Mapping of Evapotranspiration and Determination of the Water Footprint of a Potato Crop Grown in Hyper-Arid Regions in Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling and Field Data
2.2.1. Potato Yield
2.2.2. Irrigation Water Demand—CROPWAT Method
2.3. Satellite Data and Image Analysis
2.4. Mapping of Potato Water Footprint
2.4.1. Crop Water Use
2.4.2. Water Footprint
2.5. Water Footprint Based on Field Data
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronym/Variable | Explanation |
CP | Crop productivity |
CWU | Crop water use |
CWUBlue | Crop water use—blue component |
CWUGreen | Crop water use—green component |
ET | Evapotranspiration |
ETa | Actual evapotranspiration |
ETc | Crop evapotranspiration |
ETf | Fraction of Evapotranspiration |
ETo | Reference Evapotranspiration |
Kc | Crop coefficient |
L8 | Landsat-8 |
LST | Land surface temperature |
S2 | Sentinel-2 |
SSEB | Simplified Surface Energy Balance |
WF | Water footprint |
WFG | Water footprint—green component |
WFB | Water footprint—blue component |
WA | Actual volume of irrigation water |
YF | Predicted yield |
References
- FAO. The State of Food Security and Nutrition in the World, Safeguarding Against Economic Slowdowns and Downturns; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://www.fao.org/3/ca5162en/ca5162en.pdf (accessed on 30 March 2023).
- Seckler, D.W. The New Era of Water Resources Management: From “Dry” to ’Wet” Water Savings; The World Bank Group: Washington, WA, USA, 1996. [Google Scholar]
- Scheierling, S.M.; Tr’eguer, D.O. Beyond Crop Per Drop: Assessing Agricultural Water Productivity and Efficiency in a Maturing Water Economy, International Development in Focus; The World Bank: Washington, WA, USA, 2018. [Google Scholar] [CrossRef]
- FAO. The Dimensions of Water Productivity; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; p. 6. Available online: https://www.fao.org/3/cc2724en/cc2724en.pdf (accessed on 30 May 2023).
- Kijne, J.; Balaghi, R.; Duffy, P.; Jlibene, M.; Joy, K.J.; Klohn, W.; Mollinga, P.; Paranjape, S.; Trava, J.; Tychon, B. Unlocking the Water Potential of Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Alotaibi, B.A.; Kassem, H.S. Adoption of Sustainable Water Management Practices among Farmers in Saudi Arabia. Sustainability 2021, 13, 11260. [Google Scholar] [CrossRef]
- Haque, M.I.; Khan, M.R. Impact of climate change on food security in Saudi Arabia: A roadmap to agriculture-water sustainability. J. Agribusi. Dev. Emerg. Econom. 2022, 12, 1–18. [Google Scholar] [CrossRef]
- Bwambale, E.; Naangmenyele, Z.; Iradukunda, P.; Agboka, K.M.; Houessou-Dossou, E.A.Y.; Akansake, D.A.; Bisa, M.E.; Hamadou, A.H.; Hakizayezu, J.; Onofua, O.E.; et al. Towards precision irrigation management: A review of GIS, remote sensing and emerging technologies. Cogent Eng. 2022, 9, 2100573. [Google Scholar] [CrossRef]
- Parsinejad, M.; Raja, O.; Chehrenegar, B. Practical analysis of remote sensing estimations of water use for major crops throughout the Urmia Lake basin. Agric. Water Manag. 2022, 260, 107232. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Huang, K.; Yuan, Y.; Wang, A.; Dong, L.; Zhao, X. A remote sensing-based method for high-resolution crop water footprint quantification in an irrigation district with complex planting structure. J. Hydrol. 2023, 617, 129030. [Google Scholar] [CrossRef]
