Evaluating Alternative and Sustainable Food Resources: A Review of the Nutritional Composition of Myctophid Fishes
Abstract
:1. Introduction
2. Nutritional Profiles
2.1. Lipids & Fatty Acids
Location | Genera | Catch Year | Refs. | |
---|---|---|---|---|
High lipid (>10% WW) | Indian Ocean | Diaphus | 2009 | [46] |
Diaphus | 2011 | [47] ^ | ||
Pacific Ocean | Diaphus | 2012 | [39] | |
Ceratoscopelus, Lampadena, Lampanyctus, Notoscopelus, Protomyctophum, Stenobrachius, Symbolophorus | 1994 | [38] | ||
Ceratoscopelus, Notoscopelus, Symbolophorus, Diaphus, Myctophum, Lampanyctus, Protomyctophum, Stenobrachius | 1995 | [36] | ||
Lampanyctus, Triphoturus, Symbolophorus | 1975–1979 | [48] | ||
Diaphus, Protomyctophum, Symbolophorus | 2005 | [40] | ||
Atlantic Ocean | Benthosema | 2015–2018 | [49,50] | |
Subarctic | Diaphus, Lampanyctus, Notoscopelus, Stenobrachius, Symbolophorus | 1992–1994 | [38] | |
Southern Ocean | Electrona, Gymnoscopelus, Krefftichthys, Protomyctophum | 1995 | [42] | |
Metelectrona | 1987 | [51] | ||
Electrona, Gymnoscopelus | 1999, 2008 | [24,43] | ||
Electrona | 2009–2012 | [44] | ||
Low lipid (<5% WW) | Indian Ocean | Myctophum | 2012 | [47] ^ |
Diaphus, Benthosema, Myctophum | 2013 | [52] | ||
Pacific Ocean | Benthosema, Diaphus | 2012 | [39] | |
Diaphus | 1994 | [38] | ||
Benthosema, Ceratoscopelus, Diaphus, Hygophum, Lampadena, Myctophum | 1993 | [38] | ||
Lampanyctus | 1995 | [36] | ||
Bolinichthys, Diaphus, Gonichthys, Hygophum, Myctophum, Notoscopelus, Protomyctophum, Taaningichthys, Tarletonbeania, Lampanyctus, Ceratoscopelus | 1975–1979 | [48] | ||
Diaphus, Electrona, Hygophum, Lampanyctus, Lampanyctodes, Lampichthys, Metelectrona, Nannobrachium | 2005 | [40] | ||
Atlantic Ocean | Lampanyctus, Hygophum | 1968 | [53] | |
Southern Ocean | Gymnoscopelus | 1999 | [24] | |
TAG dominant (>60%) | Pacific Ocean | Ceratoscopelus, Symbolophorus | 1993 | [38] |
Bolinichthys, Lampanyctus, Symbolophorus | 1975–1979 | [48] | ||
Diaphus, Lampadena, Lampanyctus, Lampichthys, Notoscopelus, Protomyctophum | 1994 | [38] | ||
Diaphus, Lampanyctus, Notoscopelus, Symbolophorus | 2005 | [40] | ||
Benthosema, Diaphus | 2012 | [39,47] ^ | ||
Indian Ocean | Myctophum, Diaphus | 2011 | [47] ^ | |
Subarctic | Diaphus, Lampanyctus, Symbolophorus | 1992 | [38] | |
Southern Ocean | Electrona, Gymnoscopelus | 1999 | [24,33] | |
WE dominant (>40%) | Pacific Ocean | Lampanyctus, Stenobrachius | 1994 | [38] |
Lampanyctus, Triphoturus | 1975–1979 | [48] | ||
Nannobrachium | 2005 | [40] | ||
Atlantic Ocean | Benthosema | 2015–2016 | [50] | |
Subarctic | Lampanyctus, Stenobrachius | 1992 | [38] | |
Southern Ocean | Electrona, Gymnoscopelus, Krefftichthys | 1999 | [24,33,42] |
Ocean | Region | # Species Assessed | EPA | DHA | Reference |
---|---|---|---|---|---|
Indian | Arabian Sea | 1 | 3.8 | 9.3 | [46] |
Arabian Sea | 4 | 4.1–7.0 | 7.6–20.2 | [52] | |
Arabian Sea | 3 | 4.3–5.8 | 9.8–15.9 | [47] ^ | |
Pacific | Papua New Guinea | 9 | 0–1.5 | 3.8–10.3 | [38] |
Subantarctic | 17 | 0–2.2 | 10.1–23.9 | [38] | |
Coast of Japan | 3 | 0.9–1.5 | 6.9–18.5 | [39] | |
Tasman Sea | 12 | 3.0–7.2 | 7.4–19.8 | [40] | |
Atlantic | Norwegian fjords | 1 | 6.2 | 10.4 | [49] |
North-eastern | 4 | 1.0–4.8 | 2.1–17.34 | [54] | |
Southern Ocean | Kerguelen Plateau | 6 | 0.7–1.1 | 5.5–12.2 | [53] |
Macquarie Island | 2 | 1.2–1.4 | 18.9–20.5 | [53] | |
Kerguelen | 5 | 0.3–4.6 | 3.9–7.4 | [42] | |
Antarctic Peninsula | 1 | 1.7–6.9 | 2.9–8.8 | [41] | |
Heard Island | 15 | 4.1–7.7 | 6.3–17.0 | [55] |
2.2. Proteins & Amino Acids
Ocean | Genus | Protein (% WW) | Catch Year | Reference |
---|---|---|---|---|
Indian | Benthosema | 16.1–18.6 | [23,52] | |
Ceratoscopelus | 11.5 | 1979 | [63] | |
Diaphus | 13.3–21.4 | 1979, 2009, 2012 | [46,52,63,65,66] | |
Lampadena | 11.5 | 1979 | [63] | |
Lampanyctus | 12.1–13.4 | 1979 | [63] | |
Myctophum | 19.3–22.3 | [52,65] | ||
Notoscopelus | 13.5 | 1979 | [63] | |
Stenobrachius | 12.5–12.8 | 1979 | [63] | |
Symbolophorus | 12.3 | 1979 | [63] | |
Western Pacific | Benthosema | 14.4–15.0 | [67] | |
Northern Atlantic | Benthosema | 41.1 | 2015–2016 | [50] |
2.3. Minerals and Vitamins
Benthosema glaciale | Benthosema fibulatum | RI (mg) | ||||
---|---|---|---|---|---|---|
Catch year | 2015, 2016 | 2018 | 2018 | 2018 | ||
Ocean Location | Atlantic | Indian | Atlantic | Indian | ||
Reference | [50] | [76] | [49] | [76] | [77] | |
Macro minerals (mg/g DW) | Ca | 12.1 | 5.0 | 9.4 | 540–900 | |
P | 8.3 | 3.8 | 5.8 | 420–700 | ||
Mg | 1.2 | 0.7 | 0.6 | 80–350 | ||
Na | 5.4 | 3.9 | 2.3 | |||
K | 7.5 | 2.6 | 3.0 | 2900–3510 | ||
Trace elements (mg/kg DW) | Fe | 51.6 | 10.8 | 25.0 | 5–15 | |
Mn | 2.8 | |||||
Zn | 36.0 | 8.0 | 15.0 | 5–12 | ||
Cu | 3.0 | 0.3–1.0 | ||||
Se | 1.7 | 0.06 | 0.6 | 0.1 | 0.015–0.06 | |
Ni | 0.9 | |||||
Pb | 0.4 | |||||
I | 0.04 | 0.2 | 0.05–0.15 |
2.4. Contaminants
Genus | THg | Location | Catch Year | Reference |
---|---|---|---|---|
Benthosema | 0.11–0.45 | NW Atlantic Ocean | 1936–1993 | [98] |
Bolinichthys | 0.02–0.2 | N Pacific Ocean, | 2007–2011 | [95] |
0.16 | NW Atlantic Ocean | 1971 | [95,96] | |
Ceratoscopelus | 0.21–0.42 | N Atlantic Ocean | 1971, 1978 | [96,97] |
Diaphus | 0.10–0.11 | NW Atlantic Ocean | 1971–1974 | [95,96] |
Electrona | 0.05–0.27 | Southern Indian Ocean, Southern Ocean | 1997–1999, 2007–2013, 1995 | [82,84,97,100] |
0.08–0.20 * | SW Pacific Ocean | 2005–2006 | [40] | |
Gymnoscopelus | 0.06–0.424 | Southern Ocean | 2015–2016, 2007–2011, 1997–1998 | [82,84,100] |
Hygophum | 0.25–0.30 | NW Atlantic Ocean | 1973–1974 | [95,96] |
0.08–0.16 * | SW Pacific Ocean | 2005–2006 | [40] | |
Krefftichthys | 0.03–0.05 | Southern Ocean | 2007–2008 | [84] |
Lampanyctus | 0.16–0.34 | NW Atlantic Ocean | 1974 | [96] |
0.12–0.28 * | SW Pacific Ocean | 2005–2006 | [40] | |
