Removal of Per- and Polyfluoroalkyl Substances by Adsorption on Innovative Adsorbent Materials
Abstract
:1. Introduction
2. Methods: Analysis of Literature
- Virgin adsorbent materials
- ◦
- Granular activated carbons (GAC) and powdered activated carbons (PAC);
- ◦
- Functional clay;
- ◦
- Metal–organic adsorbents;
- ◦
- Functionalized organic polymers
- Biochar
- ◦
- Biochar from agricultural or food residues;
- ◦
- Biochar from sewage sludge of WWTPs.
Mechanism of PFAS Removal
3. Properties of the Different Adsorbent Materials for PFAS Removal
3.1. Virgin Adsorbent Materials
3.1.1. Conventional Adsorbent Materials: Activated Carbons, GAC, and PAC
3.1.2. Functional Clays
3.1.3. Metal–Organic and Metal—Inorganic Adsorbents
3.1.4. Functionalized Organic Polymers
Macrocategory | Type of Adsorbent Materials | Type of Treated Water | Operating Condition | Adsorption Capacity | Publication |
---|---|---|---|---|---|
Adsorbent materials, GAC, and PACS | GAC and PAC + ozone | Synthetic solution | Batch, 22 families of PFAS tested, initial concentration of 840 ng /L, pH 3–12 | \ | [41] |
R-GAC | Wastewater | Column tests–Semi Batch, PFOS, PFOA, PFBS, PFBA tested, initial concentration of 0.032 mmol/L, pH 2–8 | 0.35 nmol/g | [42] | |
PAC | Synthetic solution | Batch, PFOA tested, initial conditions: 0.5 μM PFOA, pH 1.0–13.0 | \ | [43] | |
PAC + and ion exchange resins + polymeric adsorbents | Synthetic solution | Column tests–Semi Batch, PFOS tested, concentration varying at 1–1000 mg/L | \ | [44] | |
Functional clays | Ionic-liquid-modified natural clay | Synthetic solution | Batch, PFOA and PFOS tested, initial concentration of PFOA or PFOS was 1 mg/L, pH 5 | \ | [45] |
Activated clays | Refinery waters | Batch, PFOS tested, initial concentration in the range 5–300 mg/L, pH 7.8 | 163 mg/g | [46] | |
Polymer clay functionalized | Urban rainwater | Column tests–Semi Batch, PFOA and PFOS tested, pH 7.5 | \ | [47] | |
Metal–organic and inorganic adsorbents | Bilayer hydroxides of magnesium (Mg) and aluminum (Al) | Synthetic solution | Batch, PFOA tested, initial concentration of PFOA was 20 mg/L, pH 2–12 | 244 mg/g manganese–667 mg/g aluminum | [48] |
Adsorbent materials coated with zinc oxide | Wastewater | Batch, PFOA PFOS PFBA PFBS tested, concentration of PFOA PFOS PFBA PFBS from 20 to 175 mg/L, pH 6.8 | 996 mg/g | [49] | |
Organic zirconium—metal structures | Synthetic solution | Batch, PFOA and PFOS tested, initial concentration of PFOA or PFOS was 100–1000 mg/L, pH 4 | 743–160 mg/g | [50] | |
PAC + Fe3O4 | Synthetic solution | Batch, PFOS PFOA PFHxS PFBS tested, initial concentration of PFOS PFOA PFHxS PFBS was 0.21–1.63 nmol/g, pH 3–10 | 1.63 nmol/g for PFOS and 0.21 nmol/g for PFBS | [51] | |
Organic metal structures | Synthetic solution | Batch, PFOS and PFBS tested, initial concentration of 500 mg/L, pH 3–5 | 1.24 and 6.23 nmol/g | [52] | |
Organic metal structures | Synthetic solution | Batch, PFOS PFOA tested, initial concentration of 40–1000 mg/L, pH 5.5 | 13.2 mg/g for PFOS and 2.5 mg/g for PFOA | [53] | |
Magnetic fluorinated adsorbent | Wastewater + synthetic solution | Batch, PFOS PFOA PFBA PFBS tested, initial concentration of 25 mg/L, pH 6 | \ | [54] | |
Basic aluminum oxide boehmite | Synthetic solution | Batch, PFOA tested, initial concentration 300 of mg/L, pH 3–10 | \ | [55] | |
Boron nitride | Synthetic solution | Batch, PFOS and PFDA tested, initial concentration of 50 mg/L, pH 6 | \ | [56] | |
Zeolite and sodium silicate | Wastewater + synthetic solution | Batch, 12 families of PFAS tested, initial concentrations of PFAS 92–130 ng/L | 13.6 and 18.3 mg/g | [57] | |
Organic metal structure | Synthetic solution | Batch, PFOS tested, initial concentration 50–500 mg/L, pH 2–7 | 833–939 mg/g | [58] | |
Functionalized organic polymers | Organic polymer functionalized with fluorine and amine | Synthetic solution | Batch, PFOA tested, initial concentration of 1 mg/L PFOA, pH 3 | 107 mg/g | [59] |
Polyacrylamide hydrogel | Wastewater | Batch, 16 families of PFAS tested, initial concentration of 1 mg/L, pH 6.5–7 | \ | [60] | |
Graphene oxide modified with polyethyleneimine | Synthetic solution | Batch, PFOA tested, initial concentration of 10–100 mg/L, pH 3–12 | 368.2 mg/g | [61] | |
Covalent organic polymer modified with tetraethylenepentamine | Synthetic solution | Batch, PFOS tested, initial concentration 1.15 mmol/L, pH 3–10 | 6.45 nmol/g | [62] |
- Perfluorooctane sulfonic acid (PFOS) 0.03 μg/L;
- Perfluorooctanoic acid (PFOA) 0.5 μg/L;
- Perfluorobutanoic acid (PFBA) 0.5 μg/L;
- Perfluorobutanesulfonic acid (PFBS) 0.5 μg/L;
- Sum of other PFAS 0.5 μg/L.
