Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review
Abstract
:1. Introduction
2. Defining End-of-Life and How It Impacts the Wind Turbine Lifespan
3. Estimating the Current and Future Amount of Wind Blade Waste
3.1. The Time Horizon for Which End-of-Life Predictions Are Made
3.2. The Mass Conversion Factors
Site | Lifetime (Years) | Geographical Scale | Method (t/MW) | Future Installations Pleas (Y/N) | Installation Data Years | Target Year | Citation |
---|---|---|---|---|---|---|---|
Onshore | 20 | Global, Germany | 10 | Y | Up to 2006 | 2034 | [42] |
Both | 20 | Global | 10 | Y | 2009–2013 | 2050 | [38] |
Both | 20 | Sweden | N | 2034 | [45] | ||
Onshore | 20 | US | 11.3 (9.57 composite material only | Y | 2000–2015 | 2055 | [46] |
Both | 18, 20, 25 | Global, US, Europe, China | 8.43–13.41 | Y | 1998–2014 | 2050 | [18] |
Both | 20 | Global | 10 | Y | 2001–2016 | 2050 | [41] |
20 | Europe | 12–15 | N | 2030 | [44] | ||
Both | 25 | Global, Europe, Asia, US | 10 | Y | 2010–2025 | 2050 | [49] |
Onshore | 20 | US | 12.5 | Y | 2050 | [47] | |
Both | 16–18 | Europe | 12.42 | Y | 1995–2017 | 2050 | [39] |
Onshore | 20 | Ireland | 10.33 | N | 1992–2019 | 2039 | [37] |
Both | 15, 20, 25, 30 | US | 8.43–13.41 | Y | 1981–2020 | 2050 | [40] |
Both | 20 | Germany | N | 1995–2020 | 2040 | [48] |
3.3. Geographical Locations
3.4. Knowledge of How Many Blades Have Actually Been Decommissioned
4. Recycling Technologies and Potential Material That Can Be ‘Reused’
5. Methods and Data
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Accelerating Wind Turbine Blade Circularity; WindEurope: Brussels, Belgium, 2020; Available online: https://windeurope.org/wp-content/uploads/files/about-wind/reports/WindEurope-Accelerating-wind-turbine-blade-circularity.pdf (accessed on 24 June 2023).
- Fingersh, L.; Hand, M.; Laxson, A. Wind Turbine Design Cost and Scaling Model: Report No. NREL/TP-500-40566; National Renewable Energy Laboratory (NREL), US Department of Energy: Golden, CO, USA, 2006. [Google Scholar]
- Nagle, A.J.; Delaney, E.L.; Bank, L.C.; Leahy, P.G. A Comparative Life Cycle Assessment between landfilling and Co-Processing of waste from decommissioned Irish wind turbine blades. J. Clean. Prod. 2020, 277, 123321. [Google Scholar] [CrossRef]
- Geiger, R.; Hannan, Y.; Travia, W.; Naboni, R.; Schlette, C. Composite wind turbine blade recycling—Value creation through Industry 4.0 to enable circularity in repurposing of composites. IOP Conf. Ser. Mater. Sci. Eng. 2020, 942, 012016. [Google Scholar] [CrossRef]
- Coughlin, D.; Stevenson, P.; Zimmerman, L.B. Wind Turbine Blade Recycling: Preliminary Assessment; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2020; p. 3002017711. Available online: https://www.epri.com/research/products/000000003002017711 (accessed on 3 January 2023).
- Ortegon, K.; Nies, L.F.; Sutherland, J.W. Preparing for end of service life of wind turbines. J. Clean. Prod. 2013, 39, 191–199. [Google Scholar] [CrossRef]
- Sakellariou, N. Current and potential decommissioning scenarios for end-of-life composite wind blades. Energy Syst. 2018, 9, 981–1023. [Google Scholar] [CrossRef]
- Martin, C. Wind Turbine Blades Can’t Be Recycled, so They’re Piling up in Landfill. Bloomberg. Available online: https://www.bloomberg.com/news/features/2020-02-05/wind-turbine-blades-can-t-be-recycled-so-they-re-piling-up-in-landfills (accessed on 27 December 2022).
