Trend Forecasting of Public Concern about Low Carbon Based on Comprehensive Baidu Index and Its Relationship with CO2 Emissions: The Case of China
Abstract
:1. Introduction
- This research constructs CBI to reflect the level of public concern about low carbon in Chinese society. CBI can reduce the influence of anomalous keyword search data to better reflect the public concern about low carbon and its changing trend;
- This research explores the relationship between public concern and emissions. By applying the decomposition and reconstruction method, the changes in public concern and emissions are compared at different frequencies. It is found that public concern about low carbon affects emissions. This will help the government to develop dynamic low-carbon activities and optimize publicity strategies;
- This research applies the GMM-CEEMD-SGIA-LSTM hybrid model to construct and forecast the CBI. The prediction results indicate a fluctuating upward trend of public concern about low carbon in the future, which helps the government to better implement low-carbon policies and effectively address the challenges of climate change.
2. Data and Methods
2.1. Data Preparation and Processing
2.1.1. CO2 Emission Data
2.1.2. Keywords Search Data
2.1.3. Construct Comprehensive Baidu Index (CBI)
2.2. Data Analysis Methods
2.2.1. Gaussian Mixture Model (GMM)
2.2.2. Complementary Ensemble Empirical Mode Decomposition (CEEMD)
2.2.3. Synthetic Grey Incidence Analysis (SGIA)
2.2.4. Spearman Correlation Coefficient
2.2.5. Long Short-Term Memory (LSTM)
2.2.6. Evaluation Metrics
2.3. GMM-CEEMD-SGIA-LSTM Hybrid Model Analysis Process
3. Data Analysis and Results
3.1. Data Description
3.2. Related Analysis of CBI
3.3. Analysis of Decomposed CBI
3.4. Analysis of Reconstructed CBI and Emissions
3.5. Comparison of Forecasting Precision
3.6. Future Trends of CBI
4. Discussions
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raper, S.C.; Braithwaite, R.J. Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 2006, 439, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Pielke, R.A., Jr.; Landsea, C.; Mayfield, M.; Layer, J.; Pasch, R. Hurricanes and global warming. Bull. Am. Meteorol. Soc. 2005, 86, 1571–1576. [Google Scholar] [CrossRef]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009, 14, 30–36. [Google Scholar] [CrossRef]
- Alfonso, S.; Gesto, M.; Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish Biol. 2021, 98, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Bi, P.; Saniotis, A. Global warming and Australian public health: Reasons to be concerned. Aust. Health Rev. 2009, 33, 611–617. [Google Scholar] [CrossRef]
- Calleja-Agius, J.; England, K.; Calleja, N. The effect of global warming on mortality. Early Hum. Dev. 2021, 155, 105222. [Google Scholar] [CrossRef]
- Khasnis, A.A.; Nettleman, M.D. Global warming and infectious disease. Arch. Med. Res. 2005, 36, 689–696. [Google Scholar] [CrossRef]
- Yoro, K.O.; Daramola, M.O. emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture; Woodhead Publishing: Sawston, UK, 2020; pp. 3–28. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780128196571000013 (accessed on 10 June 2023).
