Machine Learning Methods for Woody Volume Prediction in Eucalyptus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Machine Learning
2.2.1. Artificial Neural Networks (ANN)
2.2.2. K-Nearest Neighbor (KNN)
2.2.3. Multiple Linear Regression (MLR)
2.2.4. Random Forests (RF)
2.2.5. Support Vector Machines (SVM)
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- PEVS 2020: Com Crescimento de 17.9%, Valor da Produção de Silvicultura e Extração Vegetal Chega a R$ 23,6 Bilhões. Agência de Notícias. Available online: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/31802-pevs-2020-com-crescimento-de-17-9-valor-da-producao-de-silvicultura-e-extracao-vegetal-chega-a-r-23-6-bilhoes (accessed on 18 March 2022).
- Gonzalez-Benecke, C.A.; Fernández, M.P.; Gayoso, J.; Pincheira, M.; Wightman, M.G. Using Tree Height, Crown Area and Stand-Level Parameters to Estimate Tree Diameter, Volume, and Biomass of Pinus radiata, Eucalyptus globulus and Eucalyptus nitens. Forests 2022, 13, 2043. [Google Scholar] [CrossRef]
- da Silva, V.S.; Silva, C.A.; Mohan, M.; Cardil, A.; Rex, F.E.; Loureiro, G.H.; Klauberg, C. Combined Impact of sample size and modeling approaches for predicting stem volume in Eucalyptus spp. forest plantations using field and LiDAR data. Remote Sens. 2020, 12, 1438. [Google Scholar] [CrossRef]
- Soares, F.A.A.M.N.; Flôres, E.L.; Cabacinha, C.D.; Carrijo, G.A.; Veiga, A.C.P. Recursive diameter prediction for calculating merchantable volume of Eucalyptus clones without previous knowledge of total tree height using artificial neural networks. Appl. Soft Comput. J. 2012, 12, 2030–2039. [Google Scholar] [CrossRef]
- de Oliveira, B.R.; da Silva, A.A.P.; Teodoro, L.P.R.; de Azevedo, G.B.; Azevedo, G.T.D.O.S.; Baio, F.H.R.; Teodoro, P.E. Eucalyptus growth recognition using machine learning methods and spectral variables. For. Ecol. Manag. 2021, 497, 119496. [Google Scholar] [CrossRef]
- Kainer, D.; Stone, E.A.; Padovan, A.; Foley, W.J.; Külheim, C. Accuracy of Genomic Prediction for Foliar Terpene Traits in Eucalyptus polybractea. G3 Genes Genomes Genet. 2018, 8, 2573. [Google Scholar] [CrossRef] [Green Version]
- da Silva, A.K.V.; Borges, M.V.V.; Batista, T.S.; da Silvia Junior, C.A.; Furuya, D.E.G.; Prado Osco, L.; Pistori, H. Predicting eucalyptus diameter at breast height and total height with uav-based spectral indices and machine learning. Forests 2021, 12, 582. [Google Scholar] [CrossRef]
- Vega, M.; Harrison, P.; Hamilton, M.; Musk, R.; Adams, P.; Potts, B. Modelling wood property variation among Tasmanian Eucalyptus nitens plantations. For. Ecol. Manag. 2021, 491, 119203. [Google Scholar] [CrossRef]
- Diamantopoulou, M.J.; Özçelik, R.; Crecente-Campo, F.; Eler, Ü. Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods. Biosyst. Eng. 2015, 133, 33–45. [Google Scholar] [CrossRef]
- Özçelik, R.; Diamantopoulou, M.J.; Brooks, J.R.; Wiant, H.V. Estimating tree bole volume using artificial neural network models for four species in Turkey. J. Environ. Manag. 2010, 91, 742–753. [Google Scholar] [CrossRef]
- García Nieto, P.J.; Martínez Torres, J.; Araújo Fernández, M.; Ordóñez Galán, C. Support vector machines and neural networks used to evaluate paper manufactured using Eucalyptus globulus. Appl. Math. Model. 2012, 36, 6137–6145. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Karatepe, Y.; Diamantopoulou, M.J. Investigation of Parametric and Arti Cial Neural Network Modeling Approaches for Total Tree Height Prediction in Cedar Plantations. 2021. Available online: https://www.researchsquare.com/article/rs-96662/v2 (accessed on 10 April 2023).
- Designing a Satellite Image-Aided National Forest Survey in Finland [NFI]. Available online: https://agris.fao.org/agris-search/search.do?recordID=SE9100028 (accessed on 18 March 2022).
