The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fatima, F.; Du, H.; Kommalapati, R.R. Treatment of poultry slaughterhouse wastewater with membrane technologies: A review. Water 2021, 13, 1905. [Google Scholar] [CrossRef]
- Pelić, M. Ispitivanje Uticaja Korišćenja Otpadnih Voda iz Klanice na Zdravlje i Proizvodnju Mesa Šarana (Cyprinus carpio) Bezbednog za Ishranu Ljudi. Doctoral Dissertation, University of Belgrade, Belgrade, Serbia, 2020. [Google Scholar]
- Barash, H.; Plavnik, I.; Moav, R. Integration of duck and fish farming: Experimental results. Aquaculture 1982, 27, 129–140. [Google Scholar] [CrossRef]
- Ahmed, N.; Zander, K.K.; Garnett, S.T. Socioeconomic aspects of rice-fish farming in Bangladesh: Opportunities, challenges and production efficiency. Aust. J. Agric. Resour. Econ. 2011, 55, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Li, X. Review of rice–fish-farming systems in China—One of the globally important ingenious agricultural heritage systems (GIAHS). Aquaculture 2006, 260, 106–113. [Google Scholar] [CrossRef]
- Ahmed, N.; Bunting, S.W.; Rahman, S.; Garforth, C.J. Community-based climate change adaptation strategies for integrated prawn–fish–rice farming in B angladesh to promote social–ecological resilience. Rev. Aquac. 2014, 6, 20–35. [Google Scholar] [CrossRef]
- Xu, Q.; Dai, L.; Gao, P.; Dou, Z. The environmental, nutritional, and economic benefits of rice-aquaculture animal coculture in China. Energy 2022, 249, 123723. [Google Scholar] [CrossRef]
- Voigt, G.; Howard, B.J.; Beresford, N.A. Transfer of radionuclides in animal production systems. Radioact. Environ. 2007, 10, 71–96. [Google Scholar]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. Bioremediat. Biotechnol. 2020, 27, 1–26. [Google Scholar]
- Kozłowska, B.; Walencik, A.; Dorda, J.; Przylibski, T.A. Uranium, radium and 40K isotopes in bottled mineral waters from Outer Carpathians, Poland. Radiat. Meas. 2007, 42, 1380–1386. [Google Scholar] [CrossRef]
- Kaniu, M.I.; Angeyo, K.H.; Darby, I.G. Occurrence and multivariate exploratory analysis of the natural radioactivity anomaly in the south coastal region of Kenya. Radiat. Phys. Chem. 2018, 146, 34–41. [Google Scholar] [CrossRef]
- Rääf, C.L.; Falk, R.; Thornberg, C.; Zakaria, M.; Mattsson, S. Human metabolism of radiocaesium revisited. Radiat. Prot. Dosim. 2004, 112, 395–404. [Google Scholar] [CrossRef]
- Curini, M.; Rosati, O.; Borio, R.; Saetta, D.M.S.; Cicioni, R.; Forini, N.; Rongoni, A.; Dipilato, A.C. Evaluation of 137Cs activity in plant drugs and in some phytoderivatives from Chernobyl accident up to present (1986–1994). Pharmacol. Res. 1995, 32, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Adel, A.; Uosif, M.; El-Taher, A. Natural radioactivity and dose assessment for phosphate rock from Wadi El-Mashash and El-Mahamid Mines, Egypt. J. Environ. Radioact. 2005, 84, 65–78. [Google Scholar]
- Bolca, M.; Sac, M.; Cokuysal, B.; Karali, T.; Ekdal, E. Radioactivity in soils and various foodstuffs from the Gediz river Basin of Turkey. Radiat. Meas. 2007, 42, 263–270. [Google Scholar] [CrossRef]
- Gordana, V.; Svetlana, G.; Branislava, M.; Milan, O.; Branko, P. Radi-oecological investigation of food of animal origin in Belgrade environment. Jpn. J. Vet. Res. 2009, 57, 169–173. [Google Scholar]
- Pelić, M.; Živkov Baloš, M.; Popov, N.; Vidaković Knežević, S.; Novakov, N.; Puvača, N.; Ljubojević Pelić, D. Quality of carp meat (Cyprinus carpio) produced in a pond with the addition of purified wastewater originating from the slaughterhouse. Arch. Vet. Med. 2021, 14, 25–36. [Google Scholar] [CrossRef]
- Pelić, M.; Gavrilović, A.; Jug-Dujaković, J.; Marinović, Z.; Mirilović, M.; Đorđević, V.; Ljubojević Pelić, D. Microbiological characteristics of fish reared in purified wastewater from an abattoir. Vet. Glas. 2022, 76, 147. [Google Scholar] [CrossRef]