Lampichthys | 0.08–0.20 * | SW Pacific Ocean | 2005–2006 | [40] |
Lobianchia | 0.20–0.24 | NW Atlantic Ocean | 1973–1974 | [95,96] |
Myctophum | 0.08–0.32 | N Atlantic Ocean | 1994, 2001–2010 | [97,103] |
Nannobranchium | 0.28–0.32 * | SW Pacific Ocean | 2005–2006 | [40] |
Notoscopelus | 0.03–0.24 | NW, NE Atlantic Ocean | 1974, 2001–2003 | [96,99] |
0.08–0.12 * | SW Pacific Ocean | 2005–2006 | [40] | |
Protomyctophum | 0.06–0.10 | S Indian Ocean, Southern Ocean | 1997–1999, 2007–2009 | [84,100] |
Symbolphorus | 0.04–0.24 * | SW Pacific Ocean | 2005–2006 | [40] |
Location | North Pacific Ocean | Western North Atlantic Ocean | North Pacific Gyre | Southern Ocean | TDI |
---|---|---|---|---|---|
Species | Myctophum nitidulum | Taaningichthys crenularis | Not specified | Gymnoscopelus nicholsi | |
Catch Year | 2009 | 2009 | 2010 | 2003 | |
BPA | nd-5.10 | nd-7.70 | nd-6.20 | 4 ng/g [104] | |
Alkylphenols | nd-47 | nd-62 | nd-10.80 | ||
APEs | nd-11 | nd-8.70 | nd-5.40 | ||
PCBs | 0.55–3.40 | 0.84–1.30 | 0.02–5.97 | 1–4 ng/g [105] | |
PBDEs | 0.01–0.05 | 0.05–0.59 | 0.002–11.20 | 0.09 ± 0.02 | 0.15 ng/g [106] |
Reference | [90] | [90] | [87] | [91] |
3. Considerations for Future Exploitation of Myctophids
3.1. Species Diversity and Distribution
3.2. Life History and Growth
Genera | Max Age | Ocean Region | Ref. | |
---|---|---|---|---|
<2 yr | Benthosema; Diaphus; Lepidophanes | 325 d; 362 d; 439 d | Atlantic Ocean | [126] |
Ceratoscopelus; Stenobrachius | 416 d; 541 d | Pacific Ocean | [127,128] | |
Myctophum | 440 d | [129] | ||
Tarletonbeani | 504 d | [130] | ||
Benthosema | ~1 yr | Indian Ocean | [131] | |
Myctophum | 1 yr | Atlantic Ocean | [132] | |
Protomyctophum | 1.25 yr | [133] | ||
2–4 yr | Ceratoscopelus | 2 yr | Atlantic Ocean | [134] |
Kreffichthys | 2 yr | Southern Ocean | [125] | |
Diaphus | 2.5 yr | Pacific Ocean | [135] | |
Lampanyctodes | 3 yr | [136] | ||
Electrona | 3.5 yr | Southern Ocean | [137] | |
4–6 yr | Benthosema | 4.5 yr | Atlantic Ocean | [138] |
Lampanyctus; Triphoturus | 4.5 yr; 5 yr | Pacific Ocean | [118,124] | |
Benthosema | 5 yr | Atlantic Ocean | [131] | |
Lampanyctus | 5.5–6 yr | [118,125] | ||
6–8 yr | Gymnoscopelus | 6 yr | Southern Ocean | [125] |
Benthosema, Gymnoscopelus | 7 yr | Atlantic Ocean | [139,140] | |
Benthosema | 7 yr | Pacific Ocean | [141] | |
Stenobrachius | 7.5 yr | Atlantic Ocean | [118] | |
Stenobrachius | 8 yr | Atlantic Ocean | [142] |
3.3. Role in the Ecosystem
3.4. Biomass and Fishery Potential
4. Future Prospects and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalili Tilami, S.; Sampels, S. Nutritional value of fish: Lipids, proteins, vitamins, and minerals. Rev. Fish. Sci. Aquac. 2018, 26, 243–253. [Google Scholar] [CrossRef]
- Pal, J.; Shukla, B.; Maurya, A.K.; Verma, H.O.; Pandey, G.; Amitha, A. A review on role of fish in human nutrition with special emphasis to essential fatty acid. Int. J. Fish. Aquat. Stud. 2018, 6, 427–430. [Google Scholar]
- Mohanty, B.; Mahanty, A.; Ganguly, S.; Sankar, T.; Chakraborty, K.; Rangasamy, A.; Paul, B.; Sarma, D.; Mathew, S.; Asha, K.K. Amino acid compositions of 27 food fishes and their importance in clinical nutrition. J. Amino Acids 2014, 2014, 269797. [Google Scholar] [CrossRef] [Green Version]
- Kolanowski, W.; Laufenberg, G. Enrichment of food products with polyunsaturated fatty acids by fish oil addition. Eur. Food Res. Technol. 2006, 222, 472–477. [Google Scholar] [CrossRef]
- Lands, W.E. Fish, Omega-3 and Human Health; AOCS Publishing: New York, NY, USA, 2005. [Google Scholar]
- Tur, J.A.; Bibiloni, M.M.; Sureda, A.; Pons, A. Dietary sources of omega 3 fatty acids: Public health risks and benefits. Br. J. Nutr. 2012, 107 (Suppl. S2), S23–S52. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, B.P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2019, 293, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Balami, S.; Sharma, A.; Karn, R. Significance of nutritional value of fish for human health. Malays. J. Halal Res. 2019, 2, 32–34. [Google Scholar] [CrossRef] [Green Version]
- Pauly, D. Beyond duplicity and ignorance in global fisheries. WIT Trans. State—Art Sci. Eng. 2013, 64. [Google Scholar] [CrossRef]
- Pauly, D.; Christensen, V.; Guénette, S.; Pitcher, T.J.; Sumaila, U.R.; Walters, C.J.; Watson, R.; Zeller, D. Towards sustainability in world fisheries. Nature 2002, 418, 689–695. [Google Scholar] [CrossRef]
- Cook, R.M.; Sinclair, A.; Stefansson, G. Potential collapse of North Sea cod stocks. Nature 1997, 385, 521–522. [Google Scholar] [CrossRef]
- Jackson, J.B.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A.; Botsford, L.W.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.; Erlandson, J.; Estes, J.A.; et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 2001, 293, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinsky, M.L.; Jensen, O.P.; Ricard, D.; Palumbi, S.R. Unexpected patterns of fisheries collapse in the world’s oceans. Proc. Natl. Acad. Sci. USA 2011, 108, 8317–8322. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.; Steinberg, D.K.; Anderson, T.R.; Aristegui, J.; Carlson, C.A.; Frost, J.R.; Ghiglione, J.F.; Hernandez-Leon, S.; Jackson, G.A.; Koppelmann, R.; et al. Mesopelagic zone ecology and biogeochemistry—A synthesis. Deep Sea Res. Part II Top. Stud. Oceanogr. 2010, 57, 1504–1518. [Google Scholar] [CrossRef]
- Cavan, E.L.; Laurenceau-Cornec, E.C.; Bressac, M.; Boyd, P.W. Exploring the ecology of the mesopelagic biological pump. Prog. Oceanogr. 2019, 176, 102125. [Google Scholar] [CrossRef]
- Catul, V.; Gauns, M.; Karuppasamy, P.K. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 2011, 21, 339–354. [Google Scholar] [CrossRef]