- Foster, T.; Mieno, T.; Brozovic, N. Satellite-based monitoring of irrigation water use: Assessing measurement errors and their implications for agricultural water management policy. Water Resour. Res. 2020, 56, e2020WR028378. [Google Scholar] [CrossRef]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precis. Agric. 2020, 21, 1121–1155. [Google Scholar] [CrossRef]
- Safdar, M.; Shahid, M.A.; Sarwar, A.; Rasul, F.; Majeed, M.D.; Sabir, R.M. Crop Water Stress Detection Using Remote Sensing Techniques. Environ. Sci. Proc. 2023, 25, 20. [Google Scholar] [CrossRef]
- Gebeyehu, M.N. Remote Sensing and GIS Application in Agriculture and Natural Resource Management. Int. J. Environ. Sci. Nat. Resour. 2019, 19, 45–49. [Google Scholar] [CrossRef]
- Maselli, F.; Battista, P.; Chiesi, M.; Rapi, B.; Angeli, L.; Fibbi, L.; Magno, R.; Gozzini, B. Use of Sentinel-2 MSI data to monitor crop irrigation in Mediterranean areas. Int. J. Appl. Earth Observ. Geoinform. 2020, 93, 102216. [Google Scholar] [CrossRef]
- El Hachimi, J.; El Harti, A.; Lhissou, R.; Ouzemou, J.-E.; Chakouri, M.; Jellouli, A. Combination of Sentinel-2 Satellite Images and Meteorological Data for Crop Water Requirements Estimation in Intensive Agriculture. Agriculture 2022, 12, 1168. [Google Scholar] [CrossRef]
- Massari, C.; Modanesi, S.; Dari, J.; Gruber, A.; De Lannoy, G.J.M.; Girotto, M.; Quintana-Seguí, P.; Le Page, M.; Jarlan, L.; Brocca, L. A Review of Irrigation Information Retrievals from Space and Their Utility for Users. Remote Sens. 2021, 13, 4112. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D´Urso, G.; Menenti, M. Remote Sensing for Crop Water Management: From Experiments to User-Driven Services. Preprints 2016, 2016110095, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Khand, K.; Kagone, S.; Schauer, M.; Senay, G.B.; Wu, Z. A novel approach for next generation water-use mapping using Landsat and Sentinel-2 satellite data. Hydrol. Sci. J. 2020, 65, 2508–2519. [Google Scholar] [CrossRef]
- Salehi, H.; Shamsoddini, A.; Mirlatifi, S.M.; Mirgol, B.; Nazari, M. Spatial and Temporal Resolution Improvement of Actual Evapotranspiration Maps Using Landsat and MODIS Data Fusion. Front. Environ. Sci. 2021, 9, 795287. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. In Value of Water Research Report Series 11; IHE: Delft, The Netherlands, 2002; Available online: https://www.waterfootprint.org/media/downloads/Report11.pdf (accessed on 26 August 2022).
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G.; Gautam, R. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol. Econ. 2006, 60, 186–203. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Mekonnen, M.M.; Aldaya, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK, 2011; p. 154. [Google Scholar]
- Xinchun, C.; Mengyang, W.; Rui, S.; La, Z.; Dan, C.; Guangcheng, S.; Shuhai, T. Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China. Sci. Total Environ. 2018, 610–611, 84–93. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Virtual water: An introduction. In Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade; Value of Water Research Report Series 12; IHE: Delft, The Netherlands, 2003; Available online: https://www.waterfootprint.org/media/downloads/Report12.pdf (accessed on 26 August 2022).