- Pelić, M.; Kartalović, B.; Đorđević, V.; Puvača, N.; Teodorović, V.; Ćirković, M.; Ljubojević Pelić, D. Occurrence and dietary exposure of organochlorine pesticides in common carp obtained from integrated production systems. Food Addit. Contam. 2019, 12, 303–309. [Google Scholar] [CrossRef]
- Pelić, M.; Kartalović, B.; Živkov-Baloš, M.; Mirilović, M.; Đorđević, M.; Teodorović, V.; Ćirković, M.; Ljubojević-Pelić, D. Health Risks associated with residual pesticide levels in fish reared in purified wastewater from slaughterhouse. J. Hell. Vet. Med. Soc. 2020, 71, 1991–1996. [Google Scholar] [CrossRef] [Green Version]
- Pelić, M.; Puvača, N.; Kartalović, B.; Živkov Baloš, M.; Novakov, N.; Ljubojević Pelić, D. Antibiotics and Sulfonamides in Water, Sediment and Fish in an Integrated Production System. J. Agron. Technol. Eng. Manag. 2023, 6, 851–856. [Google Scholar] [CrossRef]
- Pelić, M.; Novakov, N.; Djordjevic, V.; Ljubojevic Pelic, D. Health status and microbial quality of common carp reared in a pond fed with treated wastewater from a slaughterhouse. Environ. Earth Sci. 2021, 854, 012070. [Google Scholar]
- Measurement of Radionuclides in Food and the Environment; Technical Report Series No. 295; International Atomic Energy Agency: Vienna, Austria, 1989.
- Serbian Regulation. Regulation on Limits of Radionuclides Content in Drinking Water, Foodstuffs, Feeding Stuffs, Medicines, General Use Products, Construction Materials and Other Goods That Are Put on Market; Official Gazette of the Republic of Serbia: Belgrade, Serbia, 2018; Volume 36.
- ICRP. Age-dependent doses to the Members of the public from intake of radionuclides—Part 5 compilation of ingestion and inhalation coefficients. In ICRP Publication 72. Annual International Commission on Radiological Protection; ICRP: Ottawa, ON, Canada, 1995; Volume 26. [Google Scholar]
- ICRP. Compendium of dose coefficients based on ICRP publication 60. In ICRP Publication 119. Annual ICRP 41 (Suppl. l); ICRP: Ottawa, ON, Canada, 2012. [Google Scholar]
- Mihaljev, Ž.; Sladić, S.; Kartalović, B.; Novakov, N.; Živkov Baloš, M.; Jakšić, S.; Ćirković, M. Ratio of population of fish to radioactive residues. In Proceedings and Abstract Book; Serbian Veterinary Society: Zlatibor, Serbia, 2017; p. 254. [Google Scholar]
- Janković-Mandić, L.J.; Dragović, R.M.; Đorđević, M.M.; Đolić, M.B.; Dragović, S.D.; Bačić, G.G. Spatial variability of 137 Cs in the soil of Belgrade region (Serbia). Chem. Ind. 2014, 68, 449–455. [Google Scholar] [CrossRef]
- Derin, M.T.; Vijayagopal, P.; Venkatraman, B.; Chaubey, R.C.; Gopinathan, A. Radionuclides and radiation indices of high background radiation area in Chavara-Neendakara placer deposits (Kerala, India). PLoS ONE 2012, 7, e50468. [Google Scholar] [CrossRef]
- Damla, N.; Cevik, U.; Kobya, A.I.; Celik, A.; Celik, N.; Van Grieken, R. Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey. J. Hazard. Mater. 2010, 176, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Shetty, P.K.; Narayana, Y. Variation of radiation level and radionuclide enrichment in high background area. J. Environ. Radioact. 2010, 101, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Janković, M.M.; Todorović, D.J.; Sarap, N.B.; Krneta Nikolić, J.D.; Rajačić, M.M.; Pantelić, G.K. Natural radionuclides in waste water discharged from coal-fired power plants in Serbia. Water Sci. Technol. 2016, 74, 2634–2638. [Google Scholar] [CrossRef]
- Mashiatullah, A.; Maryam, B.; Asma, M.; Yaqoob, N.; Robab, U.E.; Ghaffar, A. Activity concentration and dose estimation of 226Ra, 232Th, 40K and 137Cs in drinking water of selected areas of Punjab, Pakistan. Water Sci. Technol. Water Supply 2016, 16, 253–262. [Google Scholar] [CrossRef]
- Janković, M.M.; Todorović, D.J.; Todorović, N.A.; Nikolov, J. Natural radionuclides in drinking waters in Serbia. Appl. Radiat. Isot. 2012, 70, 2703–2710. [Google Scholar] [CrossRef]
- Karamanis, D.; Ioannides, K.; Stamoulis, K. Environmental assessment of natural radionuclides and heavy metals in waters discharged from a lignite-fired power plant. Fuel 2009, 88, 2046–2052. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011.