- Lagerkvist, J. The rise of online public opinion in the People’s Republic of China. China Int. J. 2005, 3, 119–130. [Google Scholar] [CrossRef]
- Luo, Y. The Internet and agenda setting in China: The influence of online public opinion on media coverage and government policy. Int. J. Commun. 2014, 8, 24. [Google Scholar]
- Milfont, T.L. The interplay between knowledge, perceived efficacy, and concern about global warming and climate change: A one-year longitudinal study. Risk Anal. Int. J. 2012, 32, 1003–1020. [Google Scholar] [CrossRef]
- Bergquist, P.; Warshaw, C. Does Glob. Warm. Increase Public Concern About Clim. Change? J. Politics 2019, 81, 686–691. [Google Scholar] [CrossRef]
- Ballew, M.T.; Marlon, J.R.; Goldberg, M.H.; Maibach, E.W.; Rosenthal, S.A.; Aiken, E.; Leiserowitz, A. Changing minds about global warming: Vicarious experience predicts self-reported opinion change in the USA. Clim. Chang. 2022, 173, 19. [Google Scholar] [CrossRef]
- Liu, X.; Hao, F.; Portney, K.; Liu, Y. Examining public concern about global warming and climate change in China. China Q. 2020, 242, 460–486. [Google Scholar] [CrossRef]
- Sandvik, H. Public concern over global warming correlates negatively with national wealth. Clim. Chang. 2008, 90, 333–341. [Google Scholar] [CrossRef]
- B Bakaki, Z.; Böhmelt, T.; Ward, H. The triangular relationship between public concern for environmental issues, policy output, and media attention. Environ. Politics 2020, 29, 1157–1177. [Google Scholar] [CrossRef]
- Kvaløy, B.; Finseraas, H.; Listhaug, O. The public’s concern for global warming: A cross-national study of 47 countries. J. Peace Res. 2012, 49, 11–22. [Google Scholar] [CrossRef]
- Yang, W.; Cai, B.; Wang, J.; Cao, L.; Li, D. Study on the focus of low-carbon cities in China. Chin. Popul. Resour. Environ. 2017, 27, 22–27. [Google Scholar]
- Geels, F.W. The impact of the financial-economic crisis on sustainability transitions: Financial investment, governance and public discourse. Environ. Innov. Soc. Transit. 2013, 6, 67–95. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, H.; Hu, Y.; Feng, S.; Chu, Y.; Wu, Y.; Lu, Y. Public’s health risk awareness on urban air pollution in Chinese megacities: The cases of Shanghai, Wuhan and Nanchang. Int. J. Environ. Res. Public Health 2016, 13, 845. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, M.; Yang, X.; Yuan, X. Public awareness and willingness to pay for tackling smog pollution in China: A case study. J. Clean. Prod. 2016, 112, 1627–1634. [Google Scholar] [CrossRef]
- Egondi, T.; Kyobutungi, C.; Ng, N.; Muindi, K.; Oti, S.; Van de Vijver, S.; Rocklöv, J. Community perceptions of air pollution and related health risks in Nairobi slums. Int. J. Environ. Res. Public Health 2013, 10, 4851–4868. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, G.; Li, X. Correlation between PM2.5 pollution and its public concern in China: Evidence from Baidu Index. J. Clean. Prod. 2021, 293, 126091. [Google Scholar] [CrossRef]
- Scheitle, C.P. Google’s insights for search: A note evaluating the use of search engine data in social research. Soc. Sci. Q. 2011, 92, 285–295. [Google Scholar] [CrossRef]
- Li, C.; Ma, X.; Fu, T.; Guan, S. Does public concern over haze pollution matter? Evidence from Beijing-Tianjin-Hebei region, China. Sci. Total Environ. 2021, 755, 142397. [Google Scholar] [CrossRef]
- Tu, L.; Chen, Y. An unequal adjacent grey forecasting air pollution urban model. Appl. Math. Model. 2021, 99, 260–275. [Google Scholar] [CrossRef]
- China Internet Network Information Center. The 51st Statistical Report on Internet Development in China. CNNIC, Beijing. 2023. Available online: https://www.cnnic.net.cn/n4/2023/0302/c199-10755.html (accessed on 10 June 2023).
- StatCounter. Web Traffic Analysis Report. StatCounter, Dublin. 2023. Available online: https://gs.statcounter.com. (accessed on 10 June 2023).
- Li, S.; Chen, T.; Wang, L.; Ming, C. Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index. Tour. Manag. 2018, 68, 116–126. [Google Scholar] [CrossRef]
- Fang, J.; Gozgor, G.; Lau, C.K.M.; Lu, Z. The impact of Baidu Index sentiment on the volatility of China’s stock markets. Financ. Res. Lett. 2020, 32, 101099. [Google Scholar] [CrossRef]
- Qiu, H.J.; Yuan, L.X.; Wu, Q.W.; Zhou, Y.Q.; Zheng, R.; Huang, X.K.; Yang, Q.T. Using the internet search data to investigate symptom characteristics of COVID-19: A big data study. World J. Otorhinolaryngol. Head Neck Surg. 2020, 6, S40–S48. [Google Scholar] [CrossRef]
- Liu, Z. China’s Carbon Emissions Report. 2016. Available online: https://dash.harvard.edu/handle/1/29916843 (accessed on 26 June 2023).
