Determinants Influencing Cocoa Farmers’ Satisfaction with Input Credit in the Nawa Region of Côte d’Ivoire
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Quality of Input from Input Credit Technology
2.2. Satisfaction with the Input Credit’s Performance
2.3. Factors Affecting Farmers’ Satisfaction with the Effectiveness of Input Credits
3. Presentation of the Study Area
4. Material and Methods
4.1. Sampling Strategy and Data Collection
4.2. Determining Relevant Fundamental Factors
4.3. Construction of the Logistic Regression Method
- √
- The logistic distribution is calculated to ensure that the rate of estimated probability is always between 0 and 1.
- √
- The heteroscedasticity issue is consequently resolved because the probability does not rise linearly with a unit change in the value of the explanatory variables, as is the case in the LPM.
- √
- Compared to the PM, it is simpler to calculate and explain. In other investigations, the dichotomous LM has been applied to examine farmer satisfaction [37].
5. Results and Discussion
5.1. Socioeconomic Profile of Farmers
5.2. Distribution of Farmers Based on Level of Satisfaction Regarding Input Credit
5.3. Satisfaction of the Farmers with Input Credit Services
5.4. Determinants of Satisfaction Level
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Li, Z.; Bai, Y.; Yu, L.; Zheng, M.; Faye, B.; Du, G.; Mbaye, E.; Liang, A.; Sané, T.; et al. Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors. Land 2023, 12, 779. [Google Scholar] [CrossRef]
- Wickramasuriya, A.M.; Dunwell, J.M. Cacao biotechnology: Current status and future prospects. Plant Biotechnol. J. 2018, 16, 4–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CNUCED. Le rôle des Petits Exploitants Agricoles dans la Production et le Commerce Durables des Produits de Base; CNUCED: Geneva, Switzerland, 2015; Available online: https://unctad.org/system/files/official-document/tdb62d9_fr.pdf (accessed on 2 February 2023).
- Braudeau, J. La production cacaoyère dans l’économie mondiale. J. d’Agriculture Tradit. Bot. Appl. 1979, 26, 217–232. [Google Scholar] [CrossRef]
- Loor Solorzano, R.G. Contribution à ’étude de la Domestication de la Variété de Cacaoyer Nacional d’Equateur: Recherche de la Variété Native et de ses Ancêtres Sauvages. Master’s Thesis, Montpellier SupAgro, Montpellier, France, 2007. [Google Scholar]
- CIRAD. Vers Une Cacaoculture Durable; CIRAD: Paris, France, 2022. [Google Scholar]
- The World Bank. Investing in Opportunity, Ending Poverty. Annu. Rep. 2018, 2018, 319. [Google Scholar] [CrossRef]
- Kéli, Z.J.; Assiri, A.A.; Koffi, N.; N’Goran, J.; Kébé, I. Evolution de l’amélioration variétale du cacaoyer et des systèmes de production de la cacaoculture en Côte d’Ivoire. Sci. Nat. 2005, 2, 209–218. [Google Scholar]
- Manioudis, M.; Meramveliotakis, G. Broad strokes towards a grand theory in the analysis of sustainable development: A return to the classical political economy. New Polit. Econ. 2022, 27, 866–878. [Google Scholar] [CrossRef]
- Klarin, T. The Concept of Sustainable Development: From its Beginning to the Contemporary Issues. Zagreb Int. Rev. Econ. Bus. 2018, 21, 67–94. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Tan, R.; Xie, H.; Li, X.; Faye, B.; Du, G.; Zhang, R. Efficiency Analysis of Land Use and the Degree of Coupling Link between Population Growth and Global Built-Up Area in the Subregion of West Africa. Land 2022, 11, 847. [Google Scholar] [CrossRef]