- Ahmed, M.E.; Al-Haddad, A.; Mydlarczyk, A.; Aba, A. The Presence and Distribution of Radioactivity and Radionuclides in Kuwait Wastewater Treatment Plants. Arab. J. Sci. Eng. 2019, 44, 8779–8786. [Google Scholar] [CrossRef]
- Krstić, D.; Nikezić, D.; Stevanović, N.; Jelić, M. Vertical profile of 137Cs in soil. Appl. Radiat. Isot. 2004, 61, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes; UN Publications: Vienna, Austria, 2020. [Google Scholar]
- Radomirović, M.; Stanković, S.; Mandić, M.; Jović, M.; Mandić, L.J.; Dragović, S.; Onjia, A. Spatial distribution, radiological risk assessment and positive matrix factorization of gamma-emitting radionuclides in the sediment of the Boka Kotorska Bay. Mar. Pollut. Bull. 2021, 169, 112491. [Google Scholar] [CrossRef]
- Milenkovic, B.; Stajic, J.M.; Stojic, N.; Pucarevic, M.; Strbac, S. Evaluation of heavy metals and radionuclides in fish and seafood products. Chemosphere 2019, 229, 324–331. [Google Scholar] [CrossRef]
- Vitorović, G.; Mitrović, B.; Andrić, V.; Stojanović, M.D.; Lazarević-Macanović, M.; Vitorović, D. Radioactive contamination of food chain around coal mine and coal-fired power stations. Nucl. Technol. Radiat. Prot. 2012, 27, 388–391. [Google Scholar] [CrossRef]
- Ademola, J.A.; Ehiedu, S.I. Radiological analysis of 40 K, 226 Ra and 232 Th in fish, crustacean and sediment samples from fresh and marine water in oil ex-ploration area of Ondo State, Nigeria. Afr. J. Biomed. Res. 2010, 13, 99–106. [Google Scholar]
- Antović, I.; Antović, N.M. Concentration factors of 226Ra in the mullet species Liza aurata. In Proceedings of the 26. Symposium of Radiation Protection Society of Serbia and Montenegro, Tara, Serbia, 12–14 October 2011; pp. 137–140. [Google Scholar]
- Sarap, N.B.; Janković, M.M.; Todorović, D.J.; Nikolić, J.D.; Kovačević, M.S. Environmental radioactivity in southern Serbia at locations where depleted ura-nium was used. Arh. Hig. Rada Toksikol. 2014, 65, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Janković, M.; Todorović, D.; Savanović, M. Radioactivity measurements in soil samples collected in the Republic of Srpska. Radiat. Meas. 2008, 43, 1448–1452. [Google Scholar] [CrossRef]
- Babić, D.; Skoko, B.; Franić, Z.; Senčar, J.; Šoštarić, M.; Petroci, L.; Avdić, M.; Kovačić, M.; Branica, G.; Petrinec, B.; et al. Baseline radioecological data for the soil and selected bioindicator organisms in the temperate forest of Plitvice Lakes National Park, Croatia. Environ. Sci. Pollut. Res. 2020, 27, 21040–21056. [Google Scholar] [CrossRef]
- Dimovska, S.; Stafilov, T.; Šajn, R.; Frontasyeva, M. Distribution of some natural and man-made radionuclides in soil from the city of Veles (Republic of Macedonia) and its environs. Radiat. Prot. Dosim. 2009, 138, 144–157. [Google Scholar] [CrossRef]
- Karahan, G. Risk assessment of baseline outdoor gamma dose rate levels study of natural radiation sources in Bursa, Turkey. Radiat. Prot. Dosim. 2010, 142, 324–331. [Google Scholar] [CrossRef]
- Kılıç, Ö.; Belivermiş, M.; Topçuoğlu, S.; Cotuk, Y.; Coşkun, M.; Çayır, A.; Küçer, R. Radioactivity concentrations and dose assessment in surface soil samples from east and south of Marmara region, Turkey. Radiat. Prot. Dosim. 2007, 128, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 2009, 100, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Orabi, H.; Al-Shareaif, A.; El Galefi, M. Gamma-ray measurements of naturally occurring radioactive sample from Alkharje City. J. Radioanal. Nucl. Chem. 2006, 269, 99–102. [Google Scholar] [CrossRef]