- Gjøsæter, J.; Gjøsæter, J.; Kawaguchi, K. A Review of the World Resources of Mesopelagic Fish; Food & Agriculture Organization: Rome, Italy, 1980. [Google Scholar]
- Irigoien, X.; Klevjer, T.A.; Rostad, A.; Martinez, U.; Boyra, G.; Acuna, J.L.; Bode, A.; Echevarria, F.; Gonzalez-Gordillo, J.I.; Hernandez-Leon, S.; et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 2014, 5, 3271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proud, R.; Handegard, N.O.; Kloser, R.J.; Cox, M.J.; Brierley, A.S. From siphonophores to deep scattering layers: Uncertainty ranges for the estimation of global mesopelagic fish biomass. Ices J. Mar. Sci. 2019, 76, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Gascuel, D.; Morissette, L.; Palomares, M.L.D.; Christensen, V. Trophic flow kinetics in marine ecosystems: Toward a theoretical approach to ecosystem functioning. Ecol. Model. 2008, 217, 33–47. [Google Scholar] [CrossRef]
- Jennings, S.; Collingridge, K. Predicting Consumer Biomass, Size-Structure, Production, Catch Potential, Responses to Fishing and Associated Uncertainties in the World’s Marine Ecosystems. PLoS ONE 2015, 10, e0133794. [Google Scholar] [CrossRef] [Green Version]
- Proud, R.H. A Biogeography of the Mesopelagic Community. Ph.D. Thesis, University of Tasmania, Hobart, Australia, 2018. [Google Scholar]
- Shaviklo, A.R. A Comprehensive Review on Animal Feed, Human Food and Industrial Application of Lanternfishes; from Prototypes to Products. Turk. J. Fish. Aquat. Sci. 2020, 20, 827–843. [Google Scholar] [CrossRef]
- Lea, M.A.; Nichols, P.D.; Wilson, G. Fatty acid composition of lipid-rich myctophids and mackerel icefish (Champsocephalus gunnari)—Southern ocean food-web implications. Polar Biol. 2002, 25, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.; James, M.; Mathew, P.; Gopakumar, K. Studies on lantern fish (Benthosema pterotum). II. Nutritional evaluation. Fish. Technol. 1983, 20, 20–23. [Google Scholar]
- Parrish, C.C. Lipids in marine ecosystems. Int. Sch. Res. Not. 2013, 2013, 604045. [Google Scholar] [CrossRef] [Green Version]
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In Feed and Feeding Practices in Aquaculture; Elsevier: Amsterdam, The Netherlands, 2015; pp. 203–233. [Google Scholar]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Shepherd, C.; Jackson, A. Global fishmeal and fish-oil supply: Inputs, outputs and marketsa. J. Fish Biol. 2013, 83, 1046–1066. [Google Scholar] [CrossRef] [PubMed]
- OECD; FAO. OECD-FAO Agricultural Outlook 2021–2030; FAO: Rome, Italy, 2021; pp. 163–177. [Google Scholar]
- Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 2006, 354, 1601–1613. [Google Scholar] [CrossRef] [Green Version]
- Stender, S.; Dyerberg, J. Influence of trans fatty acids on health. Ann. Nutr. Metab. 2004, 48, 61–66. [Google Scholar] [CrossRef]
- Phleger, C.F.; Nelson, M.M.; Mooney, B.D.; Nichols, P.D. Wax esters versus triacylglycerols in myctophid fishes from the Southern Ocean. Antarct. Sci. 1999, 11, 436–444. [Google Scholar] [CrossRef]
- Devi, L.S.; Kalita, S.; Mukherjee, A.; Kumar, S. Carnauba wax-based composite films and coatings: Recent advancement in prolonging postharvest shelf-life of fruits and vegetables. Trends Food Sci. Technol. 2022, 129, 296–305. [Google Scholar] [CrossRef]
- Inui, H.; Ishikawa, T.; Tamoi, M. Wax ester fermentation and its application for biofuel production. Euglena Biochem. Cell Mol. Biol. 2017, 979, 269–283. [Google Scholar]
- Saito, H.; Murata, M. Origin of the monoene fats in the lipid of midwater fishes: Relationship between the lipids of myctophids and those of their prey. Mar. Ecol. Prog. Ser. 1998, 168, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Van Pelt, T.I.; Piatt, J.F.; Lance, B.K.; Roby, D.D. Proximate composition and energy density of some North Pacific forage fishes. Comp. Biochem. Physiol. Part A Physiol. 1997, 118, 1393–1398. [Google Scholar] [CrossRef]
- Seo, H.-S.; Endo, Y.; Fujimoto, K.; Watanabe, H.; Kawaguchi, K. Characterization of Lopids in Myctophid Fish in the Subarctic and Tropical Pacific Ocean. Fish. Sci. 1996, 62, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, K.; Hiratsuka, S.; Saito, H. Lipid and fatty acids of three edible myctophids, Diaphus watasei, Diaphus suborbitalis, and Benthosema pterotum: High levels of icosapentaenoic and docosahexaenoic acids. J. Oleo Sci. 2014, 63, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Pethybridge, H.; Daley, R.; Virtue, P.; Butler, E.; Cossa, D.; Nichols, P. Lipid and mercury profiles of 61 mid-trophic species collected off south-eastern Australia. Mar. Freshw. Res. 2010, 61, 1092–1108. [Google Scholar] [CrossRef] [Green Version]
- Phleger, C.F.; Nichols, P.D.; Virtue, P. The lipid, fatty acid and fatty alcohol composition of the myctophid fish Electrona antarctica: High level of wax esters and food-chain implications. Antarct. Sci. 1997, 9, 258–265. [Google Scholar] [CrossRef]
- Connan, M.; Mayzaud, P.; Duhamel, G.; Bonnevie, B.T.; Cherel, Y. Fatty acid signature analysis documents the diet of five myctophid fish from the Southern Ocean. Mar. Biol. 2010, 157, 2303–2316. [Google Scholar] [CrossRef]
- Lenky, C.; Eisert, R.; Oftedal, O.T.; Metcalf, V. Proximate composition and energy density of nototheniid and myctophid fish in McMurdo Sound and the Ross Sea, Antarctica. Polar Biol. 2012, 35, 717–724. [Google Scholar] [CrossRef]
- Ruck, K.E.; Steinberg, D.K.; Canuel, E.A. Regional differences in quality of krill and fish as prey along the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 2014, 509, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Pelster, B. 5 Buoyancy at Depth. In Fish Physiology; Elsevier: Amsterdam, The Netherlands, 1997; Volume 16, pp. 195–237. [Google Scholar]