- Kassem, H.S.; Alotaibi, B.A.; Muddassir, M.; Herab, A. Factors influencing farmers’ satisfaction with the quality of agricultural extension services. Eval. Program Plann. 2021, 85, 101912. [Google Scholar] [CrossRef]
- Islam, A.H.M.S. Integrated Rice-Fish Farming System in Bangladesh: An Ex-ante Value Chain Evaluation Framework. In Technological and Institutional Innovations for Marginalized Smallholders in Agricultural Development; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-25718-1. [Google Scholar]
- Guengant, J.-P.; Maga, H.I. Afrique subsaharienne: Dynamiques démographiques et enjeux de développement. Cités 2020, 82, 57. [Google Scholar] [CrossRef]
- Alam, G.M.; Khatun, M.N.; Sarker, M.N.I.; Joshi, N.P.; Bhandari, H. Promoting agri-food systems resilience through ICT in developing countries amid COVID-19. Front. Sustain. Food Syst. 2023, 6, 972667. [Google Scholar] [CrossRef]
- Ayanlade, A.; Radeny, M. COVID-19 and food security in Sub-Saharan Africa: Implications of lockdown during agricultural planting seasons. npj Sci. Food 2020, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Dercon, S.; Christiaensen, L. Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia. J. Dev. Econ. 2011, 96, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.L.; Lu, T.; Hu, Y.G.; Meng, K.W.; Li, H. How to Improve Farmers’ Green Production Level in a Targeted Manner? Front. Environ. Sci. 2022, 10, 639. [Google Scholar] [CrossRef]
- Shikur, Z.H. Agricultural policies, agricultural production and rural households’ welfare in Ethiopia. J. Econ. Struct. 2020, 9, 50. [Google Scholar] [CrossRef]
- Khonje, M.; Manda, J.; Alene, A.D.; Kassie, M. Analysis of Adoption and Impacts of Improved Maize Varieties in Eastern Zambia. World Dev. 2015, 66, 695–706. [Google Scholar] [CrossRef]
- Hien, F. Evaluation des Besoins Technologiques pour l’Adaptation dans les Secteurs de l’Agriculture et de la Foresterie au Burkina Faso Rapport Final. 2017. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjl05n3wYWAAxVl1zgGHQ4VDV0QFnoECA4QAQ&url=https%3A%2F%2Funfccc.int%2Fttclear%2Fmisc_%2FStaticFiles%2Fgnwoerk_static%2FTNA_key_doc%2F868e922ebb524adcbc96d38b6c6f058c%2F2f907e2c1b8c4d87afad9b36a5c2d3d0.pdf&usg=AOvVaw3Olh5kagzUgQpoM-rKWj7I&opi=89978449 (accessed on 27 May 2023).
- Jha, S.; Kaechele, H.; Lana, M.; Amjath-Babu, T.S.; Sieber, S. Exploring farmers’ perceptions of agricultural technologies: A case study from Tanzania. Sustainability 2020, 12, 998. [Google Scholar] [CrossRef] [Green Version]
- Corson, S.L. Diffusion of Innovations. In Atlas of Operative Laparoscopy and Hysteroscopy, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 14, p. 776. [Google Scholar] [CrossRef]
- Gabriel, T.; Kim, L.; Abdoulaye, K. Les facteurs de l’adoption des nouvelles technologies en agriculture en Afrique Subsaharienne: Une revue de la littérature. African J. Agric. Resour. Econ. 2018, 13, 140–151. Available online: https://ageconsearch.umn.edu/record/274735/files/3.-Teno-et-al.pdf (accessed on 27 May 2023).
- Donwahi, A.R. La Nawa une Région de Potentiels; Association Internationale des Régions Francophones: Lyon, France, 2014. [Google Scholar]
- Amouan, K.P. Dynamique de l’Occupation du Sol de 1985 à 2015 en Côte d’Ivoire/Nawa Etude des Changements d’Affectation des Sols de 1985 à 2015 dans la Région de la Nawa (Sud-Ouest de la Côte d’Ivoire); 2020; Available online: https://my.editions-ue.com/catalogue/details/fr/978-613-9-54035-8/dynamique-de-l-occupation-du-sol-de-1985-%252525C3%252525A0-2015-en-c%252525C3%252525B4te-d-ivoire-nawa (accessed on 27 May 2023).