- Wu, Y.; Martens, P.; Krafft, T. Public awareness, lifestyle and low-carbon city transformation in China: A systematic literature review. Sustainability 2022, 14, 10121. [Google Scholar] [CrossRef]
- Etim, E.E.; Asuquo, J.E.; Gabriel, F.A. Public awareness of low-carbon economy in Nigeria: A case study of Akwa Ibom State. J. Appl. Sci. Environ. Manag. 2012, 16, 21–25. [Google Scholar]
- Reynolds, D.A. Gaussian mixture models. Encycl. Biom. 2012, 741, 659–663. [Google Scholar]
- Zheng, E.; Xue, C.; Chen, G.; Zhang, Y.; Zou, J. Unveiling urban marathon development characteristics and urban growth strategies in China: Insights from time series analysis of Baidu Search Index. PLoS ONE 2023, 18, e0287760. [Google Scholar] [CrossRef]
- Vrieze, S.I. Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 2012, 17, 228. [Google Scholar] [CrossRef] [PubMed]
- Moon, T.K. The expectation-maximization algorithm. IEEE Signal Process. Mag. 1996, 13, 47–60. [Google Scholar] [CrossRef]
- Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- Julong, D. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1987, 100, 441–471. [Google Scholar] [CrossRef]
- Yu, H.; Hutson, A.D. A robust Spearman correlation coefficient permutation test. Commun. Stat. Theory Methods 2022, 1–13. Available online: https://www.tandfonline.com/doi/full/10.1080/03610926.2022.2121144 (accessed on 10 June 2023). [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
ID | Keywords in Chinese | Keywords in English | ID | Keywords in Chinese | Keywords in English |
---|---|---|---|---|---|
K1 | 节能环保 | Energy saving and environmental protection | K44 | 碳排放交易 | Carbon trading |
K2 | 生态旅游 | Eco-tourism | K45 | 雾霾的危害 | Hazards of smog |
K3 | 清洁生产 | Clean manufacturing | K46 | 节能减排 | Energy conservation |
K4 | 碳中和 | Carbon neutral | K47 | 绿色出行 | Green travel |
K5 | 二氧化硫 | Sulfur dioxide | K48 | 大气污染 | Air pollution |
K6 | 太阳能 | Solar energy | K49 | 碳排放 | Carbon emission |
K7 | 温室效应 | Greenhouse effect | K50 | 节约能源 | Energy saving |
K8 | 雾霾 | Smog | K51 | 绿色设计 | Green design |
K9 | 二氧化碳 | Carbon dioxide | K52 | 绿色经济 | Green economy |
K10 | 碳交易 | Carbon trading | K53 | 绿色消费 | Green consumption |
K11 | 绿色社区 | Green community | K54 | 生态环境保护 | Conservation of ecosystem |
K12 | 环保节能 | Energy saving | K55 | 气候变暖 | Global warming |
K13 | 温室气体排放 | Emission of greenhouse gases | K56 | 大气污染物 | Atmospheric pollutant |
K14 | 巴黎气候大会 | Paris climate conference | K57 | 垃圾污染 | Garbage pollution |
K15 | 哥本哈根会议 | Copenhagen conference | K58 | 南极条约 | Antarctic treaty |
K16 | 低碳建筑 | Low carbon building | K59 | 绿色金融 | Green finance |
K17 | 低碳城市 | Low carbon city | K60 | 低碳饮食 | Low carb diet |
K18 | 什么是低碳 | What is low carbon | K61 | 低碳贝贝 | Low carb baby |
K19 | 碳汇 | Carbon sink | K62 | ipcc | IPCC |
K20 | 新能源车 | New energy vehicle | K63 | 绿色生活 | Green Life |
K21 | 可再生能源 | Renewable energy | K64 | 节约型校园 | Saving campus |
K22 | 可持续发展 | Sustainable development | K65 | 环保照明 | Environmental lighting |