- Sebastine, M.; Chakraborty, K.; Bineesh, K.K.; Pillai, N.G.K.; Abdusamad, E.M.; Vijayan, K.K. Proximate composition and fatty acid profile of the myctophid Diaphus watasei Jordan & Starks, 1904 from the Arabian Sea. Indian J. Fish. 2011, 58, 103–107. [Google Scholar]
- Baby, L.; Sankar, T.V.; Anandan, R. Comparison of lipid profile in three species of myctophids from the south west coast of Kerala, India. Natl. Acad. Sci. Lett.-India 2014, 37, 33–37. [Google Scholar] [CrossRef]
- Neighbors, M.; Nafpaktitis, B. Lipid compositions, water contents, swimbladder morphologies and buoyancies of nineteen species of midwater fishes (18 myctophids and 1 neoscopelid). Mar. Biol. 1982, 66, 207–215. [Google Scholar] [CrossRef]
- Alvheim, A.R.; Kjellevold, M.; Strand, E.; Sanden, M.; Wiech, M. Mesopelagic species and their potential contribution to food and feed security—A case study from Norway. Foods 2020, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- Olsen, R.E.; Strand, E.; Melle, W.; Nørstebø, J.T.; Lall, S.P.; Ringø, E.; Tocher, D.R.; Sprague, M. Can mesopelagic mixed layers be used as feed sources for salmon aquaculture? Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 180, 104722. [Google Scholar] [CrossRef]
- Raclot, T.; Groscolas, R.; Cherel, Y. Fatty acid evidence for the importance of myctophid fishes in the diet of king penguins, Aptenodytes patagonicus. Mar. Biol. 1998, 132, 523–533. [Google Scholar] [CrossRef]
- Navaneethan, R.; Vimaladevi, S.; Ajeesh Kumar, K.; Anandan, R.; Chatterjee, N.; Asha, K.; Mathew, S. Profiling of Omega-3 polyunsaturated fatty acids of myctophid fish species available in Arabian sea. Fish. Technol. 2015, 53, 55–58. [Google Scholar]
- Culkin, F.; Morris, R.J. The fatty acids of some marine teleosts. J. Fish Biol. 1970, 2, 107–112. [Google Scholar] [CrossRef]
- Ruiter, A. Fish and Fishery Products: Composition, Nutritive Properties and Stability; Cab International: Wallingford, UK, 1995. [Google Scholar]
- Bradshaw, C.J.; Hindell, M.A.; Best, N.J.; Phillips, K.L.; Wilson, G.; Nichols, P.D. You are what you eat: Describing the foraging ecology of southern elephant seals (Mirounga leonina) using blubber fatty acids. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, 1283–1292. [Google Scholar] [CrossRef]
- Li, P.; Mai, K.; Trushenski, J.; Wu, G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids 2009, 37, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Cowey, C.B. Amino acid requirements of fish: A critical appraisal of present values. Aquaculture 1994, 124, 1–11. [Google Scholar] [CrossRef]
- Daly, J.M.; Reynolds, J.; Sigal, R.K.; Shou, J.; Liberman, M.D. Effect of dietary protein and amino acids on immune function. Crit. Care Med. 1990, 18, S86–S93. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, S.; Wu, G. Nutrition and Functions of Amino Acids in Fish. Adv. Exp. Med. Biol. 2021, 1285, 133–168. [Google Scholar] [CrossRef]
- Leinonen, I.; Iannetta, P.P.M.; Rees, R.M.; Russell, W.; Watson, C.; Barnes, A.P. Lysine Supply Is a Critical Factor in Achieving Sustainable Global Protein Economy. Front. Sustain. Food Syst. 2019, 3, 27. [Google Scholar] [CrossRef]
- Guérard, F.; Dufosse, L.; De La Broise, D.; Binet, A. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. J. Mol. Catal. B: Enzym. 2001, 11, 1051–1059. [Google Scholar] [CrossRef]
- Clarke, T. Sex ratios and sexual differences in size among mesopelagic fishes from the central Pacific Ocean. Mar. Biol. 1983, 73, 203–209. [Google Scholar] [CrossRef]
- Gopakumar, K.; Ramachandran Nair, K.; Nair, P.V.; Lekshmy Nair, A.; Radhakrishnan, A.; Ravindranathan Nair, P. Studies on lantern fish (Benthosema pterotum) 1. Biochemical and microbiological investigation. Fish. Technol. 1983, 20, 17–19. [Google Scholar]
- Seo, H.S.; Endo, Y.; Muramoto, K.; Fujimoto, K.; Moku, M.; Kawaguchi, K. Amino acid composition of proteins in myctophid fishes in the subarctic and tropical Pacific Ocean. Fish. Sci. 1998, 64, 652–653. [Google Scholar] [CrossRef] [Green Version]
- Rajamoorthy, K.; Pradeep, K.; Anandan, R.; Baby, L.; Sankar, T.; Lakshmanan, P. Biochemical Composition of Myctophid Species Diaphus Watasei and Myctophum Obtusirostre Caught from Arabian Sea; Society of Fisheries Technologists: Kochi, India, 2013. [Google Scholar]
- Fernandez, T.J.; Pradeep, K.; Anandan, R.; Zynudheen, A.; Sankar, T. Comparison of nutritional characteristics of myctophid fishes (Diaphus effulgens and D. hudsoni) with common Indian food fishes. Fish. Technol. 2014, 51, 173–178. [Google Scholar]
- Chai, H.-J.; Chan, Y.-L.; Li, T.-L.; Chen, Y.-C.; Wu, C.-H.; Shiau, C.-Y.; Wu, C.-J. Composition characterization of Myctophids (Benthosema pterotum): Antioxidation and safety evaluations for Myctophids protein hydrolysates. Food Res. Int. 2012, 46, 118–126. [Google Scholar] [CrossRef]
- Ahmed, I.; Jan, K.; Fatma, S.; Dawood, M.A. Muscle proximate composition of various food fish species and their nutritional significance: A review. J. Anim. Physiol. Anim. Nutr. 2022, 106, 690–719. [Google Scholar] [CrossRef]
- Boopendranath, M.; Vijayan, P.; Remesan, M.; Anandan, R.; Ninan, G.; Zynudheen, A.; Das, S.; Rajeswari, G.; Raghu Prakash, R.; Sankar, T. Development of Harvest and Post-Harvest Technologies for Utilization of Myctophid Resources in the Arabian Sea; Final Report on CIFT Project Component; Central Institute of Fisheries Technology (Indian Council of Agricultural Research): Cochin, India, 2012. [Google Scholar]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef] [Green Version]
- Lall, S.P.; Kaushik, S.J. Nutrition and metabolism of minerals in fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef] [PubMed]
- Causeret, J. Fish as a source of mineral nutrition. Fish Food 2012, 2, 205–234. [Google Scholar]