- Nardin, J.-C. Sous-peuplement et développement dans le Sud-Ouest de la Côte-d’Ivoire: Cinq siècles d’histoire économique et sociale. Outre-Mers. Rev. d’Histoire 1994, 81, 523–525. [Google Scholar]
- Misro, A.; Hussain, M.; Jones, T.; Baxter, M.; Khanduja, V. A quick guide to survey research. Ann. R. Coll. Surg. Engl. 2015, 96, 87. [Google Scholar] [CrossRef]
- Anang, B. Determinants of Farmers’ Satisfaction with the Price of Cocoa in Ghana. Asian J. Agric. Ext. Econ. Sociol. 2016, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hua, G.; Yuansheng, J. Analysis on the Influencing Factors of Farmers’ Satisfaction to Vouchers—Base on FAO Post-earthquake Assistance Program in Sichuan, China. J. Agric. Sci. 2011, 3, 211–216. [Google Scholar] [CrossRef]
- Elias, A.; Nohmi, M.; Yasunobu, K.; Ishida, A. Farmers’ satisfaction with agricultural extension service and its influencing factors: A case study in north west Ethiopia. J. Agric. Sci. Technol. 2016, 18, 39–53. [Google Scholar]
- Diagne, A. Adoption et Impact des Innovations Technologiques Agricoles dans les Filières Maïs et Arachide au Sénégal. Ph.D. Thesis, Université Laval, Quebec, QC, Canada, 2020; p. 253. [Google Scholar]
- Maskey, R.K.; Weber, K.E. Evaluating factors influencing farmers’ satisfaction with their irrigation system. Irrig. Drain. Syst. 1996, 10, 331–341. [Google Scholar] [CrossRef]
- Sigue, H.; Labiyi, I.A.; Yabi, J.A.; Biaou, G. Facteurs d’adoption de la technologie “Microdose” dans les zones agroécologiques au Burkina Faso. Int. J. Biol. Chem. Sci. 2019, 12, 2030. [Google Scholar] [CrossRef]
- Wossen, T.; Abdoulaye, T.; Alene, A.; Feleke, S.; Menkir, A.; Manyong, V. Measuring the impacts of adaptation strategies to drought stress: The case of drought tolerant maize varieties. J. Environ. Manag. 2017, 203, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Bilaliib Udimal, T.; Jincai, Z.; Mensah, O.S.; Caesar, A.E. Factors Influencing the Agricultural Technology Adoption: The Case of Improved Rice Varieties (Nerica) in the Northern Region, Ghana. J. Econ. Sustain. Dev. 2017, 8, 137–148. [Google Scholar]
- Gomo, T.; Mudhara, M.; Senzanje, A. Farmers’ satisfaction with the performance of the Mooi River Irrigation Scheme, KwaZulu-Natal, South Africa. Water SA 2014, 40, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Lepetu, J.; Alavalapati, J.; Nair, P.K. Forest Dependency and Its Implication for Protected Areas Management: A case Study From Kasane Forest Reserve, Botswana. Int. J. Environ. Res. 2009, 3, 525–536. Available online: https://researchhub.buan.ac.bw:80/handle/13049/589 (accessed on 30 January 2023).
- Beier, P.; Burnham, K.P.; Anderson, D.R. Model Selection and Inference: A Practical Information-Theoretic Approach; Springer: Berlin/Heidelberg, Germany, 2001; Volume 65, ISBN 0387953647. [Google Scholar]
- Bymolt, R.; Laven, A.; Tyszler, M. Demystifying the Cocoa Sector in Ghana and Côte d’Ivoire; KIT Royal Tropical Institute: Amsterdam, The Netherlands, 2018; Available online: https://www.researchgate.net/profile/Anna-Laven-2/publication/341463804_Demystifying_the_Cocoa_Sector_in_Ghana_and_Cote_d’Ivoire/links/5ec2f5a0299bf1c09ac8ecc2/Demystifying-the-Cocoa-Sector-in-Ghana-and-Cote-dIvoire.pdf (accessed on 4 December 2022).
- Balineau, G.; Bernath, S.; Pahuatini, V. Cocoa Farmers’ Agricultural Practices and Livelihoods in Côte d’Ivoire; Agence Française de Développement: Paris, France, 2016; p. 43. Available online: https://www.afd.fr/en/ressources/cocoa-farmers-agricultural-practices-and-livelihoods-cote-divoire (accessed on 27 May 2023).
- Akinnagbe, O.; Ajayi, A. Assessment of Farmers’ Benefits Derived from Olam Organisation’s Sustainable Cocoa Production Extension Activities in Ondo State, Nigeria. J. Agric. Ext. 2011, 14, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Diran Olawale, A. Small-Scale Maize Seed Production in West and Central Africa: Profitability, Constraints and Options. Am. J. Agric. For. 2015, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Achigan-Dako, E.G.; Carlos Houdegbe, A.; Glèlè, M.; Nono-Womdim, R. Analyse du système de production et de distribution des semences de maïs (Zea mays L.) au Sud-Bénin. Biotechnol. Agron. Soc. Environ. 2014, 18, 49–60. Available online: https://popups.uliege.be/1780-4507/index.php?id=10749 (accessed on 5 December 2022).
