Assessment of the Hydrophysical and Hydrochemical Characteristics of Lake Burabay (Akmola Region, North Kazakhstan)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphometric Characteristics
3.2. Hydrophysical Characteristics
3.3. Hydrochemical Characteristics
3.4. Content of Heavy Metals
3.5. Benthal Deposits
4. Conclusions
- Touristic development: rapid urbanization and infrastructure development in the vicinity of the lake lead to increased pollution and habitat destruction.
- Agricultural practices: intensive agricultural activities can result in runoff into the lake, leading to water pollution.
- Industrial pollution: industrial activities in the region, such as manufacturing and mining, may generate pollutants that can enter the lake via runoff or direct discharge.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Baat, M.L.; Van der Oost, R.; Van de Lee, G.H.; Wieringa, N.; Hamers, T.; Verdonschot, P.F.M.; De Voogt, P.; Kraak, M.H.S. Advancements in effect-based surface water quality assessment. Water Res. 2020, 183, 116017. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, E.S.; Rosi, E.J.; Gessner, M.O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 2017, 15, 84–90. [Google Scholar] [CrossRef]
- Thotagamuwa, H.T.B.N.; Weerasinghe, V.P.A. Surface water quality assessment for the management of hydrological regimes: Kalu Oya and Mudun Ela catchment in Sri Lanka. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100402. [Google Scholar] [CrossRef]
- Kazakhstan Govern. Kazakhstan 2030’ Strategy and Its Economic Priority, 1997. 23 October 1997. Available online: https://www.akorda.kz/upload/content_files/doc/Gos_programi/%D0%A1%D1%82%D1%80%D0%B0%D1%82%D0%B5%D0%B3%D0%B8%D1%8F%202030%20%28%D0%B0%D0%BD%D0%B3%D0%BB%29.doc (accessed on 24 July 2023).
- Jasenka, S.; SrećkoSrecko, B.; Izidora, M. Plitvice Lakes National Park (Central Croatia)—More Than 50 Years of Continuous Monitoring of Natural and Human Influence. Eur. Geol. 2011, 34, 12–16. [Google Scholar]
- Horvatincic, N.; Brianso, J.L.; Obelic, B.; Baresic, J.; Krajcar-Bronic, I. Study of Pollution of the Plitvice Lakes by Water and Sediment Analyses. Water Air Soil Pollut. 2006, 6, 475–485. [Google Scholar] [CrossRef]
- Khussainov, A.T.; Shulembayeva, K.M.; Sindireva, A.V.; Zandybay, A.; Kakabayev, A.A. Dynamics of hydrochemical indicators and water quality of Lake Maloe Chabachye. Eurasian J. Ecol. 2021, 69, 13–22. [Google Scholar] [CrossRef]
- Jashenko, R.; Maltseva, E.; Ilina, V. The conservation of ecosystem and biological diversity in Alakol Biosphere Reserve (East Kazakhstan). IOP Conf. Ser. Earth Environ. Sci. 2019, 298, 012022. [Google Scholar] [CrossRef]
- Bezmaternykh, D.M. Water and biological resources of lakes in the North Kazakhstan province: Current state, use and restoration. Fish Farming Fish. 2011, 3, 9–12. (In Russian) [Google Scholar]
- Mukhanbet, A.K.; Khusainov, A.T.; Elubayev, S.Z.; Balgabayev, A.M.; Khusainova, R.K. The Effect of Fly Ash Application at Cultivation of Spring Wheat on Chernozem Soils of Northern Kazakhstan. Biosci. Biotechnol. Res. Asia 2016, 13, 1007. [Google Scholar] [CrossRef] [Green Version]