- Diez-Cañamero, B.; Manuel, F.; Mendoza, J. Circular economy performance and carbon footprint of wind turbine blade waste management alternatives. Waste Manag. 2023, 164, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K. Recycling wind turbine blades. Renew. Energy Focus 2009, 9, 70–73. [Google Scholar] [CrossRef]
- Beauson, J.; Laurent, A.; Rudolph, D.P.; Pagh Jensen, J. The complex end-of-life of wind turbine blades: A review of the European context. Renew. Sustain. Energy Rev. 2022, 155, 111847. [Google Scholar] [CrossRef]
- Bank, L.C.; Delaney, E.L.; McKinley, J.M.; Gentry, R.; Leahy, P.G. Defining the landscape for wind blades at the end of service life. Compos. World 2021, 7, 6–9. [Google Scholar]
- Ziegler, L.; Gonzalez, E.; Rubert, T.; Smolka, U.; Melero, J.J. Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark, and the UK. Renew. Sustain. Energy Rev. 2018, 82, 1261–1271. [Google Scholar] [CrossRef]
- Siemens Gamesa Renewable Energy (SGRE). Life Extension; SGRE: Zamudio, Spain, 2018; Available online: https://www.siemensgamesa.com/products-and-services/service-wind/life-extension (accessed on 24 June 2023).
- General Electric (GE). TÜV NORD and GE Renewable Energy Announce first Design Conformity Statement for Wind Turbines with a Lifetime of 40 Years|GE News. Available online: https://www.ge.com/news/press-releases/t%C3%BCv-nord-and-ge-renewable-energy-announce-first-design-conformity-statement-wind (accessed on 19 August 2022).
- Rosemeier, M.; Saathoff, M. Assessment of a rotor blade extension retrofit as a supplement to the lifetime extension of wind turbines. Wind Energy Sci. 2020, 5, 897–909. [Google Scholar] [CrossRef]
- Windemer, R. Considering time in land use planning: An assessment of end-of-life decision making for commercially managed onshore wind schemes. Land Use Policy 2019, 87, 104024. [Google Scholar] [CrossRef]
- Liu, P.; Barlow, C.Y. Wind turbine blade waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhou, S.; Jing, X.; Peng, Y.; Wu, H.; Kwok, N. Damage detection techniques for wind turbine blades: A review. Mech. Syst. Signal Process. 2020, 141, 106445. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Thomsen, K. Costs of repair of wind turbine blades: Influence of technology aspects. Wind. Energy 2020, 23, 2247–2255. [Google Scholar] [CrossRef]
- Cinar, S. Sustainable reverse logistic network design for end-of-life use-case study. RAIRO Oper. Res. 2021, 55, S503–S521. [Google Scholar] [CrossRef]
- Beauson, J.; Brøndsted, P. Wind turbine blades: An end of life perspective. In MARE-WINT: New Materials and Reliability in Offshore Wind Turbine Technology; Ostachowicz, W., McGugan, M., Schröder-Hinrichs, J.-U., Luczak, M., Eds.; Springer International Publishing: Berlin, Germany, 2016; pp. 421–432. [Google Scholar] [CrossRef]
- Albers, H.; Germer, F.; Wulf, K. Status Quo and Current Challenges in Recycling and Dismantling Wind Turbines. In Breaking & Sifting—Expert Exchange on the End-of-Life of Wind Turbines; Bönisch, B., Ed.; Onshore Wind Energy Agency: Berlin, Germany, 2018; pp. 3–7. Available online: https://www.fachagentur-windenergie.de/fileadmin/files/Veroeffentlichungen/FA-Wind_Breaking_Sifting_englisch.pdf (accessed on 24 June 2023).