- Trotter, C.M.; Dymond, J.R.; Goulding, C.J. Estimation of timber volume in a coniferous plantation forest using Landsat TM. Int. J. Remote Sens. 1997, 18, 2209–2223. [Google Scholar] [CrossRef]
- Reese, H.; Nilsson, M.; Sandstro, P. Applications using estimates of forest parameters deri v ed from satellite and forest in v entory data. Comput. Electron. Agric. 2002, 37, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, E.C. Introduction to multivariate regression analysis. Hippokratia 2010, 14, 23–28. [Google Scholar]
- MacHado, M.V.; Tommaselli, A.M.G.; Tachibana, V.M.; Martins-Neto, R.P.; Campos, M.B. Evaluation of multiple linear regression model to obtain dbh of trees using data from a lightweight laser scanning system on-board a uav. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Wu, D.; Zhou, R.; Fang, L.; Zheng, X.; Lou, X. Estimation of DBH at forest stand level based on multi-parameters and generalized regression neural network. Forests 2019, 10, 778. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Random For. 2019, 1, 1–33. [Google Scholar]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Ensemble Machine Learning. Methods Appl. 2012, 1, 1–332. [Google Scholar]
- Agrawal, S.; Rana, S.; Ahmad, T. Random forest for the real forests. Adv. Intell. Syst. Comput. 2016, 381, 301–309. [Google Scholar]
- Peters, J.; De Baets, B.; Verhoest, N.E.; Samson, R.; Degroeve, S.; De Becker, P.; Huybrechts, W. Random forests as a tool for ecohydrological distribution modelling. Ecol. Modell. 2007, 207, 304–318. [Google Scholar] [CrossRef]
- Nalepa, J.; Kawulok, M. Selecting training sets for support vector machines: A review. Artif. Intell. Rev. 2019, 52, 857–900. [Google Scholar] [CrossRef] [Green Version]
- Temesgen, H.; Zhang, C.H.; Zhao, X.H. Modelling tree height-diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China. For. Ecol. Manag. 2014, 316, 78–89. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Shen, J.; Hu, Z.; Sharma, R.P.; Wang, G.; Meng, X.; Wang, M.; Fu, L. Modeling height-diameter relationship for poplar plantations using combined-optimization multiple hidden layer back propagation neural network. Forests 2020, 11, 442. [Google Scholar] [CrossRef] [Green Version]
- Campos, O.J.D. Cubagem de árvores. Master Diss. 2014, 87. Available online: https://repositorio.ufsc.br/bitstream/handle/123456789/123279/327161.pdf?sequence=1&isAllowed=y (accessed on 9 April 2022).
- Leal, F.A.; Cabacinha, C.D.; Vinícius, R.; Castro, O.; Aparecido, E.; Matricardi, T. AMOSTRAGEM DE ÁRVORES DE EUCALYPTUS NA CUBAGEM 1 Introdução 2 Material e método. Rev. Bras. Biom. 2015, 33, 91–103. [Google Scholar]
- Müller, M.D.; Salles, T.T.; Paciullo, D.S.C.; Brighenti, A.M.; Castro, C.D. Equações De Altura, Volume E Afilamento Para Eucalipto E Acácia Estabelecidos Em Sistema Silvipastoril. Floresta 2014, 44, 473. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, M.R.D.; Silva, J.N.M.; de Barros, P.L.C.; da Silva Almeida, E.; da Silva, D.A.S.; de Sousa, C.S.C. Adjustment and selection of volumetric models Os commercial species in Ipixuna. Rev. Em Agronegocio E Meio Ambiente 2020, 13, 259–278. [Google Scholar]
- da Silva Binoti, M.L.M.; Binoti, D.H.B.; Leite, H.G. Height of Even-Aged Stands of Eucalyptus. Rev. Árvore 2013, 37, 639–645. [Google Scholar]