K23 | 新能源电池 | New energy battery | K66 | 熊猫标准 | Panda standard |
K24 | 循环经济 | Circular economy | K67 | 气候变暖的危害 | The dangers of global warming |
K25 | 京都议定书 | Kyoto protocol | K68 | 循环经济法 | Circular economy law |
K26 | 低碳生活 | Low carbon life | K69 | 低能耗 | Low energy consumption |
K27 | 大气污染防治法 | Air Pollution Prevention and Control Law | K70 | 低碳概念 | Low carbon concept |
K28 | 全球变暖 | Global warming | K71 | 低碳日 | Low carbon day |
K29 | 蒙特利尔议定书 | Montreal protocol | K72 | 低碳环保 | Low carbon environmental protection |
K30 | 绿色科技 | Green technology | K73 | 全球气候变暖 | Global warming |
K31 | 绿色壁垒 | Green barrier | K74 | 清洁能源 | Clean energy |
K32 | 绿色交通 | Green traffic | K75 | 低碳出行 | Low carbon travel |
K33 | 碳排放量 | Carbon emission | K76 | 碳基金 | Carbon fund |
K34 | 碳关税 | Carbon tariff | K77 | 气候变暖的原因 | Cause of warming |
K35 | 温室效应的危害 | The dangers of the greenhouse effect | K78 | 低碳技术 | Low carbon technology |
K36 | 大气污染防治行动计划 | Air Pollution Prevention and Control Action Plan | K79 | 低碳产业 | Low carbon industry |
K37 | 减排 | Emission reduction | K80 | 什么是碳交易 | What is carbon trading |
K38 | 节能宣传周 | Energy conservation publicity week | K81 | ccer | CCER |
K39 | 雾霾的形成 | The formation of smog | K82 | 碳足迹 | Carbon footprint |
K40 | 废气排放 | Exhaust emissions | K83 | 冰川融化 | Glacial melting |
K41 | 全球气候变暖的影响 | Effects of global warming | K84 | 低碳 | Low carbon |
K42 | 全球气候变暖的危害 | The dangers of global warming | K85 | 低碳经济 | Low-carbon economy |
K43 | 京都协议 | Kyoto Agreement | K86 | 海平面上升 | Sea-level rise |
Cluster | IDs | Weight | Cluster | IDs | Weight |
---|---|---|---|---|---|
Cluster 1 | K1, K2, K3 | 0.03488 | Cluster 23 | K46 | 0.01163 |
Cluster 2 | K4 | 0.01163 | Cluster 24 | K47, K48 | 0.02325 |
Cluster 3 | K5 | 0.01163 | Cluster 25 | K49 | 0.01163 |
Cluster 4 | K6 | 0.01163 | Cluster 26 | K50, K51, K52, K53, K54, K55, K56, K57, K58 | 0.10465 |
Cluster 5 | K7 | 0.01163 | Cluster 27 | K59 | 0.01163 |
Cluster 6 | K8 | 0.01163 | Cluster 28 | K60 | 0.01163 |
Cluster 7 | K9 | 0.01163 | Cluster 29 | K61 | 0.01163 |
Cluster 8 | K10 | 0.01163 | Cluster 30 | K62 | 0.01163 |
Cluster 9 | K11, K12, K13, K14, K15, K16, K17, K18 | 0.09302 | Cluster 31 | K63 | 0.01163 |
Cluster 10 | K19 | 0.01163 | Cluster 32 | K64, K65, K66, K67, K68, K69, K70 | 0.08139 |
Cluster 11 | K20 | 0.01163 | Cluster 33 | K71 | 0.01163 |
Cluster 12 | K21 | 0.01163 | Cluster 34 | K72 | 0.01163 |
Cluster 13 | K22 | 0.01163 | Cluster 35 | K73 | 0.01163 |
Cluster 14 | K23, K24, K25 | 0.03488 | Cluster 36 | K74 | 0.01163 |
Cluster 15 | K26 | 0.01163 | Cluster 37 | K75 | 0.01163 |
Cluster 16 | K27 | 0.01163 | Cluster 38 | K76, K77, K78, K79, K80 | 0.08814 |
Cluster 17 | K28, | 0.01163 | Cluster 39 | K81 | 0.01163 |
Cluster 18 | K29, K30, K31, K32, K33, K34, K35, K36, K37 | 0.10465 | Cluster 40 | K82 | 0.01163 |
Cluster 19 | K38 | 0.01163 | Cluster 41 | K83 | 0.01163 |
Cluster 20 | K39, K40. K41, K42, K43, | 0.05814 | Cluster 42 | K84 | 0.01163 |
Cluster 21 | K44 | 0.01163 | Cluster 43 | K85 | 0.01163 |