- Tota-Maharaj, K.; McMahon, A. Resource and waste quantification scenarios for wind turbine decommissioning in the United Kingdom. Waste Dispos. Sustain. Energy 2020, 3, 117–144. [Google Scholar] [CrossRef]
- Sommer, V.; Stockschläder, J.; Walther, G. Estimation of glass and carbon fiber reinforced plastic waste from end-of-life rotor blades of wind power plants within the European Union. Waste Manag. 2020, 115, 83–94. [Google Scholar] [CrossRef]
- Martínez, E.; Latorre-Biel, J.I.; Jiménez, E.; Sanz, F.; Blanco, J. Life cycle assessment of a wind farm repowering process. Renew. Sustain. Energy Rev. 2018, 93, 260–271. [Google Scholar] [CrossRef]
- Staffell, I.; Green, R. How does wind farm performance decline with age? Renew. Energy 2014, 66, 775–786. [Google Scholar] [CrossRef]
- Lantz, E.; Leventhal, M.; Baring-Gould, I. Wind Power Project Repowering: Financial Feasibility, Decision Drivers, and Supply Chain Effects (NREL/TP-6A20-60535); National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar] [CrossRef]
- Himpler, S.; Madlener, R. Repowering of Wind Turbines: Economics and Optimal Timing; FCN Working Paper No. 19/2011; Elsevier: Rochester, MN, USA, 2012. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Campíñez-Romero, S.; Pérez-Molina, C.; Mur-Pérez, F. Repowering: An actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs. Renew. Sustain. Energy Rev. 2015, 41, 319–337. [Google Scholar] [CrossRef]
- de Bona, J.C.; Ferreira, J.C.E.; Ordoñez Duran, J.F. Analysis of scenarios for repowering wind farms in Brazil. Renew. Sustain. Energy Rev. 2021, 135, 110197. [Google Scholar] [CrossRef]
- Lacal-Arántegui, R.; Uihlein, A.; Yusta, J.M. Technology effects in repowering wind turbines. Wind. Energy 2020, 23, 660–675. [Google Scholar] [CrossRef]
- Simpson, K. Most Used Wind Turbine Blades End up in Landfills. Colorado Is Part of the Push to Make the Industry Greener. The Colorado Sun. Available online: https://coloradosun.com/2020/02/26/wind-turbine-blades-colorado-landfills/ (accessed on 24 June 2023).
- Stripling, W. Wind Energy’s Dirty Word: Decommissioning. Tex. Law. Rev. 2016, 95, 123–151. [Google Scholar]
- Conaway, J. Be Aggressive with Wind Energy: Blow Away the Decommissioning Fears. Oil Gas Nat. Resour. Energy J. 2017, 2, 621. [Google Scholar]
- Madlener, R.; Glensk, B.; Gläsel, L. Optimal Timing of Onshore Wind Repowering in Germany under Policy Regime Changes: A Real Options Analysis. Energies 2019, 12, 4703. [Google Scholar] [CrossRef]
- Delaney, E.L.; McKinley, J.M.; Megarry, W.; Graham, C.; Leahy, P.G.; Bank, L.C.; Gentry, R. An integrated geospatial approach for repurposing wind turbine blades. Resour. Conserv. Recycl. 2021, 170, 105601. [Google Scholar] [CrossRef]
- Andersen, P.D.; Bonou, A.; Beauson, J.; Brøndsted, P. Recycling of wind turbines, In DTU International Energy Report 2014: Wind Energy—Drivers and Barriers for Higher Shares of Wind in the Global Power Generation Mix; Larsen, H.H., Sønderberg Petersen, L., Eds.; Technical University of Denmark (DTU): Lyngby, Denmark, 2014; pp. 91–97. [Google Scholar]
- Lichtenegger, G.; Rentizelas, A.A.; Trivyza, N.; Siegl, S. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050. Waste Manag. 2020, 106, 120–131. [Google Scholar] [CrossRef]
- Cooperman, A.; Eberle, A.; Lantz, E. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options. Resour. Conserv. Recycl. 2021, 168, 105439. [Google Scholar] [CrossRef]
- Bank, L.; Arias, F.; Yazdanbakhsh, A.; Gentry, T.; Al-Haddad, T.; Chen, J.-F.; Morrow, R. Concepts for Reusing Composite Materials from Decommissioned Wind Turbine Blades in Affordable Housing. Recycling 2018, 3, 3. [Google Scholar] [CrossRef]
- Albers, H.; Greiner, S.; Seifert, H.; Kuehne, U. Recycling of wind turbine rotor blades. Fact or fiction? DEWI-Magazin 2009, 34, 32–41. [Google Scholar]
- GWEC (Global Wind Energy Council). Global Wind Energy Outlook 2016. Available online: https://gwec.net/wp-content/uploads/2020/12/GWEO_2016.pdf (accessed on 14 August 2023).