- Martínez-Valverde, I.; Periago, M.J.; Santaella, M.; Ros, G. The content and nutritional significance of minerals on fish flesh in the presence and absence of bone. Food Chem. 2000, 71, 503–509. [Google Scholar] [CrossRef]
- Masamba, W.R.; Mosepele, K.; Mogobe, O. Essential mineral content of common fish species in Chanoga, Okavango Delta, Botswana. Afr. J. Food Sci. 2015, 9, 480–486. [Google Scholar]
- Nordhagen, A.; Rizwan, A.A.M.; Aakre, I.; Moxness Reksten, A.; Pincus, L.M.; Bokevoll, A.; Mamun, A.; Haraksingh Thilsted, S.; Htut, T.; Somasundaram, T.; et al. Nutrient composition of demersal, pelagic, and mesopelagic fish species sampled off the coast of bangladesh and their potential contribution to food and nutrition security—The EAF-nansen programme. Foods 2020, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Anderssen, S.A.; Fogelholm, M.; Gunnarsdottir, I.; Hursti, U.K.K.; Meltzer, H.M.; Pedersen, A.N.; Schwab, U.; Tetens, I.; Wirfalt, E. NNR 2012: Nordic nutrition recommendations-integrating nutrition and physical activity. Ann. Nutr. Metab. 2013, 63, 897. [Google Scholar]
- Roos, N.; Islam, M.M.; Thilsted, S.H. Small indigenous fish species in bangladesh: Contribution to vitamin A, calcium and iron intakes. J. Nutr. 2003, 133, 4021S–4026S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, N.; Wahab, M.A.; Chamnan, C.; Thilsted, S.H. The role of fish in food-based strategies to combat vitamin A and mineral deficiencies in developing countries. J. Nutr. 2007, 137, 1106–1109. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F.; Speake, B.K.; Decrock, F.; Groscolas, R. Transfer of Vitamins E and A from yolk to embryo during development of the king penguin (Aptenodytes patagonicus). Physiol. Biochem. Zool. 2001, 74, 928–936. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Bjorn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seco, J.; Freitas, R.; Xavier, J.C.; Bustamante, P.; Coelho, J.P.; Coppola, F.; Saunders, R.A.; Almeida, Â.; Fielding, S.; Pardal, M.A. Oxidative stress, metabolic activity and mercury concentrations in Antarctic krill Euphausia superba and myctophid fish of the Southern Ocean. Mar. Pollut. Bull. 2021, 166, 112178. [Google Scholar] [CrossRef]
- Seco, J.; Xavier, J.C.; Bustamante, P.; Coelho, J.P.; Saunders, R.A.; Ferreira, N.; Fielding, S.; Pardal, M.A.; Stowasser, G.; Viana, T.; et al. Main drivers of mercury levels in Southern Ocean lantern fish Myctophidae. Environ. Pollut. 2020, 264, 114711. [Google Scholar] [CrossRef] [PubMed]
- Seco, J.; Aparício, S.; Brierley, A.S.; Bustamante, P.; Ceia, F.R.; Coelho, J.P.; Philips, R.A.; Saunders, R.A.; Fielding, S.; Gregory, S. Mercury biomagnification in a Southern Ocean food web. Environ. Pollut. 2021, 275, 116620. [Google Scholar] [CrossRef]
- Kureishy, T.W.; George, M.; Gupta, R.S. Total mercury content in some marine fish from the Indian Ocean. Mar. Pollut. Bull. 1979, 10, 357–360. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef]
- Rochman, C.M.; Lewison, R.L.; Eriksen, M.; Allen, H.; Cook, A.M.; Teh, S.J. Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an indicator of plastic contamination in marine habitats. Sci. Total Environ. 2014, 476–477, 622–633. [Google Scholar] [CrossRef]
- Bernal, A.; Toresen, R.; Riera, R. Mesopelagic fish composition and diets of three myctophid species with potential incidence of microplastics, across the southern tropical gyre. Deep Sea Res. Part II Top. Stud. Oceanogr. 2020, 179, 104706. [Google Scholar] [CrossRef]
- Savoca, M.S.; McInturf, A.G.; Hazen, E.L. Plastic ingestion by marine fish is widespread and increasing. Glob. Chang. Biol. 2021, 27, 2188–2199. [Google Scholar] [CrossRef]
- Gassel, M.; Rochman, C.M. The complex issue of chemicals and microplastic pollution: A case study in North Pacific lanternfish. Environ. Pollut. 2019, 248, 1000–1009. [Google Scholar] [CrossRef]
- Borghesi, N.; Corsolini, S.; Leonards, P.; Brandsma, S.; de Boer, J.; Focardi, S. Polybrominated diphenyl ether contamination levels in fish from the Antarctic and the Mediterranean Sea. Chemosphere 2009, 77, 693–698. [Google Scholar] [CrossRef]
- Capanni, F.; Munoz-Arnanz, J.; Marsili, L.; Fossi, M.C.; Jimenez, B. Assessment of PCDD/Fs, dioxin-like PCBs and PBDEs in Mediterranean striped dolphins. Mar. Pollut. Bull. 2020, 156, 111207. [Google Scholar] [CrossRef] [PubMed]
- Goddard, S.; Ibrahim, F.S. Protein resources and aquafeed development in the Sultanate of Oman. J. Agric. Mar. Sci. [JAMS] 2015, 20, 47–53. [Google Scholar] [CrossRef]
- Almela, C.; Algora, S.; Benito, V.; Clemente, M.J.; Devesa, V.; Suner, M.A.; Velez, D.; Montoro, R. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. J. Agric. Food Chem. 2002, 50, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Windom, H.; Stickney, R.; Smith, R.; White, D.; Taylor, F. Arsenic, cadmium, copper, mercury, and zinc in some species of North Atlantic finfish. J. Fish. Res. Board Can. 1973, 30, 275–279. [Google Scholar] [CrossRef]
- Gibbs, R.H., Jr.; Jarosewich, E.; Windom, H.L. Heavy metal concentrations in museum fish specimens: Effects of preservatives and time. Science 1974, 184, 475–477. [Google Scholar] [CrossRef]
- Monteiro, L.R.; Costa, V.; Furness, R.W.; Santos, R.S. Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Mar. Ecol. Prog. Ser. 1996, 141, 21–25. [Google Scholar] [CrossRef]
- Martins, I.; Costa, V.; Porteiro, F.M.; Santos, R.S. Temporal and spatial changes in mercury concentrations in the North Atlantic as indicated by museum specimens of glacier lanternfish Benthosema glaciale (Pisces: Myctophidae). Environ. Toxicol. 2006, 21, 528–532. [Google Scholar] [CrossRef]
- Lahaye, V.; Bustamante, P.; Dabin, W.; Van Canneyt, O.; Dhermain, F.; Cesarini, C.; Pierce, G.J.; Caurant, F. New insights from age determination on toxic element accumulation in striped and bottlenose dolphins from Atlantic and Mediterranean waters. Mar. Pollut. Bull. 2006, 52, 1219–1230. [Google Scholar] [CrossRef] [Green Version]