Cluster 22 | K45 | 0.01163 | Cluster 44 | K86 | 0.01163 |
IMFs | High Frequency | Middle Frequency | Low Frequency | Trend | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | Residual | |||
CBI | IMF1 | 1 | |||||||||
IMF2 | 0.82 | 1 | |||||||||
IMF3 | 0.75 | 0.78 | 1 | ||||||||
IMF4 | 0.73 | 0.72 | 0.75 | 1 | |||||||
IMF5 | 0.51 | 0.54 | 0.69 | 0.5 | 1 | ||||||
IMF6 | 0.88 | 0.78 | 0.74 | 0.74 | 0.51 | 1 | |||||
IMF7 | 0.62 | 0.63 | 0.69 | 0.63 | 0.57 | 0.62 | 1 | ||||
IMF8 | 0.74 | 0.73 | 0.74 | 0.86 | 0.5 | 0.74 | 0.63 | 1 | |||
Variance contribution rate | 24.39% | 44.32% | 10.94% | 20.34% | |||||||
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | Residual | ||||
emission | IMF1 | 1 | |||||||||
IMF2 | 0.92 | 1 | |||||||||
IMF3 | 0.82 | 0.79 | 1 | ||||||||
IMF4 | 0.82 | 0.78 | 0.94 | 1 | |||||||
IMF5 | 0.81 | 0.8 | 0.97 | 0.96 | 1 | ||||||
IMF6 | 0.85 | 0.82 | 0.9 | 0.92 | 0.92 | 1 | |||||
IMF7 | 0.69 | 0.7 | 0.69 | 0.68 | 0.7 | 0.69 | 1 | ||||
Variance contribution rate | 2.03% | 84.83% | 0.84% | 12.28% |
Spearman Correlation Coefficient | |
---|---|
Lag time (days) | Coefficient |
1 | −0.146 |
… | … |
31 | −0.4981 |
… | … |
66 | −0.0018 |
67 | 0.0220 |
… | … |
93 | 0.5096 |
… | … |
109 | 0.5797 |
… | … |
120 | 0.5249 |
Spearman Correlation Coefficient | ||||
---|---|---|---|---|
Emissions-LF | CBI-LF | Emissions-Trend | CBI-Trend | |
emissions-LF | 1.000 | |||
CBI-LF | 0.715 ** | 1.000 | ||
emissions-Trend | 1.000 | |||
CBI-Trend | 1.000 ** | 1.000 |
Model | Error | |||
---|---|---|---|---|
MAPE (%) | MSE | MAE | RMSE | |
SVR | 8.78 | 8880.83 | 73.79 | 94.24 |
CEEMD-SGIA-SVR | 8.47 | 8991.86 | 73.71 | 94.83 |
RF | 8.95 | 9383.91 | 74.83 | 96.87 |
CEEMD-SGIA-RF | 8.02 | 7997.61 | 67.89 | 89.43 |
RNN | 7.16 | 6454.66 | 62.60 | 80.34 |
CEEMD-SGIA-RNN | 4.37 | 2350.66 | 37.84 | 48.48 |
LSTM | 6.73 | 5177.54 | 56.74 | 71.96 |
CEEMD-SGIA-LSTM | 3.78 | 1903.30 | 32.38 | 43.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Chen, R.; Ba, X.; Zhu, S. Trend Forecasting of Public Concern about Low Carbon Based on Comprehensive Baidu Index and Its Relationship with CO2 Emissions: The Case of China. Sustainability 2023, 15, 12973. https://doi.org/10.3390/su151712973
Dong W, Chen R, Ba X, Zhu S. Trend Forecasting of Public Concern about Low Carbon Based on Comprehensive Baidu Index and Its Relationship with CO2 Emissions: The Case of China. Sustainability. 2023; 15(17):12973. https://doi.org/10.3390/su151712973
Chicago/Turabian StyleDong, Wenshuo, Renhua Chen, Xuelin Ba, and Suling Zhu. 2023. "Trend Forecasting of Public Concern about Low Carbon Based on Comprehensive Baidu Index and Its Relationship with CO2 Emissions: The Case of China" Sustainability 15, no. 17: 12973. https://doi.org/10.3390/su151712973
APA StyleDong, W., Chen, R., Ba, X., & Zhu, S. (2023). Trend Forecasting of Public Concern about Low Carbon Based on Comprehensive Baidu Index and Its Relationship with CO2 Emissions: The Case of China. Sustainability, 15(17), 12973. https://doi.org/10.3390/su151712973