- Jensen, J.P.; Skelton, K. Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renew. Sustain. Energy Rev. 2018, 97, 165–176. [Google Scholar] [CrossRef]
- Andersen, N.; Eriksson, O.; Hillman, K.; Wallhagen, M. Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level. Energies 2016, 9, 999. [Google Scholar] [CrossRef]
- Arias, F. Assessment of Present/Future Decommissioned Wind Blade Fiber-Reinforced Composite Material in the United States. Masters Thesis, City College of New York, New York, NY, USA, 2016. [Google Scholar]
- End-of-Life Disposal and Recycling Options for Wind Turbine Blades; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2018; Available online: https://www.epri.com/research/products/000000003002012240 (accessed on 24 June 2023).
- Volk, R.; Stallkamp, C.; Herbst, M.; Schultmann, F. Regional rotor blade waste quantification in Germany until 2040. Resour. Conserv. Recycl. 2021, 172, 105667. [Google Scholar] [CrossRef]
- Lefeuvre, A.; Garnier, S.; Jacquemin, L.; Pillain, B.; Sonnemann, G. Anticipating in-use stocks of carbon fibre reinforced polymers and related waste generated by the wind power sector until 2050. Resour. Conserv. Recycl. 2019, 141, 30–39. [Google Scholar] [CrossRef]
- Correia, J.R.; Almeida, N.M.; Figueira, J.R. Recycling of FRP composites: Reusing fine GFRP waste in concrete mixtures. J. Clean. Prod. 2011, 19, 1745–1753. [Google Scholar] [CrossRef]
- End-of-Life Management of Fibre Reinforced Plastic Vessels: Alternatives to at Sea Disposal; Office for the London Convention/Protocol and Ocean Affairs, International Maritime Organization (IMO): London, UK, 2019; Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Fibre%20Reinforced%20Plastics%20final%20report.pdf (accessed on 24 June 2023).
- Job, S.; Leeke, G.; Mativenga, P.T.; Oliveux, G.; Pickering, S.; Shuaib, N.A. Composite Recycling: Where Are We Now? Composites UK: Berkhamsted, UK, 2016. [Google Scholar]
- Shafiee, M.; Adedipe, T. Offshore wind decommissioning: An assessment of the risk of operations. Int. J. Sustain. Energy 2022, 41, 1057–1083. [Google Scholar] [CrossRef]
- Ruane, K.; Zhang, Z.; Nagle, A.; Huynh, A.; Alshannaq, A.; McDonald, A.; Leahy, P.; Soutsos, M.; McKinley, J.; Gentry, R.; et al. Material and Structural Characterization of a Wind Turbine Blade for Use as a Bridge Girder. Transp. Res. Rec. J. Transp. Res. Board 2022, 2676, 354–362. [Google Scholar] [CrossRef]
- Ruane, K.; Soutsos, M.; Huynh, A.; Zhang, Z.; Nagle, A.; McDonald, K.; Gentry, T.R.; Leahy, P.; Bank, L.C. Construction and Cost Analysis of BladeBridges Made from Decommissioned FRP Wind Turbine Blades. Sustainability 2023, 15, 3366. [Google Scholar] [CrossRef]
- Alshannaq, A.A.; Bank, L.C.; Scott, D.W.; Gentry, R. A Decommissioned Wind Blade as a Second-Life Construction Material for a Transmission Pole. Constr. Mater. 2021, 1, 95–104. [Google Scholar] [CrossRef]
- Blade Made Playgrounds; Superuse Studios: Rotterdam, The Netherlands, 2009; Available online: https://www.superuse-studios.com/projectplus/blade-made/ (accessed on 24 June 2023).