- Cipro, C.V.Z.; Cherel, Y.; Bocher, P.; Caurant, F.; Miramand, P.; Bustamante, P. Trace elements in invertebrates and fish from Kerguelen waters, southern Indian Ocean. Polar Biol. 2018, 41, 175–191. [Google Scholar] [CrossRef]
- Wienerroither, R.; Uiblein, F.; Bordes, F.; Moreno, T. Composition, distribution, and diversity of pelagic fishes around the Canary Islands, Eastern Central Atlantic. Mar. Biol. Res. 2009, 5, 328–344. [Google Scholar] [CrossRef]
- Buckman, K.L.; Lane, O.; Kotnik, J.; Bratkic, A.; Sprovieri, F.; Horvat, M.; Pirrone, N.; Evers, D.C.; Chen, C.Y. Spatial and taxonomic variation of mercury concentration in low trophic level fauna from the Mediterranean Sea. Ecotoxicology 2018, 27, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Chouvelon, T.; Spitz, J.; Caurant, F.; Mendez-Fernandez, P.; Autier, J.; Lassus-Debat, A.; Chappuis, A.; Bustamante, P. Enhanced bioaccumulation of mercury in deep-sea fauna from the Bay of Biscay (north-east Atlantic) in relation to trophic positions identified by analysis of carbon and nitrogen stable isotopes. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 2012, 65, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, K.; Gagne, M.; Nong, A.; Aylward, L.L.; Hays, S.M. Biomonitoring equivalents for bisphenol A (BPA). Regul. Toxicol. Pharmacol. 2010, 58, 18–24. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Safe Use of Wastewater, Excreta and Greywater in Agriculture and Aquaculture; World Health Organization: Geneva, Switzerland, 2006.
- Chain, E.P.o.C.i.t.F. Scientific opinion on polybrominated diphenyl ethers (PBDEs) in food. EFSA J. 2011, 9, 2156. [Google Scholar] [CrossRef]
- Czudaj, S.; Koppelmann, R.; Mollmann, C.; Schaber, M.; Fock, H.O. Community structure of mesopelagic fishes constituting sound scattering layers in the eastern tropical North Atlantic. J. Mar. Syst. 2021, 224, 103635. [Google Scholar] [CrossRef]
- Young, J.W.; Hobday, A.J.; Campbell, R.A.; Kloser, R.J.; Bonham, P.I.; Clementson, L.A.; Lansdell, M.J. The biological oceanography of the East Australian Current and surrounding waters in relation to tuna and billfish catches off eastern Australia. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2011, 58, 720–733. [Google Scholar] [CrossRef]
- Young, J.W.; Lamb, T.D.; Bradford, R.W. Distribution and community structure of midwater fishes in relation to the subtropical convergence off eastern Tasmania, Australia. Mar. Biol. 1996, 126, 571–584. [Google Scholar] [CrossRef]
- Choy, C.A.; Portner, E.; Iwane, M.; Drazen, J.C. Diets of five important predatory mesopelagic fishes of the central North Pacific. Mar. Ecol. Prog. Ser. 2013, 492, 169–184. [Google Scholar] [CrossRef] [Green Version]
- Vipin, P.M.; Ravi, R.; Fernandez, T.J.; Pradeep, K.; Boopendranath, M.R.; Remesan, M.P. Distribution of myctophid resources in the Indian Ocean. Rev. Fish Biol. Fish. 2012, 22, 423–436. [Google Scholar] [CrossRef]
- Pearcy, W.G.; Laurs, R. Vertical migration and distribution of mesopelagic fishes off Oregon. Deep. Sea Res. Oceanogr. Abstr. 1966, 13, 153–165. [Google Scholar] [CrossRef]
- Eduardo, L.N.; Bertrand, A.; Mincarone, M.M.; Martins, J.R.; Fredou, T.; Assuncao, R.V.; Lima, R.S.; Menard, F.; Le Loc’h, F.; Lucena-Fredou, F. Distribution, vertical migration, and trophic ecology of lanternfishes (Myctophidae) in the Southwestern Tropical Atlantic. Prog. Oceanogr. 2021, 199, 102695. [Google Scholar] [CrossRef]
- Donnelly, J.; Torres, J.J.; Sutton, T.T.; Simoniello, C. Fishes of the eastern Ross Sea, Antarctica. Polar Biol. 2004, 27, 637–650. [Google Scholar] [CrossRef]
- Duhamel, G.; Hulley, P.-A.; Causse, R.; Koubbi, P.; Vacchi, M.; Pruvost, P.; Vigetta, S.; Irisson, J.-O.; Mormede, S.; Belchier, M. Biogeographic Patterns of Fish; Scientific Committee on Antarctic Research: Cambridge, UK, 2014. [Google Scholar]
- Backus, R.H.; Craddock, J.E.; Haedrich, R.L.; Shores, D.L. The distribution of mesopelagic fishes in the equatorial and western North Atlantic Ocean. In Proceedings of International Symposium on Biological Sound Scattering in the Ocean, Maury Center Report; U.S. Government Printing Office: Washington, DC, USA, 1970; pp. 20–40. [Google Scholar]
- Blackburn, D. Viviparity and Oviparity: Evolution and Reproductive Strategies; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Childress, J.; Taylor, S.; Cailliet, G.M.; Price, M. Patterns of growth, energy utilization and reproduction in some meso-and bathypelagic fishes off southern California. Mar. Biol. 1980, 61, 27–40. [Google Scholar] [CrossRef]
- Saunders, R.A.; Hill, S.L.; Tailing, G.A.; Murphy, E.J. Myctophid Fish (Family Myctophidae) Are Central Consumers in the Food Web of the Scotia Sea (Southern Ocean). Front. Mar. Sci. 2019, 6, 530. [Google Scholar] [CrossRef] [Green Version]
- Nafpaktitis, B.G.; Nafpaktitis, M. Lanternfishes (Family Myctophidae) Collected during Cruises 3 and 6 of the R/V Anton Bruun in the Indian Ocean; Los Angeles County Museum of Natural History: Los Angeles, CA, USA, 1969. [Google Scholar]
- Pearcy, W.G.; Krygier, E.E.; Mesecar, R.; Ramsey, F. Vertical Distribution and Migration of Oceanic Micronekton Off Oregon. Deep-Sea Res. 1977, 24, 223–245. [Google Scholar] [CrossRef]
- Caiger, P.E.; Lefebve, L.S.; Llopiz, J.K. Growth and reproduction in mesopelagic fishes: A literature synthesis. Ices J. Mar. Sci. 2021, 78, 765–781. [Google Scholar] [CrossRef]
- Kozłowski, J. Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol. Evol. 1992, 7, 15–19. [Google Scholar] [CrossRef]