- Tufail, M.; Akhtar, N.; Waqas, M. Measurement of terrestrial radiation for assessment of gamma dose from cultivated and barren saline soils of Faisalabad in Pakistan. Radiat. Meas. 2006, 41, 443–451. [Google Scholar] [CrossRef]
- Higgy, R.H.; Pimpl, M. Natural and man-made radioactivity in soils and plants around the research reactor of Inshass. Appl. Radiat. Isot. 1998, 49, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Kannan, V.; Rajan, M.P.; Iyengar, M.A.R.; Ramesh, R. Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Appl. Radiat. Isot. 2002, 57, 109–119. [Google Scholar] [CrossRef]
- Kumar, A.; Singhal, R.K.; Preetha, J.; Rupali, K.; Joshi, V.M.; Hegde, A.G.; Kushwaha, H.S. A non-parametric statistical analysis in the measurement of outdoor gamma exposure to the residents around Trombay. Radiat. Prot. Dosim. 2007, 124, 378–384. [Google Scholar] [CrossRef]
- Lu, J.G.; Huang, Y.; Li, F.; Wang, L.; Li, S.; Hsia, Y. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. J. Environ. Radioact. 2006, 90, 89–99. [Google Scholar] [CrossRef]
- Grubačević, M.; Gucić, M.; Mijić, R.; Glamočić, B.; Mladenović, S.; Tanasković, M.; Popović, A. Quality of the Environment of the City of Belgrade in 2012; GZJZ: Beograd, Serbia, 2013. (In Serbian) [Google Scholar]
- Council Regulation (EC) No 733/2008 of 15 July 2008 on the Conditions Governing Imports of Agricultural Products Originating in Third Countries following the Accident at the Chernobyl Nuclear Power Station (Official Journal No: L 201, date: 30.7.2008). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008R0733 (accessed on 8 May 2023).
- ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. In ICRP Publication 103. Annual International Commission on Radiological Protection 37 (2–4); ICRP: Ottawa, ON, Canada, 2007. [Google Scholar]
- Regulation on Radioactivity Monitoring; Official Gazette of the Republic of Serbia: Belgrade, Serbia, 2011; Volume 97.
Tested Radionuclide | Type of Sample | Target Value (IAEA) [Bq/kg] | Measured Value [Bq/kg] | Precision [%] | Accuracy [%] |
---|---|---|---|---|---|
137Cs | Water (spiked) | 64.4 ± 0.9 | 66.2 ± 2.9 | 3.95 | 102.8 |
Fish | 18.9 ± 1 | 19.3 ± 1.4 | 4.08 | 102.1 | |
22Na | Water (spiked) | 76.8 ± 1.2 | 72.7 ± 3.6 | 3.34 | 94.7 |
40K | Fish | 369 ± 18 | 376 ± 25 | 3.98 | 101.9 |
Soil | 374 ± 15 | 406 ± 27 | 4.11 | 108.6 | |
226Ra | Soil | 31.2 ± 1.5 | 29.1 ± 2.3 | 4.80 | 93.3 |
232Th | Soil | 33.6 ± 3.3 | 31.6 ± 1.6 | 4.66 | 94.0 |
Sample | Water from Purifier | Water After Purifier | Water from Pre-Fishery Pond | Water from Fishpond 1 | Water from Channel for Irrigation | |
---|---|---|---|---|---|---|
Cs-137 (Bq/L) | spring | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
autumn | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | |
p-value | / | / | / | / | / | |
K-40 (Bq/L) | spring | 10.0 ± 2.0 | 8.4 ± 0.5 | 11.3 ± 1.5 | 15.6 ± 1.2 | 10.6 ± 1.1 |
autumn | 10.4 ± 1.4 | 8.5 ± 1.1 | 14.4 ± 2.8 | 15.1 ± 2.1 | 11.1 ± 0.5 | |