- Eilers, H. Wind Turbine Wing Gets New Life at the Port of Aalborg. Energy Supply. Available online: https://www.energy-supply.dk/article/view/699757/vindmollevinge_far_nyt_liv_pa_aalborg_havn (accessed on 20 July 2022).
- Bank, L.; McDonald, A.; Kiernicki, C.; Bermek, M.; Zhang, Z.; Poff, A.; Kakkad, S.; Lau, E.; Arias, F.; Gentry, R. Re-Wind Design Catalog 2nd Edition Fall/Autumn 2022; Re-Wind Network: Atlanta, GA, USA; Cork, Ireland; Belfast, UK, 2022. [Google Scholar]
- Nagle, A.J.; Mullally, G.; Leahy, P.G.; Dunphy, N.P. Life cycle assessment of the use of decommissioned wind blades in second life applications. J. Environ. Manag. 2022, 302, 113994. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Bank, L.C. A Critical Review of Research on Reuse of Mechanically Recycled FRP Production and End-of-Life Waste for Construction. Polymers 2014, 6, 1810–1826. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Bank, L.C.; Rieder, K.A.; Tian, Y.; Chen, C. Concrete with discrete slender elements from mechanically recycled wind turbine blades. Resour. Conserv. Recycl. 2018, 128, 11–21. [Google Scholar] [CrossRef]
- Beauson, J.; Madsen, B.; Toncelli, C.; Brøndsted, P.; Bech, J.I. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 290–299. [Google Scholar] [CrossRef]
- How Wind Is Going Circular: Blade Recycling; ETIPWind: Brussels, Belgium, 2019; Available online: https://etipwind.eu/files/reports/ETIPWind-How-wind-is-going-circular-blade-recycling.pdf (accessed on 24 June 2023).
- Discussion Paper on Managing Composite Blade Waste; WindEurope: Brussels, Belgium, 2017; Available online: https://windeurope.org/wp-content/uploads/files/policy/topics/sustainability/Discussion-paper-on-blade-waste-treatment-20170418.pdf (accessed on 24 June 2023).
- Decommissioning of Onshore Wind Turbines; WindEurope: Brussels, Belgium, 2020; Available online: https://windeurope.org/intelligence-platform/product/decommissioning-of-onshore-wind-turbines/ (accessed on 24 June 2023).
- Joint Contribution of CEMBUREAU and EuCIA to the JRC “Recycling” Definition Project with Regard to Co-Processing of Composite End of Life/Use Material Specific to the Cement Industry; Position Paper; European Composites Industry Association (EuCIA): Brussels, Belgium, 2022; Available online: https://eucia.eu/wp-content/uploads/2023/05/Position-paper-co-processing-of-composites-CEMbureau-EuCIA-for-JRC-study-final.pdf (accessed on 24 June 2023).
- WindEurope CEO Visits German Cement Plant That’s Running on Blade Waste. WindEurope, Brussells, Belguim. Available online: https://windeurope.org/newsroom/news/windeurope-ceo-visits-german-cement-plant-thats-running-on-blade-waste/ (accessed on 8 March 2023).
- Gray, B. What to Do with Old Wind Turbine Blades? Mississippi River Facility Recycles Them. Available online: https://www.stltoday.com/business/local/what-to-do-with-old-wind-turbine-blades-mississippi-river-facility-recycles-them/article_e0342ece-185e-5de9-a405-a6b34c0c2aca.html (accessed on 8 March 2023).
- Job, S. Recycling glass fibre reinforced composites—History and progress. Reinf. Plast. 2013, 57, 19–23. [Google Scholar] [CrossRef]
- Qureshi, J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022, 14, 16855. [Google Scholar] [CrossRef]
- Fitzgerald, A.; Forsyth, M.; Job, S.; Keen, N. The Sustainability of Fibre-Reinforced Polymer Composites: A Good Practice Guide; Composites UK: Berkhamsted, UK, 2022. [Google Scholar]
- DecomBlades. Results & Resources. Available online: https://decomblades.dk/ (accessed on 3 March 2023).