- Konstantinova, M. Growth and natural mortality rates of three species of myctophids from the Southern Atlantic. In All-Union Conference: Resources of the Southern Ocean and Problems of Their Rational Expolitation; USSR Ministry of Fisheries: Kerch, USSR, 1987; pp. 117–118. [Google Scholar]
- Saunders, R.A.; Lourenco, S.; Vieira, R.P.; Collins, M.A.; Assis, C.A.; Xavier, J.C. Age and growth of Brauer’s lanternfish Gymnoscopelus braueri and rhombic lanternfish Krefftichthys anderssoni (Family Myctophidae) in the Scotia Sea, Southern Ocean. J. Fish Biol. 2020, 96, 364–377. [Google Scholar] [CrossRef]
- Gartner, J. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico: II. Age and growth patterns. Mar. Biol. 1991, 111, 21–27. [Google Scholar] [CrossRef]
- Takagi, K.; Yatsu, A.; Moku, M.; Sassa, C. Age and growth of lanternfishes, Symbolophorus californiensis and Ceratoscopelus warmingii (Myctophidae), in the Kuroshio-Oyashio Transition Zone. Ichthyol. Res. 2006, 53, 281–289. [Google Scholar] [CrossRef]
- Moku, M.; Ishimaru, K.; Kawaguchi, K. Growth of larval and juvenile Diaphus theta (Pisces: Myctophidae) in the transitional waters of the western North Pacific. Ichthyol. Res. 2001, 48, 385–390. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Chen, Z.Z.; Jiang, Y.N.; Xu, S.N.; Li, Z.Y.; Wang, X.L.; Ying, Y.P.; Zhao, X.Y.; Zhou, M. Age and growth of Myctophum asperum in the South China Sea based on otolith microstructure analysis. Deep-Sea Res. Part Ii-Top. Stud. Oceanogr. 2019, 167, 121–127. [Google Scholar] [CrossRef]
- Bystydzieńska, Z.E.; Phillips, A.J.; Linkowski, T.B. Larval stage duration, age and growth of blue lanternfish Tarletonbeania crenularis (Jordan and Gilbert, 1880) derived from otolith microstructure. Environ. Biol. Fishes 2010, 89, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Gj, J. Mesopelagic fish, a large potential resource in the Arabian Sea. Deep Sea Res. Part A Oceanogr. Res. Pap. 1984, 31, 1019–1035. [Google Scholar] [CrossRef]
- Giragosov, V. Age and growth of the lanternfish Myctophum nitidulum (Myctophidae) from the tropical Atlantic. J. Ichthyol. 1992, 32, 34–42. [Google Scholar]
- Kawaguchi, K.; Mauchline, J. Biology of myctophid fishes (family Myctophidae) in the Rockall Trough, northeastern Atlantic Ocean. Biol. Oceanogr. 1982, 1, 337–373. [Google Scholar]
- Linkowski, T.B.; Radtke, R.L.; Lenz, P.H. Otolith microstructure, age and growth of two species of Ceratoscopelus (Oosteichthyes: Myctophidae) from the eastern North Atlantic. J. Exp. Mar. Biol. Ecol. 1993, 167, 237–260. [Google Scholar] [CrossRef]
- You, B.; Kawaguchi, K.; Kusaka, T. Ecologic study on diaphus suborbitalis weber (pisces, myctophidae) in suruga bay, japan. I. method of aging and its life span. Nippon. Suisan Gakkaishi 1977, 43, 1411–1416. [Google Scholar]
- Young, J.W.; Bulman, C.M.; Blaber, S.J.M.; Wayte, S.E. Age and Growth of the Lanternfish Lampanyctodes hectoris (Myctophidae) from Eastern Tasmania, Australia. Mar. Biol. 1988, 99, 569–576. [Google Scholar] [CrossRef]
- Greely, T.M.; Gartner, J.V.; Torres, J.J. Age and growth of Electrona antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Mar. Biol. 1999, 133, 145–158. [Google Scholar] [CrossRef]
- Halliday, R. Growth and vertical distribution of the glacier lanternfish, Benthosema glaciale, in the northwestern Atlantic. J. Fish. Board Can. 1970, 27, 105–116. [Google Scholar] [CrossRef]
- García-Seoane, E.; Fabeiro, M.; Silva, A.; Meneses, I. Age-based demography of the glacier lanternfish (Benthosema glaciale) in the Flemish Cap. Mar. Freshw. Res. 2014, 66, 78–85. [Google Scholar] [CrossRef]
- Linkowski, T.B. Population Biology of the Myctophid Fish Gymnoscopelus nicholsi (Gillbert, 1911) from the Western South-Atlantic. J. Fish Biol. 1985, 27, 683–698. [Google Scholar] [CrossRef]
- Kristoffersen, J.B.; Salvanes, A.G.V. Distribution, growth, and population genetics of the glacier lanternfish (Benthosema glaciale) in Norwegian waters: Contrasting patterns in fjords and the ocean. Mar. Biol. Res. 2009, 5, 596–604. [Google Scholar] [CrossRef]
- Smoker, W.; Pearcy, W.G. Growth and reproduction of the lanternfish Stenobrachius leucopsarus. J. Fish. Board Can. 1970, 27, 1265–1275. [Google Scholar] [CrossRef]
- Sabourenkov, E. Myctophids in the diet of Antarctic predators. Sel. Sci. Pap. 1991, 335–368. [Google Scholar]
- Roberts, C.; Hawkins, J.; Hindle, K.; Wilson, R.; O’Leary, B. Entering the Twilight Zone: The Ecological Role and Importance of Mesopelagic Fishes. Blue Mar. Found. 2020. [Google Scholar]
- Duffy, L.M.; Kuhnert, P.M.; Pethybridge, H.R.; Young, J.W.; Olson, R.J.; Logan, J.M.; Goñi, N.; Romanov, E.; Allain, V.; Staudinger, M.D. Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 140, 55–73. [Google Scholar] [CrossRef]
- Olson, R.; Young, J.; Ménard, F.; Potier, M.; Allain, V.; Goñi, N.; Logan, J.; Galván-Magaña, F. Bioenergetics, trophic ecology, and niche separation of tunas. In Advances in Marine Biology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 74, pp. 199–344. [Google Scholar]
- Goldsworthy, S.; Lewis, M.; Williams, R.; He, X.; Young, J.; Van den Hoff, J. Diet of Patagonian toothfish (Dissostichus eleginoides) around Macquarie Island, South Pacific Ocean. Mar. Freshw. Res. 2002, 53, 49–57. [Google Scholar] [CrossRef]
- Dolar, M.L.L.; Walker, W.A.; Kooyman, G.L.; Perrin, W.F. Comparative feeding ecology of spinner dolphins (Stenella longirostris) and Fraser’s dolphins (Lagenodelphis hosei) in the Sulu Sea. Mar. Mammal Sci. 2003, 19, 1–19. [Google Scholar] [CrossRef]
- Phillips, K.L.; Jackson, G.D.; Nichols, P.D. Predation on myctophids by the squid Moroteuthis ingens around Macquarie and Heard Islands: Stomach contents and fatty acid analyses. Mar. Ecol. Prog. Ser. 2001, 215, 179–189. [Google Scholar] [CrossRef]