- Wolff, W.; Franscisco, J.P.; Flumignan, D.L.; Marin, F.R.; Folegatti, M.V. Optimized algorithm for evapotranspiration retrieval via remote sensing. Agric. Water Manag. 2022, 262, 107390. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef]
- McShane, R.R.; Driscoll, K.P.; Roy, S. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents. U.S. Geol. Surv. Sci. Investig. Rep. 2017, 5087, 19. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. JAWRA J. Amer. Water Resourc. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Yang, Y.; Wu, R.; Gui, D.; Xue, J.; Liu, Y.; Yan, D. Improving estimation of cropland evapotranspiration by the Bayesian Model Averaging Method with surface energy balance models. Atmosphere 2019, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Aldaya, M.M.; Santos, P.M.; Llamas, M.R. Incorporating the water footprint and virtual water into policy: Reflections from the Mancha Occidental Region, Spain. Water Resour. Manag. 2010, 24, 941–958. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.M.; Ribbe, L. Analysis of water footprints of rainfed and irrigated crops in Sudan. J. Nat. Resourc. Dev. 2011, 1, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Tsakmakis, I.D.; Zoidou, M.; Gikas, G.D.; Sylaios, G.K. Impact of irrigation technologies and strategies on cotton water footprint using AquaCrop and CROPWAT models. Environ. Process. 2018, 5, 181–199. [Google Scholar] [CrossRef]
- Karandish, F.; Simunek, J. A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint. Agric. Water Manag. 2019, 213, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.I.; Ruiz de Galarreta, V.A.; Kruse, E.E. Analysis of water footprint of potato production in the pampean region of Argentina. J. Clean. Prod. 2015, 90, 91–96. [Google Scholar] [CrossRef]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; Hassaballa, A.A.; Kayad, A.G. Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia. PLoS ONE 2018, 13, e0192830. [Google Scholar] [CrossRef] [Green Version]
- Geng, Q.; Ren, Q.; Nolan, R.H.; Wu, P.; Yu, Q. Assessing China’s agricultural water use efficiency in a green-blue water perspective: A study based on data envelopment analysis. Ecol. Indic. 2019, 96, 329–335. [Google Scholar] [CrossRef]
- Gebremariam, F.T.; Habtu, S.; Yazew, E.; Teklu, B. The water footprint of irrigation-supplemented cotton and mung-bean crops in Northern Ethiopia. Heliyon 2021, 7, e06822. [Google Scholar] [CrossRef] [PubMed]
- Kamble, B.; Kilic, A.; Hubbard, K. Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index. Remote Sens. 2013, 5, 1588–1602. [Google Scholar] [CrossRef] [Green Version]
- Glenn, E.P.; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- Singh, R.K.; Irmak, A. Estimation of Crop Coefficients Using Satellite Remote Sensing. J. Irrig. Drain. Eng. 2009, 135, 597–608. [Google Scholar] [CrossRef]
- Beeri, O.; Netzer, Y.; Munitz, S.; Mintz, D.F.; Pelta, R.; Shilo, T.; Horesh, A.; Mey-tal, S. Kc and LAI Estimations Using Optical and SAR Remote Sensing Imagery for Vineyards Plots. Remote Sens. 2020, 12, 3478. [Google Scholar] [CrossRef]
- Casa, R.; Rossi, M.; Sappa, G.; Trotta, A. Assessing Crop Water Demand by Remote Sensing and GIS for the Pontina Plain, Central Italy. Water Resour. Manag. 2008, 23, 1685–1712. [Google Scholar] [CrossRef]
- Al-Faifi, H.J.A. Evaluation of Groundwater Resources in Wajid Qquifer in WadiDawasir Area Southern Saudi Arabia, Using Computer Simulation Data and Methods. Master’s Thesis, Department of Geology at the College of Science-King Saud University, Riyadh, Saudi Arabia, 2005; p. 164. [Google Scholar]
- Al-Gaadi, K.A.; Hassaballa, A.A.; Madugundu, R.; Tola, E.; Fulleros, R.B. Prediction of potato high-yield zones of a field: Bivariate frequency ratio technique. Curr. Sci. 2020, 119, 992–1000. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, S.L.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirement. In FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of United Nations-FAO: Rome, Italy, 1998; Available online: http://www.fao.org/docrep/X0490E/X0490E00.htm (accessed on 9 December 2021).
- Al-Gaadi, K.A.; Hassaballa, A.A.; Tola, E.; Kayad, A.G.; Madugundu, R.; Alblewi, B.; Assiri, F. Prediction of potato crop yield using precision agriculture techniques. PLoS ONE 2016, 11, e0162219. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R. A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig. Drain. Syst. 2005, 19, 251–268. [Google Scholar] [CrossRef]
- Johnson, L.F.; Cahn, M.; Martin, F.; Melton, F.; Benzen, S.; Farrara, B.; Post, K. Evapotranspiration-based irrigation scheduling of head lettuce and broccoli. HortScience 2016, 51, 935–940. [Google Scholar] [CrossRef] [Green Version]
- Aldaya, M.M.; Llamas, M.R. Water Footprint analysis for the Guadiana river basin. In Value of Water Research Report Series No. 35; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2008; Available online: http://waterfootprint.org/media/downloads/Report35-WaterFootprint-Guadiana_1.pdf (accessed on 26 March 2020).