- Batheria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Liu, T.; Huang, Y.; Zan, C.; Pan, X.; Xu, Z. Response of water quality to climate warming and atmospheric deposition in an alpine lake of Tianshan Mountains, Central Asia. Ecol. Indic. 2023, 147, 109949. [Google Scholar] [CrossRef]
- Haddout, S.; Priya, K.L.; Boko, H. Thermal response of Moroccan lakes to climatic warming: First results. Ann. Limnol. Int. J. Limnol. 2018, 54, 2. [Google Scholar] [CrossRef] [Green Version]
- Paudyal, R.; Kang, S.; Sharma, C.M.; Tripathee, L.; Huang, J.; Rupakheti, D.; Sillanpää, M. Major ions and trace elements of two selected rivers near Everest region, southern Himalayas, Nepal. Environ. Earth Sci. 2015, 75, 46. [Google Scholar] [CrossRef]
- Shen, B.; Wu, J.; Zhan, S.; Jin, M.; Saparov, A.S.; Abuduwaili, J. Spatial variations and controls on the hydrochemistry of surface waters across the Ili-Balkhash Basin, arid Central Asia. J. Hydrol. 2021, 600, 126565. [Google Scholar] [CrossRef]
- Kolomin, Y.M. History of Fisheries Research in Northern Kazakhstan. Fisheries Research in the Republic of Kazakhstan: History and Modern State; Bastau: Almaty, Kazakhstan, 2006; pp. 193–203. [Google Scholar]
- Wu, H.; Wu, J.; Li, J.; Fu, C. Spatial variations of hydrochemistry and stable isotopes in mountainous river water from the Central Asian headwaters of the Tajikistan Pamirs. Catena 2020, 193, 104639. [Google Scholar] [CrossRef]
- Yapiyev, V.; Sagintayev, Z.; Inglezakis, V.J.; Samarkhanov, K.; Verhoef, A. Essentials of Endorheic Basins and Lakes: A Review in the Context of Current and Future Water Resource Management and Mitigation Activities in Central Asia. Water 2017, 9, 798. [Google Scholar] [CrossRef] [Green Version]
- Yapiyev, V.; Skrzypek, G.; Verhoef, A.; Macdonald, D.; Sagintayev, Z. Between boreal Siberia and arid Central Asia—Stable isotope hydrology and water budget of Burabay National Nature Park ecotone (Northern Kazakhstan). J. Hydrol. Reg. Stud. 2020, 27, 100644. [Google Scholar] [CrossRef]
- Yapiyev, V.; Samarkhanov, K.; Tulegenova, N.; Jumassultanova, S.; Verhoef, A.; Saidaliyeva, Z.; Umirov, N.; Sagintayev, Z.; Namazbayeva, A.; Zhumabayev, D.; et al. Estimation of áter storage changes in small endorheic lakes in Northern Kazakhstan. J. Arid Environ. 2019, 160, 42–55. [Google Scholar] [CrossRef]
- Yapiyev, V.; Sagintayev, Z.; Verhoef, A.; Kassymbekova, A.; Baigaliyeva, M.; Zhumabayev, D.; Malgazhdar, D.; Abudanash, D.; Ongdas, N.; Jumassultanova, S. The changing water cycle: Burabay National Nature Park, Northern Kazakhstan. Wiley Interdiscip. Rev. Water 2017, 4, e1227. [Google Scholar] [CrossRef] [Green Version]
- UNESCO International Coordinating Council of the Programme on Man and the Biosphere, 34th, Paris, 2022. SC-22/CONF.234/16. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000382865.locale=en (accessed on 24 July 2023).