- Cherel, Y.; Xavier, J.C.; de Grissac, S.; Trouve, C.; Weimerskirch, H. Feeding ecology, isotopic niche, and ingestion of fishery-related items of the wandering albatross Diomedea exulans at Kerguelen and Crozet Islands. Mar. Ecol. Prog. Ser. 2017, 565, 197–215. [Google Scholar] [CrossRef] [Green Version]
- Koz, A. A review of the trophic role of mesopelagic fish of the family Myctophidae in the Southern Ocean ecosystem. CCAMLR Sci. 1995, 2, 71–77. [Google Scholar]
- Cherel, Y.; Fontaine, C.; Richard, P.; Labat, J.P. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol. Oceanogr. 2010, 55, 324–332. [Google Scholar] [CrossRef]
- Shreeve, R.S.; Collins, M.A.; Tarling, G.A.; Main, C.E.; Ward, P.; Johnston, N.M. Feeding ecology of myctophid fishes in the northern Scotia Sea. Mar. Ecol. Prog. Ser. 2009, 386, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Nirazuka, S.; Makabe, R.; Swadling, K.M.; Moteki, M. Phyto-detritus feeding by early-stage larvae of Electrona antarctica (Myctophidae) off Wilkes Land in the Southern Ocean, austral summer 2017. Polar Biol. 2021, 44, 1415–1425. [Google Scholar] [CrossRef]
- Pakhomov, E.A.; Perissinotto, R.; McQuaid, C.D. Prey composition and daily rations of myctophid fishes in the Southern Ocean. Mar. Ecol. Prog. Ser. 1996, 134, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Davison, P.C. The Export of Carbon Mediated by Mesopelagic Fishes in the Northeast Pacific Ocean; University of California: San Diego, CA, USA, 2011. [Google Scholar]
- Sobradillo, B.; Boyra, G.; Martinez, U.; Carrera, P.; Pena, M.; Irigoien, X. Target Strength and swimbladder morphology of Mueller’s pearlside (Maurolicus muelleri). Sci. Rep. 2019, 9, 17311. [Google Scholar] [CrossRef] [Green Version]
- Kaartvedt, S.; Røstad, A.; Opdal, A.F.; Aksnes, D.L. Herding mesopelagic fish by light. Mar. Ecol. Prog. Ser. 2019, 625, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Macreadie, P.I.; McLean, D.L.; Thomson, P.G.; Partridge, J.C.; Jones, D.O.; Gates, A.R.; Benfield, M.C.; Collin, S.P.; Booth, D.J.; Smith, L.L. Eyes in the sea: Unlocking the mysteries of the ocean using industrial, remotely operated vehicles (ROVs). Sci. Total Environ. 2018, 634, 1077–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laidig, T.E.; Krigsman, L.M.; Yoklavich, M.M. Reactions of fishes to two underwater survey tools, a manned submersible and a remotely operated vehicle. Fish. Bull. 2013, 111, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Madhupratap, M.; Nair, K.N.V.; Gopalakrishnan, T.C.; Haridas, P.; Nair, K.K.C.; Venugopal, P.; Gauns, M. Arabian Sea oceanography and fisheries of the west coast of India. Curr. Sci. 2001, 81, 355–361. [Google Scholar]
- Pauly, D.; Piroddi, C.; Hood, L.; Bailly, N.; Chu, E.L.E.; Lam, V.; Pakhomov, E.A.; Pshenichnov, L.K.; Radchenko, V.I.; Palomares, M.L.D. The biology of mesopelagic fishes and their catches (1950–2018) by commercial and experimental fisheries. J. Mar. Sci. Eng. 2021, 9, 1057. [Google Scholar] [CrossRef]
- Fjeld, K.; Tiller, R.; Grimaldo, E.; Grimsmo, L.; Standal, I.-B. Mesopelagics–New gold rush or castle in the sky? Mar. Policy 2023, 147, 105359. [Google Scholar] [CrossRef]
- Standal, D.; Grimaldo, E. Lost in translation? Practical-and scientific input to the mesopelagic fisheries discourse. Mar. Policy 2021, 134, 104785. [Google Scholar] [CrossRef]
- Payne, S.; Hoagland, P. A Twilight Zone Episode: Historical Expansion of the Soviet Union’s Fishing Fleet and the Exploitation of Mesopelagic Fisheries in the Southern Ocean. Ocean Yearb. Online 2022, 36, 526–549. [Google Scholar] [CrossRef]
- Ahlstrom, E.H.; Moser, H.G.; O’Toole, M.J. Development and distribution of larvae and early juveniles of the commercial lanternfish, Lampanyctodes hectoris (Gunther), off the west coast of southern Africa with a discussion of phylogenetic relationships of the genus. Bull. South. Calif. Acad. Sci. 1976, 75, 138–152. [Google Scholar]
- Pauly, D. Global fisheries: A brief review. J. Biol. Res.-Thessalon. 2008, 9, 3–9. [Google Scholar]
- Prellezo, R. Exploring the economic viability of a mesopelagic fishery in the Bay of Biscay. ICES J. Mar. Sci. 2019, 76, 771–779. [Google Scholar] [CrossRef]
- Kourantidou, M.; Jin, D. Mesopelagic–epipelagic fish nexus in viability and feasibility of commercial-scale mesopelagic fisheries. Nat. Resour. Model. 2022, 35, e12350. [Google Scholar] [CrossRef]
- Dowd, S.; Chapman, M.; Koehn, L.E.; Hoagland, P. The economic tradeoffs and ecological impacts associated with a potential mesopelagic fishery in the California Current. Ecol. Appl. 2022, 32, e2578. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Pethybridge, H.; Virtue, P.; Nichols, P.D.; Swadling, K.; Williams, A.; Lee-Chang, K. Evaluating Alternative and Sustainable Food Resources: A Review of the Nutritional Composition of Myctophid Fishes. Sustainability 2023, 15, 12039. https://doi.org/10.3390/su151512039
Zhang B, Pethybridge H, Virtue P, Nichols PD, Swadling K, Williams A, Lee-Chang K. Evaluating Alternative and Sustainable Food Resources: A Review of the Nutritional Composition of Myctophid Fishes. Sustainability. 2023; 15(15):12039. https://doi.org/10.3390/su151512039
Chicago/Turabian StyleZhang, Bowen, Heidi Pethybridge, Patti Virtue, Peter D. Nichols, Kerrie Swadling, Alan Williams, and Kim Lee-Chang. 2023. "Evaluating Alternative and Sustainable Food Resources: A Review of the Nutritional Composition of Myctophid Fishes" Sustainability 15, no. 15: 12039. https://doi.org/10.3390/su151512039
APA StyleZhang, B., Pethybridge, H., Virtue, P., Nichols, P. D., Swadling, K., Williams, A., & Lee-Chang, K. (2023). Evaluating Alternative and Sustainable Food Resources: A Review of the Nutritional Composition of Myctophid Fishes. Sustainability, 15(15), 12039. https://doi.org/10.3390/su151512039