- Bradley, D.E.; Roberts, J.A. Self-Employment and Job Satisfaction: Investigating the Role of Self-Efficacy, Depression, and Seniority. J. Small Bus. Manag. 2004, 42, 37–58. [Google Scholar] [CrossRef]
- Djokoto, J.G.; Owusu, V.; Awunyo-Vitor, D. Adoption of organic agriculture: Evidence from cocoa farming in Ghana. Cogent Food Agric. 2016, 2, 1242181. [Google Scholar] [CrossRef]
- Onyeneke, R.U. Determinants of Adoption of Improved Technologies in Rice Production in Imo State, Nigeria. Afr. J. Agric. Res. 2017, 12, 888–896. [Google Scholar] [CrossRef]
- Rao, N.; Patil, S.; Singh, C.; Roy, P.; Pryor, C.; Poonacha, P.; Genes, M. Cultivating sustainable and healthy cities: A systematic literature review of the outcomes of urban and peri-urban agriculture. Sustain. Cities Soc. 2022, 85, 104063. [Google Scholar] [CrossRef]
- Damisa, M.A.; Abdulsalam, Z.; Kehinde, A. Determinants of farmers’ satisfaction with their irrigation system in Nigeria. Trends Agric. Econ. 2010, 3, 101–106. [Google Scholar] [CrossRef]
Variables | Explanation | Expected Sign |
---|---|---|
LEVEL OF SATISFACTION (dependent variable) | Input credit usage is rated as 0 if the farmer is not satisfied, 1 if the farmer is satisfied | |
PRODUC (kg) | the average net production of the farmer with the use of the input credit per year | + |
AGE | Age of the farmer (1 = 18–30 years, 2 = 31–40 years, 3 = 41–50 years, 4 = 51–60 years, 5 = 60 years more) | ± |
GENDER | The sex of the household head (0 if female, 1 if male) | + |
EDUC | Level of education (0 = no school, 1 = primary, 2 = secondary, and 3 = university) | + |
FARMSIZE (ha) | the size of the farmer’s farm (1 = 1–5, 2 = 6–12 3 = 13–18, 4 = 18 ha and more) | ± |
TRAINING | 1 if the farmer has received input credit training, 0 otherwise | + |
FARMEXP | Number of years the farmer has been input credit (in years) | ± |
DIVERACT | Diversity activities: 1 if the farmer practices other activities and 0 if not | ± |
WATDIST | The reaction of the beneficiary in the distribution of the input credit: 0 if there is a delay in the distribution, 1 if there is not. | - |
WATPRICE | The reaction of the farmer to the price of the input credit: 0 if a low price, 1 if a high price | - |
REGION | the location of the farmer’s farm: 1 if Meagui, 2 if Soubre | + |
Variable | Items | Frequency/ Moy | Percentage (%) |
---|---|---|---|
Production Net | - | 2229.68 | - |
Years of using | - | 5.20 | - |
Farm size | 1–5 ha | 202 | 66.2 |
6–12 ha | 74 | 24.2 | |
13–18 ha | 13 | 4.2 | |
>18 ha | 16 | 5.2 | |
Agricultural training | No | 47 | 15.4 |
Yes | 258 | 84.5 | |
Age | 18–30 years | 42 | 13.7 |
31–40 years | 89 | 29.1 | |
41–50 years | 57 | 18.6 | |
51–60 years | 65 | 21.3 | |
>60 years | 52 | 17.0 | |
Gender | Male | 283 | 92.7 |
Female | 22 | 7.2 | |
Education | Not school | 186 | 60.9 |
Primary school | 65 | 21.3 | |
Secondary school | 51 | 16.7 | |
University | 3 | 0.9 | |
Distribution constraint | No delay in the distribution | 85 | 27.8 |
delay in the distribution | 220 | 72.1 | |
Input price constraint | Low price | 89 | 29.1 |
High price | 216 | 70.8 | |
Diversity Activity | Not practice diversity activity | 225 | 73.7 |
Practice diversity activity | 80 | 26.2 | |
Regions | Meagui | 72 | 23.6 |
Soubre | 233 | 76.3 |
Level of Adoption | Whole Sample N = 305 | Regions | |