- Ramazanova, M.; Bulai, M.; Ursu, A.; DeyaTortella, B.; Kakabayev, A. Effects of tourism development on surface area of main lakes of Shchuchinsk-Burabay resort area, Kazakhstan. Eur. J. Tour. Res. 2019, 21, 69–86. [Google Scholar] [CrossRef]
- Salikova, N.S.; Rodrigo-Ilarri, J.; Alimova, K.K.; Rodrigo-Clavero, M.-E. Analysis of the Water Quality of the Ishim River within the Akmola Region (Kazakhstan) Using Hydrochemical Indicators. Water 2021, 13, 1243. [Google Scholar] [CrossRef]
- Kolomin, Y.M. Inspection of Lakes of the State National Natural Park Kokshetau and Development of Recommendations for Their Fishery Use; Research Report of North Kazakhstan State University; North Kazakhstan State University: Petropavl, Kazakhstan, 2000. [Google Scholar]
- Krupa, E.; Romanova, S.; Berkinbaev, G.; Yakovleva, N.; Sadvakasov, E. Zooplankton as indicator of the ecological state of protected aquatic ecosystems (Lake Borovoe, Burabay National Nature Park, Northern Kazakhstan). Water 2020, 12, 2580. [Google Scholar] [CrossRef]
- Maikanov, B.S.; Auteleyeva, L.T.; Ismagulova, G.T.; Wiśniewski, J.; Bełkot, Z.; Anusz, K. Quality and safety of fish products in the Shuchinsk-Burabay Resort Zone. Med. Weter. 2020, 76, 585–588. [Google Scholar] [CrossRef]
- Ministry of Natural Resources and Environment—Russian Federation; Russian Federal Service for Hydrometeorology and Environmental Monitoring and Environmental Monitoring (RosHydroMet). Hydrographic Characterization. Characteristics by Cartographic Method; Ministry of Natural Resources and the Environment of the Russian Federation: Saint Petersburg, Russia, 2018.
- GOST 31861-2012; Water. General Requirements for Sampling. Federal Agency for Technical Regulation and Metrology: Moscow, Russia, 2012.
- ISO 5667-12-1995; Water Quality—Sampling—Part 12: Guidance on Sampling of Bottom Sediments. International Organization for Standardization: Geneva, Switzerland, 1995.
- GOST 3351-74; Drinking Water. Methods for Determination of Odor, Taste, Color and Turbidity. State Committee of Standards of the Council of Ministers of the USSR: Moscow, Russia, 1974.
- GOST 31868-2012; Water. Methods for Determination of Colour. Federal Agency for Technical Regulation and Metrology: Moscow, Russia, 2012.
- GOST 26449.1-85; Stationary Distillation Desalting Units. Methods of Saline Water Chemical Analysis. Federal Agency for Technical Regulation and Metrology: Moscow, Russia, 1985.
- STO GGI 52.08.40-2017; Determination of the Morphometric Characteristics of Land Water Bodies and Their Watersheds Using the Technology of Geographical Information Systems Using Digital Maps of the Russian Federation and Satellite Images. Federal Agency for Technical Regulation and Metrology: Moscow, Russia, 2017.
- R 52.08.874-2018; Determination of hydrographic characteristics by cartographic method. Roshydromet: Moscow, Russia, 2018.
- Gagarina, O.V. Assessment and Regulation of Natural Waters Quality: Criteria, Methods, Existing Problems; Publishing House: Izhevsk, Russia, 2012. [Google Scholar]
- Vodyanitsky, Y.N. Formulas for estimating total soil contamination with heavy metals and metalloids. Soil Sci. 2010, 10, 1276–1280. [Google Scholar]
- Saet, Y.E. Geochemical principles of identification of zones of impact of industrial emissions in urban agglomerations. In Landscape-Geochemical Zoning and Environmental Protection; Saet, Y.E., Smirnova, R.S., Eds.; Mysl: Moscow, Russia, 1983. [Google Scholar]
- Potakhin, M.S. Morphological Features of Water Bodies in Petrozavodsk. 2011. Available online: http://resources.krc.karelia.ru/water/doc/papers/Water_envir_2011_180-183.pdf (accessed on 20 July 2023).