p-value | p > 0.05 | p > 0.05 | p < 0.05 | p > 0.05 | p > 0.05 | |
Ra-226 (Bq/L) | spring | 1.92 ± 0.30 | 1.16 ± 0.22 | 1.02 ± 0.11 | 2.76 ± 0.49 | 2.50 ± 0.61 |
autumn | 1.98 ± 0.21 | 1.26 ± 0.45 | 1.21 ± 0.34 | 2.58 ± 0.35 | 2. 33 ± 0.41 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Th-232 (Bq/L) | spring | <3 | <3 | <3 | <3 | <3 |
autumn | <3 | <3 | <3 | <3 | <3 | |
p-value | / | / | / | / | / | |
Na-22 (Bq/L) | spring | 0.87 ± 0.11 | 0.60 ± 0.10 | 1.12 ± 0.31 | 1.34 ± 0.40 | 0.95 ± 0.36 |
autumn | 0.94 ± 0.32 | 0.54 ± 0.21 | 1.24 ± 0.29 | 1.22 ± 0.33 | 1.11 ± 0.21 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
Sample | Sediment in Vicinity of Treatment Plant | Sediment from Pre-Fishery Pond | Sediment from Fishpond 1 | Sediment from Fishpond 2 | Sediment from Channel for Irigation | |
---|---|---|---|---|---|---|
Cs-137 (Bq/kg) | spring | <0.5 | 2.84 ± 0.17 | 4.81 ± 0.14 | 7.66 ± 0.23 | 4.76 ± 0.13 |
autumn | 1.24 ± 0.21 | 2.91 ± 0.32 | 6.26 ± 0.24 | 7.26 ± 0.32 | 4.22 ± 0.22 | |
p-value | p < 0.05 | p > 0.05 | p < 0.05 | p > 0.05 | p > 0.05 | |
K-40 (Bq/kg) | spring | 457 ± 55 | 544 ± 10.0 | 514 ± 9.0 | 629 ± 11.0 | 440 ± 8.0 |
autumn | 441 ± 64 | 558 ± 44.2 | 549 ± 18.1 | 569 ± 26.3 | 462 ± 9.2 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p < 0.05 | p > 0.05 | |
Ra-226 (Bq7 kg) | spring | 31.2 ± 4.8 | 25.0 ± 0.7 | 44.4 ± 5.2 | 42.3 ± 5.1 | 20.2 ± 1.1 |
autumn | 32.8 ± 4.2 | 29.2 ± 4.4 | 46.5 ± 6.2 | 40.2 ± 5.5 | 20.8 ± 1.8 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Th-232 (Bq/kg) | spring | 11.3 ± 0.4 | 10.7 ± 0.4 | 12.6 ± 0.71 | 15.0 ± 2.9 | 10.9 ± 0.22 |
autumn | 11.8 ± 1.2 | 10.9 ± 1.2 | 11.9 ± 0.88 | 14.5 ± 3.2 | 11.5 ± 0.56 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Na-22 (Bq/kg) | spring | 2.06 ± 0.14 | 1.99 ± 0.14 | 2.04 ± 0.18 | 1.92 ± 0.20 | 1.08 ± 0.30 |
autumn | 2.01 ± 0.26 | 1.89 ± 0.12 | 1.95 ± 0.22 | 1.98 ± 0.32 | 1.22 ± 0.50 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
Radionucleides | Spring | Autumn | p-Value |
---|---|---|---|
Cs-137 (Bq/kg) | <0.5 | <0.5 | / |
K-40 (Bq/kg) | 144.75 ± 16.32 | 138 ± 17.11 | p > 0.05 |
Ra-226 (Bq/kg) | 25.72 ± 18.60 | 22.75 ± 8.15 | p > 0.05 |
Th-232 (Bq/kg) | <3 | <3 | / |
Na-22 (Bq7 kg) | <2 | 2.74 ± 0.32 | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelić, M.; Mihaljev, Ž.; Živkov Baloš, M.; Popov, N.; Gavrilović, A.; Jug-Dujaković, J.; Ljubojević Pelić, D. The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse. Sustainability 2023, 15, 12352. https://doi.org/10.3390/su151612352
Pelić M, Mihaljev Ž, Živkov Baloš M, Popov N, Gavrilović A, Jug-Dujaković J, Ljubojević Pelić D. The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse. Sustainability. 2023; 15(16):12352. https://doi.org/10.3390/su151612352
Chicago/Turabian StylePelić, Miloš, Željko Mihaljev, Milica Živkov Baloš, Nenad Popov, Ana Gavrilović, Jurica Jug-Dujaković, and Dragana Ljubojević Pelić. 2023. "The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse" Sustainability 15, no. 16: 12352. https://doi.org/10.3390/su151612352
APA StylePelić, M., Mihaljev, Ž., Živkov Baloš, M., Popov, N., Gavrilović, A., Jug-Dujaković, J., & Ljubojević Pelić, D. (2023). The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse. Sustainability, 15(16), 12352. https://doi.org/10.3390/su151612352