---|---|---|---|
Meagui (N = 72) | Soubre (N = 233) | ||
Low | 62.0 | 17.4 | 44.6 |
High | 38.0 | 6.2 | 31.8 |
Constraints Influencing Adoption | Frequency/Percentage | |
---|---|---|
Unsatisfied | Satisfied | |
Delay in the distribution of input | 220 (72.1%) | 85 (27.8%) |
Disease (swollen shoot) | 107 (35.1%) | 198 (64.9%) |
The high price of the input package | 217 (71.1%) | 88 (28.8%) |
Constraints related to the repayment condition | 202 (66.2%) | 103 (33.7%) |
Overall Satisfaction | 186 (61.1%) | 119 (38.8%) |
Level of Satisfaction | Coeff. | Std. Err. | z | O.R | p > |z| | [95% Conf. Interval C.I] | |
---|---|---|---|---|---|---|---|
Production (kg) | 0.000 *** | 0.000 | 4.94 | 1.001 | 0.000 | 0.000 | 0.001 |
Number of years of use of the input credit | −0.186 *** | 0.048 | −3.85 | 0.830 | 0.000 | −0.282 | −0.091 |
Farm Size (ha) | |||||||
6–12 ha | −0.455 | 0.362 | −1.26 | 0.634 | 0.209 | −1.165 | 0.255 |
13–18 ha | −1.457 * | 0.867 | −1.68 | 0.233 | 0.093 | −3.158 | 0.242 |
>18 ha | 0.073 | 0.932 | 0.08 | 1.08 | 0.937 | −1.755 | 1.901 |
Training | |||||||
Yes | 0.696 * | 0.393 | 1.77 | 2.007 | 0.077 | −0.074 | 1.468 |
Age | |||||||
31–40 ans | −0.726 | 0.457 | −1.59 | 0.484 | 0.113 | −1.623 | 0.170 |
41–50 ans | −0.341 | 0.514 | −0.66 | 0.711 | 0.507 | −1.350 | 0.666 |
51–60 ans | −1.027 ** | 0.501 | −2.05 | 0.358 | 0.040 | −2.010 | −0.045 |
>60 ans | −1.120 ** | 0.538 | −2.08 | 0.326 | 0.038 | −2.176 | −0.063 |
Gender | |||||||
female | −0.684 | 0.522 | −1.31 | 0.504 | 0.191 | −1.709 | 0.340 |
Education | |||||||
Primary school | −0.058 | 0.356 | −0.16 | 0.943 | 0.870 | −0.756 | 0.640 |
Secondary school | 0.143 | 0.392 | 0.37 | 1.154 | 0.715 | −0.625 | 0.912 |
University | −1.781 | 1.509 | −1.18 | 0.168 | 0.238 | −4.739 | 1.177 |
Distribution constraint | |||||||
delay in Distribution | 0.255 | 0.331 | 0.77 | 1.291 | 0.442 | −0.395 | 0.905 |
Input price constraint | |||||||
high price | −0.612 * | 0.371 | −1.65 | 0.542 | 0.100 | −1.340 | 0.116 |
Diversity of activities | |||||||
Practice other activity | −0.202 | 0.329 | −0.61 | 0.817 | 0.539 | −0.847 | 0.443 |
Regions | |||||||
Soubre | −0.404 | 0.351 | −1.15 | 0.667 | 0.250 | −1.093 | 0.283 |
Constant | 1.307 | 0.694 | 1.88 | 3.697 | 0.060 | −0.052 | 2.667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouadio, Y.D.; Anani, A.N.B.; Faye, B.; Fan, Y. Determinants Influencing Cocoa Farmers’ Satisfaction with Input Credit in the Nawa Region of Côte d’Ivoire. Sustainability 2023, 15, 10981. https://doi.org/10.3390/su151410981
Kouadio YD, Anani ANB, Faye B, Fan Y. Determinants Influencing Cocoa Farmers’ Satisfaction with Input Credit in the Nawa Region of Côte d’Ivoire. Sustainability. 2023; 15(14):10981. https://doi.org/10.3390/su151410981
Chicago/Turabian StyleKouadio, Yao Dinard, Amètépé Nathanaël Beauclair Anani, Bonoua Faye, and Yadong Fan. 2023. "Determinants Influencing Cocoa Farmers’ Satisfaction with Input Credit in the Nawa Region of Côte d’Ivoire" Sustainability 15, no. 14: 10981. https://doi.org/10.3390/su151410981
APA StyleKouadio, Y. D., Anani, A. N. B., Faye, B., & Fan, Y. (2023). Determinants Influencing Cocoa Farmers’ Satisfaction with Input Credit in the Nawa Region of Côte d’Ivoire. Sustainability, 15(14), 10981. https://doi.org/10.3390/su151410981