 | 0.818 |
Observations | 660 | 630 | 600 | 630 |
Variables | (1) Eastern | (2) Central | (3) West |
---|---|---|---|
ED | −11.869 *** (−6.45) | 0.002 (0.00) | −2.238 *** (−6.21) |
LGC | 0.526 ** (2.33) | 0.096 (0.95) | −0.009 (−0.32) |
ED_LGC | −1.964 *** (−3.49) | −0.248 (−1.45) | −0.381 *** (−4.82) |
Popu | −3.952 ** (−2.22) | 2.442 ** (2.25) | −0.739 (−1.27) |
GDP | 2.074 ** (2.38) | −0.209 (−0.54) | 0.71 *** (3.11) |
RD | 0.419 (0.71) | −0.558 *** (−2.85) | 1.05 *** (8.99) |
Second | −1.591 (−1.30) | −1.534 *** (−4.00) | 0.329 (0.86) |
Regu | 0.101 (0.69) | 0.095 (1.44) | 0.053 (1.17) |
Urban | 1.902 (1.54) | −0.042 (−0.06) | −0.687 ** (−1.99) |
Constants | 2.914 (0.18) | −10.198 * (−1.90) | 2.33 (0.60) |
Time Effect | YES | YES | YES |
Regional Effects | YES | YES | YES |
R-squared | 0.564 | 0.629 | 0.599 |
Observations | 242 | 176 | 242 |
Variables | (1) ED | (2) EAD | (3) EMD | (4) ESD |
---|---|---|---|---|
L1.RE | 0.153 *** (16.94) | 0.182 *** (12.59) | 0.222 *** (36.93) | 0.173 *** (25.51) |
Below thres | −3.836 *** (−5.33) | −0.593 *** (−10.32) | −0.003 (−0.04) | 0.911 *** (6.77) |
Above thres | −4.220 *** (−5.58) | −0.131 * (−1.78) | −0.184 (−1.37) | 0.459 *** (3.85) |
Control variables | YES | YES | YES | YES |
Constants | 14.736 ** (2.45) | −13.590 *** (−11.58) | −3.350 *** (−2.97) | −14.755 *** (−12.15) |
Threshold | −3.046 | −3.993 | −3.000 | −2.997 |
Observations | 630 | 630 | 630 | 630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, F.; Wen, H. Does Environmental Decentralization Promote Renewable Energy Development? A Local Government Competition Perspective. Sustainability 2023, 15, 10829. https://doi.org/10.3390/su151410829
Wang Y, Zhou F, Wen H. Does Environmental Decentralization Promote Renewable Energy Development? A Local Government Competition Perspective. Sustainability. 2023; 15(14):10829. https://doi.org/10.3390/su151410829
Chicago/Turabian StyleWang, Yinuo, Fengxiu Zhou, and Huwei Wen. 2023. "Does Environmental Decentralization Promote Renewable Energy Development? A Local Government Competition Perspective" Sustainability 15, no. 14: 10829. https://doi.org/10.3390/su151410829
APA StyleWang, Y., Zhou, F., & Wen, H. (2023). Does Environmental Decentralization Promote Renewable Energy Development? A Local Government Competition Perspective. Sustainability, 15(14), 10829. https://doi.org/10.3390/su151410829