- Scarpare, F.V.; Hernandes, T.A.D.; Ruiz-Correa, S.T.; Picoli, M.C.A.; Scanlon, B.R.; Chagas, M.F.; Cardoso, T.D.F. Sugarcane land use and water resources assessment in the expansion area in Brazil. J. Clean. Prod. 2016, 133, 1318–1327. [Google Scholar] [CrossRef]
- Borsato, E.; Martello, M.; Marinello, F.; Bortolini, L. Environmental and economic sustainability assessment for two different sprinkler and A drip irrigation systems: A case study on maize cropping. Agriculture 2019, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- de Sousa Junior, M.F.; Fonseca, L.M.G.; Bendini, H.d.N. Estimation of Water Use in Center Pivot Irrigation Using Evapotranspiration Time Series Derived by Landsat: A Study Case in a Southeastern Region of the Brazilian Savanna. Remote Sens. 2022, 14, 5929. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Shirbeny, M.A.; El-Ansary, M.Y.; Awad, M.A. Estimation of crop coefficient variation through satellite VNIR spectral data. Irrig. Drain. 2017, 34, 829–842. [Google Scholar] [CrossRef]
- Jayanthi, H.; Neale, C.M.U.; Wright, J.L. Development and validation of canopy reflectance-based crop coefficient for potato. Agric. Water Manag. 2007, 88, 235–246. [Google Scholar] [CrossRef]
- Kumar, U.; Sahoo, B.; Chatterjee, C.; Raghuwanshi, S.S. Evaluation of simplified energy balance index (S-SEBI) method for estimating actual evapotranspiration in Kangsabati Reservoir command using Landsat 8 imagery. J. Indian Soc. Remote Sens. 2020, 48, 1421–1432. [Google Scholar] [CrossRef]
- Multsch, S.; Al-Rumaikhani, Y.; Frede, H.; Breuer, L. A site-specific agricultural water requirement and footprint estimator (SPARE: WATER 1.0). Geosci. Model Dev. 2013, 6, 1043–1059. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef]
- Abdel-Hameed, A.M.; Abuarab, M.E.S.; Al-Ansari, N.; Mehawed, H.S.; Kassem, M.A.; He, H.; Gyasi-Agyei, Y.; Mokhtar, A. Winter Potato Water Footprint Response to Climate Change in Egypt. Atmosphere 2022, 13, 1052. [Google Scholar] [CrossRef]
- Nyambo, P.; Wakindiki, I.I.C. Water footprint of growing vegetables in selected smallholder irrigation schemes in South Africa. Water SA 2015, 41, 571–578. [Google Scholar] [CrossRef] [Green Version]
Season | Irrigation Method | Field ID | Area (ha) | Time | Planting Date | Harvest Date |
---|---|---|---|---|---|---|
Autumn | Center Pivot | 72 N | 29 | Early Planting | 5 September | 29 December |
Autumn | DRIP | 82 F | 56 | Early Planting | 17 September | 10 January |
Winter | DRIP | 45 F | 25 | On-season | 19 October | 13 March |
Winter | Dragon Line | 60 F | 40 | On-season | 16 November | 18 Mar |
Winter | Center Pivot | 49 N | 25 | Late Planting | 23 December | 24 April |
Winter | DRIP | 30 N | 21 | Late Planting | 20 December | 21 April |
Sensor | Spectral Bands | Temporal Resolution | Spatial Resolution | Start Date | End Date |
---|---|---|---|---|---|
Landsat-8/9 | Optical Bands 5, 6, 8 | 16 days | 30 m | 14 September 2020 | 19 April 2021 |
Landsat-8/9 | TIR Bands 11 and 12 | 16 days | 30 m | ||