3.2. Adsorbent Materials from Pyrolysis of Biomass: Biochar
3.2.1. Biochar from Agricultural or Food Residues
3.2.2. Biochar from Biosolids of WWTP
Macrocategory | Type of Adsorbent Materials | Type of Treated Water | Operating Condition | Adsorption Capacity | Publication |
---|---|---|---|---|---|
Biochar from agricultural or food residues | Raw materials (leaves, wooden material, biosolids) added with FeCl3 | Synthetic solution | Batch, PFOA tested, initial concentration 2 mg/L, pH 3–7 | 39.5 and 469.5 μmol/g | [63] |
Spent coffee peat | Synthetic solution | Batch, PFOS tested, initial concentration of 240 mg/L, pH 7 | 43.4 mg/g | [64] | |
Coconut shells | Wastewater | Batch, PFOA tested, initial concentration 100 mg/L, pH 3.8 | 1269 μg/g | [65] | |
Wood | Synthetic solution | Batch, PFOA PFOS PFBA PFBS tested, initial concentration of 1 mg/L, pH 3–9 | 123.5 µmolPFOS/g and 86.2 µmolPFOA/g | [66] | |
Biochar and a mixture of biochar | Wastewater | Batch, PFOA and PFOS tested, initial concentration of 50–100 mg/L, pH 7–9 | \ | [67] | |
Hardwood and pine wood | Wastewater | Batch and in pilot scale, PFOA PFOS PFAA PFPnA PHxA PFBA PFHxA, initial concentration of 0.01–10,000 μg/L, pH 6.8–7.2 | \ | [30] | |
Coconut | Wastewater | Batch, PFOS tested, initial concentration of 44.1 mg/L, pH 8.6 | 267.2 mg/g | [68] | |
Biochar from sludge depuration | Sewage sludge | Synthetic solution | Batch, families of 9 PFAS, initial concentration of 50 μg/L | \ | [70] |
Wastewater treatment residues | Synthetic solution | Batch, PFOA PFOS tested, initial concentration of 1.0 mg/L, pH 3 | 0.232 mgPFOA/g–0.316 mgPFOS/g | [71] | |
Woodworking waste and woodworking waste mixed with red mud at refinery output | Synthetic solution | Batch, PFOS tested, initial concentration of 4.57–45.7 mg/L, pH 3.1 | \ | [72] |
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Hu, J.; Tanaka, S.; Fujii, S. Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in Sewage Treatment Plants. Water Res. 2009, 43, 2399–2408. [Google Scholar] [CrossRef] [PubMed]
- Houtz, E.F.; Sutton, R.; Park, J.-S.; Sedlak, M. Poly- and Perfluoroalkyl Substances in Wastewater: Significance of Unknown Precursors, Manufacturing Shifts, and Likely AFFF Impacts. Water Res. 2016, 95, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An Overview of the Uses of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- Exner, M.; Färber, H. Perfluorinated Surfactants in Surface and Drinking Waters (9 Pp). Environ. Sci. Pollut. Res. 2006, 13, 299–307. [Google Scholar] [CrossRef]
- Trinh, V.; Malloy, C.S.; Durkin, T.J.; Gadh, A.; Savagatrup, S. Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets. ACS Sens. 2022, 7, 1514–1523. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Kewalramani, J.A.; Li, B.; Marsh, R.W. A Review of the Applications, Environmental Release, and Remediation Technologies of Per- and Polyfluoroalkyl Substances. Int. J. Environ. Res. Public Health 2020, 17, 8117. [Google Scholar] [CrossRef]
- Stockholm Convention on Persistent Organic Pollutants. Report of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Fourth Meeting. In Proceedings of the Fourth Meeting of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants, Geneva, Switzerland, 4–8 May 2009. UNEP/POPS/COP.4/38. [Google Scholar]