- Mikhailov, V.N.; Dobrovolskiy, A.D. Textbook for Universities, 2nd ed.; Vysshaya Shkola: Moscow, Russia, 2007; p. 463. [Google Scholar]
- Uryvaeva, V.A. Surface Water Resources of Virgin and Fallow Lands Development Areas. Akmola Region of the Kazakh SSR; Hydrometeorological Publishing House: Leningrad, Russia, 1958; pp. 28–29. [Google Scholar]
- Yan, L.; Sun, M.; Yao, X.; Gong, N.; Li, X.; Qi, M. Lake water in the Tibet Plateau: Quality change and current status evaluation. Acta Sci. Circumstantiae 2018, 38, 900–910. [Google Scholar]
- Aubakirova, G.; Adilbekov, Z.; Narbayev, S. Influence of water mineralization on zooplankton productivity in reservoirs of Akmola region. Period. Tche Quim. 2020, 17, 520. [Google Scholar] [CrossRef]
- Katanayeva, V.G. Features of the Hydrochemical Regime of Subtaiga Priishimye Lakes; Katanaeva, V.G., Larin, S.I., Larina, N.S., Sheveleva, T.V., Eds.; Vestnik of Tymen State University: Tyumen, Russia, 2004; pp. 175–183. [Google Scholar]
- Alekin, O.A. Fundamentals of Hydrochemistry; Hydrometeorological Publishing House: Moscow, Russia, 1970. [Google Scholar]
- Vinogradov, V. Benthal Deposits of Republic of Tatarstan Lakes. Ph.D. Dissertation, Saint-Petersburg University, Saint Petersburg, Russia, 2020. [Google Scholar]
Indicators | 1956 | 2010 | 2017 | 2022 |
---|---|---|---|---|
Surface area (km2) | 10.5 | 9.9 | 10.0 | 10.1 |
Maximum depth (m) | 5.7 | 5.6 | 5.3 | 5.3 |
Average depth (m) | 3.4 | 3.1 | 3.1 | 3.0 |
Indicators | 2018 | 2019 | 2020 | 2021 | 2022 | Norm |
---|---|---|---|---|---|---|
Smell (point) | - | - | - | - | - | No more than 2 |
Temperature (°C) | 19 | 19.2 | 20 | 17.2 | 16.8 | Not defined |
Color (°K) | 25 | 25 | 25 | 24 | 24 | Not defined |
Indicators | Actual Indicators by Year | Average for 5 Years | MPC * | ||||
---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2022 | |||
pH | 8.0 | 7.5 | 7.9 | 8.3 | 8.9 | 8.14 | 6.5–8.5 |
BOD5 (mg/L) | 1.22 | 1.6 | 3.28 | 0.86 | 2.48 | 1.9 | 4.0 |
Total water hardness (equ. mg/L) | 1.95 | 2.01 | 2.33 | 2.56 | 4.15 | 2.6 | - |
Dissolved oxygen (mg/L) | 8.59 | 9.07 | 9.16 | 8.09 | 8.59 | 8.7 | 6 (**) |
Hydrocarbonate (mg/L) | 117.4 | 154.7 | 136.8 | 126.6 | 177.8 | 142.66 | - |
Chloride (mg/L) | 11.9 | 12.9 | 10.9 | 15.4 | 22.1 | 14.5 | 350. |
Sulphate (mg/L) | 178 | 182 | 199 | 209 | 252 | 204 | 500.0 |
Calcium (mg/L) | 32.1 | 38.6 | 27.7 | 36.1 | 44.6 | 35.8 | 3.5 |
Magnesium (mg/L) | 7.2 | 8.6 | 6.8 | 9.2 | 10.9 | 8.5 | 20.0 |
Sodium (mg/L) Potassium (mg/L) | 23.1 | 18.9 | 16.5 | 9.4 | 57.1 | 25.01 | 200.0 |
Nitrates (mg/L) | 1.07 | 1.06 | 1.08 | 0.18 | 2.3 | 1.14 | 45.0 |
Nitrites (mg/L) | 0.006 | 0.008 | 0.007 | 0.009 | 0.008 | 0.031 | 3.3 |
Total Iron(mg/L) | 0.08 | 0.01 | 0.06 | 0.057 | 0.005 | 0.06 | |
Ammonium nitrogen, mg/L | 0.99 | 1.01 | 0.142 | 0.147 | 0.057 | 0.47 | 2.0 |
Mineralization, mg/L | 160 | 192 | 247 | 193 | 321 | 223 | 1000 (1500) |