Sentinel 2 | Optical Bands 5, 7, 8A and 11 | 5 days | 10–20 m | 7 September 2020 | 15 April 2021 |
Month | Evapotranspiration (ETo) | |||||
---|---|---|---|---|---|---|
Early | On-Season | Late | ||||
mm | mm d−1 | mm | mm d−1 | mm | mm d−1 | |
September | 245.8 | 12.3 | ||||
October | 332.4 | 11.1 | 133.0 | 11.1 | ||
November | 211.0 | 7.0 | 154.7 | 5.2 | ||
December | 180.5 | 5.8 | 207.2 | 6.7 | 60.2 | 6.7 |
January | 71.5 | 7.2 | 221.8 | 7.2 | 150.2 | 4.8 |
February | 268.2 | 9.6 | 268.2 | 9.6 | ||
March | 190.5 | 10.6 | 328.1 | 10.6 | ||
April | 221.9 | 9.6 | ||||
Sum/Mean | 1041.2 | 8.7 | 1175.4 | 8.2 | 1028.7 | 7.7 |
Potato Yield | Early | On-Season | Late | |||
---|---|---|---|---|---|---|
Total | Commercial | Total | Commercial | Total | Commercial | |
Actual (YF) | 55.4 | 39.6 | 54.1 | 45.2 | 51.1 | 34.4 |
Sentinel-2 (YP) | 64.4 | 43.8 | 58.8 | 49.3 | 58.2 | 38.4 |
R2 | 0.65 | 0.67 | 0.71 | 0.69 | 0.63 | 0.67 |
RMSE (%) | 8.0 | 4.6 | 5.9 | 6.0 | 5.4 | 5.2 |
MBE (%) | 16.2 | 10.6 | 8.7 | 9.1 | 13.9 | 11.7 |
Season | Commercial Yield (CP) | Crop Water Use (mmha−1) | Water Footprint (WF, m3t−1) | |||||
---|---|---|---|---|---|---|---|---|
YF (tha−1) | YP (tha−1) | Field Based (WA) | Predicted (SSEB) | Field Based | Predicted (SSEB) | |||
WF | WFG | WFB | WFG+B | |||||
Early | 39.6 | 48.6 | 1814 | 2308 | 458 | 14 | 461 | 475 |
On-season | 45.2 | 46.9 | 1546 | 1675 | 342 | 14 | 343 | 357 |
Late | 34.4 | 41.1 | 1237 | 1494 | 360 | 12 | 352 | 364 |
Mean | 39.7 | 45.5 | 1532 | 1826 | 387 | 13 | 385 | 382 |
# | Early | On-Season | Late | ||||||
---|---|---|---|---|---|---|---|---|---|
Yield | CWU (ETa) | WF | Yield | CWU (ETa) | WF | Yield | CWU (ETa) | WF | |
Samples | 256 | 256 | 256 | 168 | 168 | 168 | 424 | 424 | 424 |
R2 | 0.67 | 0.78 | 0.74 | 0.69 | 0.81 | 0.76 | 0.67 | 0.80 | 0.75 |
RMSE (%) | 3.44 | 3.89 | 4.61 | 3.71 | 4.21 | 4.34 | 3.58 | 4.05 | 4.48 |
MBE (%) | 10.9 | 13.7 | 19.6 | 12.6 | 15.9 | 17.9 | 9.2 | 10.8 | 12.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; El-Hendawy, S.; Marey, S.A. Mapping of Evapotranspiration and Determination of the Water Footprint of a Potato Crop Grown in Hyper-Arid Regions in Saudi Arabia. Sustainability 2023, 15, 12201. https://doi.org/10.3390/su151612201
Madugundu R, Al-Gaadi KA, Tola E, El-Hendawy S, Marey SA. Mapping of Evapotranspiration and Determination of the Water Footprint of a Potato Crop Grown in Hyper-Arid Regions in Saudi Arabia. Sustainability. 2023; 15(16):12201. https://doi.org/10.3390/su151612201
Chicago/Turabian StyleMadugundu, Rangaswamy, Khalid A. Al-Gaadi, ElKamil Tola, Salah El-Hendawy, and Samy A. Marey. 2023. "Mapping of Evapotranspiration and Determination of the Water Footprint of a Potato Crop Grown in Hyper-Arid Regions in Saudi Arabia" Sustainability 15, no. 16: 12201. https://doi.org/10.3390/su151612201
APA StyleMadugundu, R., Al-Gaadi, K. A., Tola, E., El-Hendawy, S., & Marey, S. A. (2023). Mapping of Evapotranspiration and Determination of the Water Footprint of a Potato Crop Grown in Hyper-Arid Regions in Saudi Arabia. Sustainability, 15(16), 12201. https://doi.org/10.3390/su151612201