- Wood Mackenzie. Global Wind Power Asset Ownership Report and Database 2023 (Q1). Available online: https://www.woodmac.com/reports/power-markets-global-wind-power-asset-ownership-report-and-database-2019-355658/ (accessed on 3 March 2023).
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011. [Google Scholar] [CrossRef]
- GWEC (Global Wind Energy Council). Global Wind Report Annual Market Update 2013; GWEC: Belgium, Brussels, 2014. [Google Scholar]
- Jamieson, P. Innovation in Wind Turbine Design, 1st ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- Sacchi, R.; Besseau, R.; Pérez-López, P.; Blanc, I. Exploring technologically, temporally and geographically-sensitive life cycle inventories for wind turbines: A parameterized model for Denmark. Renew. Energy 2019, 132, 1238–1250. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 21 July 2023).
Decommissioning Year | Lifespan | Known to Have Been Decommissioned by 2022 | |||
---|---|---|---|---|---|
15 | 20 | 25 | 30 | ||
Global (Inc. EU, US and China) | |||||
Up to 2022 | 310,907 | 167,793 | 80,340 | 42,939 | 55,765 |
2027 | 660,222 | 310,907 | 167,793 | 80,340 | |
2032 | 975,656 | 660,222 | 310,907 | 167,793 | |
2037 | 1,285,668 | 975,656 | 660,222 | 310,907 | |
2042 | 1,285,668 | 975,656 | 660,222 | ||
2047 | 1,285,668 | 975,656 | |||
2052 | 1,285,668 | ||||
EU (inc. UK) | |||||
Up to 2022 | 166,370 | 98,055 | 35,616 | 13,311 | 23,755 |
2027 | 241,518 | 166,370 | 98,055 | 35,616 | |
2032 | 297,247 | 241,518 | 166,370 | 98,055 | |
2037 | 332,371 | 297,247 | 241,518 | 166,370 | |
2042 | 332,371 | 297,247 | 241,518 | ||
2047 | 332,371 | 297,247 | |||
2052 | 332,371 | ||||
US | |||||
Up to 2022 | 67,293 | 43,533 | 31,671 | 29,352 | 29,637 |
2027 | 139,824 | 67,293 | 43,533 | 31,671 | |
2032 | 182,340 | 139,824 | 67,293 | 43,533 | |
2037 | 246,755 | 182,340 | 139,824 | 67,293 | |
2042 | 246,755 | 182,340 | 139,824 | ||
2047 | 246,755 | 182,340 | |||
2052 | 246,755 | ||||
China | |||||
Up to 2022 | 18,441 | 2484 | 990 | 93 | 1062 |
2027 | 160,890 | 18,441 | 2484 | 990 | |
2032 | 295,383 | 160,890 | 18,441 | 2484 | |
2037 | 442,918 | 295,383 | 160,890 | 18,441 | |
2042 | 442,918 | 295,383 | 160,890 | ||
2047 | 442,918 | 295,383 | |||
2052 | 442,918 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delaney, E.L.; Leahy, P.G.; McKinley, J.M.; Gentry, T.R.; Nagle, A.J.; Elberling, J.; Bank, L.C. Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review. Sustainability 2023, 15, 12557. https://doi.org/10.3390/su151612557
Delaney EL, Leahy PG, McKinley JM, Gentry TR, Nagle AJ, Elberling J, Bank LC. Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review. Sustainability. 2023; 15(16):12557. https://doi.org/10.3390/su151612557
Chicago/Turabian StyleDelaney, Emma L., Paul G. Leahy, Jennifer M. McKinley, T. Russell Gentry, Angela J. Nagle, Jeffrey Elberling, and Lawrence C. Bank. 2023. "Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review" Sustainability 15, no. 16: 12557. https://doi.org/10.3390/su151612557
APA StyleDelaney, E. L., Leahy, P. G., McKinley, J. M., Gentry, T. R., Nagle, A. J., Elberling, J., & Bank, L. C. (2023). Sustainability Implications of Current Approaches to End-of-Life of Wind Turbine Blades—A Review. Sustainability, 15(16), 12557. https://doi.org/10.3390/su151612557