- de Freitas, E.C.S.; de Paiva, H.N.; Neves, J.C.L.; Marcatti, G.E.; Leite, H.G. Modeling of eucalyptus productivity with artificial neural networks. Ind. Crops Prod. 2020, 146, 112149. [Google Scholar] [CrossRef]
- David, R.A.R.; Santos, A.C.G.D.; Ferreira, M.A.; Freitas, D.; Dias, N.D.S.; Camargos, B.H.L.; Gomide, L.R. Aplicação De Técnicas De Regressão Linear E Aprendizagem De Máquinas Na Predição Da Altura Total De Árvores De Eucalyptus Spp. In Silvicultura E Manejo Florestal: Técnicas De Utilização E Conservação Da Natureza-Volume 1; Editora Cientifica Digital: Guaruja, Brazil, 2021; Volume 1, pp. 29–43. [Google Scholar]
- Le Maire, G.; Marsden, C.; Nouvellon, Y.; Grinand, C.; Hakamada, R.; Stape, J.L.; Laclau, J.P. MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass. Remote Sens. Environ. 2011, 115, 2613–2625. [Google Scholar] [CrossRef]
- Prasad, N.R.; Patel, N.R.; Danodia, A. Crop yield prediction in cotton for regional level using random forest approach. Spat. Inf. Res. 2021, 29, 195–206. [Google Scholar] [CrossRef]
Model | r | ||||
---|---|---|---|---|---|
DBH | Ht | Species | DBH + Ht | All | |
ANN | 0.9137677 Ab | 0.8488631 Ac | 0.9285823 Ab | 0.9546309 Aa | 0.9488428 Aa |
KNN | 0.8378938 Cb | 0.8132129 Bc | 0.8517617 Bb | 0.9374872 Aa | 0.8568371 Bb |
LR | 0.9079053 Aa | 0.8138639 Bb | 0.9258909 Aa | 0.9252162 Aa | 0.9455784 Aa |
RF | 0.8722667 Bb | 0.8467742 Ab | 0.9424229 Aa | 0.9414576 Aa | 0.9447906 Aa |
SVM | 0.9079053 Aa | 0.8138639 Bb | 0.9246548 Aa | 0.9247454 Aa | 0.9350522 Aa |
Model | MAE | ||||
---|---|---|---|---|---|
DBH | Ht | Species | DBH + Ht | All | |
ANN | 0.03127626 Ab | 0.03945802 Aa | 0.02844863 Ab | 0.02385956 Bc | 0.02425266 Cc |
KNN | 0.02784657 Ac | 0.03959366 Aa | 0.03139129 Ab | 0.02189490 Bd | 0.03236239 Ab |
LR | 0.02974847 Ab | 0.04262036 Aa | 0.02979906 Ab | 0.02948298 Ab | 0.02634445 Bb |
RF | 0.02607193 Ab | 0.03590287 Ba | 0.02000122 Bc | 0.01961697 Bc | 0.01938396 Dc |
SVM | 0.02917617 Ab | 0.04083021 Aa | 0.02921831 Ab | 0.02971024 Ab | 0.02752851 Bb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, D.C.; Santos, R.G.d.; da Silva, P.H.N.; Pistori, H.; Teodoro, L.P.R.; Poersch, N.L.; de Azevedo, G.B.; de Oliveira Sousa Azevedo, G.T.; da Silva Junior, C.A.; Teodoro, P.E. Machine Learning Methods for Woody Volume Prediction in Eucalyptus. Sustainability 2023, 15, 10968. https://doi.org/10.3390/su151410968
Santana DC, Santos RGd, da Silva PHN, Pistori H, Teodoro LPR, Poersch NL, de Azevedo GB, de Oliveira Sousa Azevedo GT, da Silva Junior CA, Teodoro PE. Machine Learning Methods for Woody Volume Prediction in Eucalyptus. Sustainability. 2023; 15(14):10968. https://doi.org/10.3390/su151410968
Chicago/Turabian StyleSantana, Dthenifer Cordeiro, Regimar Garcia dos Santos, Pedro Henrique Neves da Silva, Hemerson Pistori, Larissa Pereira Ribeiro Teodoro, Nerison Luis Poersch, Gileno Brito de Azevedo, Glauce Taís de Oliveira Sousa Azevedo, Carlos Antonio da Silva Junior, and Paulo Eduardo Teodoro. 2023. "Machine Learning Methods for Woody Volume Prediction in Eucalyptus" Sustainability 15, no. 14: 10968. https://doi.org/10.3390/su151410968
APA StyleSantana, D. C., Santos, R. G. d., da Silva, P. H. N., Pistori, H., Teodoro, L. P. R., Poersch, N. L., de Azevedo, G. B., de Oliveira Sousa Azevedo, G. T., da Silva Junior, C. A., & Teodoro, P. E. (2023). Machine Learning Methods for Woody Volume Prediction in Eucalyptus. Sustainability, 15(14), 10968. https://doi.org/10.3390/su151410968