Indicators | Actuals Indicators by Year | Average for 5 Years | MPC * | ||||
---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2022 | |||
Zinc | 0.005 | 0.007 | 0.008 | 0.005 | 0.004 | 0.006 | 1.0 |
Lead | 0.0025 | 0.0009 | 0.0012 | 0.0010 | 0.0007 | 0.0012 | 0.03 |
Cadmium | 0.0005 | 0.0004 | 0.0006 | 0.0009 | 0.0010 | 0.0007 | 0.001 |
Cobalt | 0.004 | 0.001 | 0.001 | 0.002 | 0.001 | 0.0018 | 0.1 |
Manganese | 0.036 | 0.025 | 0.018 | 0.009 | 0.020 | 0.021 | 0.1 |
Copper | 0.0017 | 0.0015 | 0.0012 | 0.001 | 0.0025 | 0.0016 | 1.0 |
Indicators | 2018 | 2019 | 2020 | 2021 | 2022 | r |
---|---|---|---|---|---|---|
pH | 8 | 7.5 | 7.9 | 8.34 | 8.95 | 0.79 |
Dissolved oxygen (mg/L) | 8.59 | 9.07 | 9.16 | 8.09 | 8.59 | −0.37 |
BOD5 (mg/L) | 1.22 | 1.6 | 3.28 | 0.86 | 2.48 | 0.30 |
Zinc (mg/L) | 0.005 | 0.007 | 0.008 | 0.005 | 0.006 | 0 |
Lead (mg/L) | 0.0025 | 0.0009 | 0.0012 | 0.0010 | 0.0007 | −0.77 |
Copper (mg/L) | 0.0005 | 0.0004 | 0.0006 | 0.0009 | 0.0010 | 0.91 |
Cobalt (mg/L) | 0.004 | 0.001 | 0.001 | 0.002 | 0.001 | −0.60 |
Results of ∑ Cc/MPC | 10.16 | 9.8 | 9.02 | 9.56 | 9.7 | −0.44 |
Water pollution index | 1.7 | 1.6 | 1.5 | 1.6 | 1.6 | −0.44 |
Water quality class | III | III | III | III | III |
Heavy Metals | 2018 | 2019 | 2020 | 2021 | 2022 | Average for 5 Years | r |
---|---|---|---|---|---|---|---|
Cadmium | −0.44 | ||||||
Nickel | −0.54 | ||||||
Lead | −0.03 | ||||||
Copper | −0.76 | ||||||
Chrome | −0.80 | ||||||
Arsenic | 0.39 | ||||||
Manganese | 0.70 | ||||||
∑ | 13.24 | 14.62 | 16.52 | 12.7 | 11.49 | 13.71 | −0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shulembayeva, K.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E.; Khussainov, A.; Kakabayev, A.; Khussainova, R. Assessment of the Hydrophysical and Hydrochemical Characteristics of Lake Burabay (Akmola Region, North Kazakhstan). Sustainability 2023, 15, 11788. https://doi.org/10.3390/su151511788
Shulembayeva K, Rodrigo-Ilarri J, Rodrigo-Clavero M-E, Khussainov A, Kakabayev A, Khussainova R. Assessment of the Hydrophysical and Hydrochemical Characteristics of Lake Burabay (Akmola Region, North Kazakhstan). Sustainability. 2023; 15(15):11788. https://doi.org/10.3390/su151511788
Chicago/Turabian StyleShulembayeva, Kyzzhibek, Javier Rodrigo-Ilarri, María-Elena Rodrigo-Clavero, Abilzhan Khussainov, Anuarbek Kakabayev, and Razya Khussainova. 2023. "Assessment of the Hydrophysical and Hydrochemical Characteristics of Lake Burabay (Akmola Region, North Kazakhstan)" Sustainability 15, no. 15: 11788. https://doi.org/10.3390/su151511788
APA StyleShulembayeva, K., Rodrigo-Ilarri, J., Rodrigo-Clavero, M. -E., Khussainov, A., Kakabayev, A., & Khussainova, R. (2023). Assessment of the Hydrophysical and Hydrochemical Characteristics of Lake Burabay (Akmola Region, North Kazakhstan). Sustainability, 15(15), 11788. https://doi.org/10.3390/su151511788