- Pistocchi, A.; Andersen, H.R.; Bertanza, G.; Brander, A.; Choubert, J.M.; Cimbritz, M.; Drewes, J.E.; Koehler, C.; Krampe, J.; Launay, M.; et al. Treatment of Micropollutants in Wastewater: Balancing Effectiveness, Costs and Implications. Sci. Total Environ. 2022, 850, 157593. [Google Scholar] [CrossRef]
- Weber, R.; Watson, A.; Forter, M.; Oliaei, F. Review Article: Persistent Organic Pollutants and Landfills—A Review of Past Experiences and Future Challenges. Waste Manag. Res. J. Sustain. Circ. Econ. 2011, 29, 107–121. [Google Scholar] [CrossRef]
- Heads of EPAs of Australia and New Zealand. PFAS National Environmental Management Plan 2.0; EPA: Carlton, Australia, 2020. [Google Scholar]
- National Institute of Environmental Health Sciences of NIH. 2023. Available online: https://niehs.nih.gov/health/topics/agents/pfc (accessed on 25 January 2023).
- Kirk, M.; Smurthwaite, K.; Bräunig, J.; Trevenar, S.; D’Este, C.; Lucas, R.; Lal, A.; Korda, R.; Clements, A.; Mueller, J.; et al. The PFAS Health Study: Systematic Literature Review; Australian National University: Canberra, Australia, 2018. [Google Scholar]
- Krippner, J.; Falk, S.; Brunn, H.; Georgii, S.; Schubert, S.; Stahl, T. Accumulation Potentials of Perfluoroalkyl Carboxylic Acids (PFCAs) and Perfluoroalkyl Sulfonic Acids (PFSAs) in Maize (Zea mays). J. Agric. Food Chem. 2015, 63, 3646–3653. [Google Scholar] [CrossRef]
- McCarthy, C.; Kappleman, W.; DiGuiseppi, W. Ecological Considerations of Per- and Polyfluoroalkyl Substances (PFAS). Curr. Pollut. Reports 2017, 3, 289–301. [Google Scholar] [CrossRef]
- Garg, S.; Kumar, P.; Mishra, V.; Guijt, R.; Singh, P.; Dumée, L.F.; Sharma, R.S. A review on the sources, occurrence and health risks of per-/poly-fluoroalkyl substances (PFAS) arising from the manufacture and disposal of electric and electronic products. J. Water Process Eng. 2020, 38, 101683. [Google Scholar] [CrossRef]
- Lenka, S.P.; Kah, M.; Padhye, L.P. A Review of the Occurrence, Transformation, and Removal of Poly- and Perfluoroalkyl Substances (PFAS) in Wastewater Treatment Plants. Water Res. 2021, 199, 117187. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.A.; Mortazavian, S.; Gonzalez, D.J.; Bott, C.; Hooper, J.; Schaefer, C.E.; Dickenson, E.R.V. Poly- and Perfluoroalkyl Substances in Municipal Wastewater Treatment Plants in the United States: Seasonal Patterns and Meta-Analysis of Long-Term Trends and Average Concentrations. ACS EST Water 2022, 2, 690–700. [Google Scholar] [CrossRef]
- Coggan, T.L.; Moodie, D.; Kolobaric, A.; Szabo, D.; Shimeta, J.; Crosbie, N.D.; Lee, E.; Fernandes, M.; Clarke, B.O. An Investigation into Per- and Polyfluoroalkyl Substances (PFAS) in Nineteen Australian Wastewater Treatment Plants (WWTPs). Heliyon 2019, 5, e02316. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, C.; Han, J.; Yu, Y.; Zhang, P. PFOS and PFOA in Influents, Effluents, and Biosolids of Chinese Wastewater Treatment Plants and Effluent-Receiving Marine Environments. Environ. Pollut. 2012, 170, 26–31. [Google Scholar] [CrossRef]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-Wide Monitoring Survey on Emerging Polar Organic Contaminants in Wastewater Treatment Plant Effluents. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef]
- Munoz, G.; Budzinski, H.; Labadie, P. Influence of Environmental Factors on the Fate of Legacy and Emerging Per- and Polyfluoroalkyl Substances along the Salinity/Turbidity Gradient of a Macrotidal Estuary. Environ. Sci. Technol. 2017, 51, 12347–12357. [Google Scholar] [CrossRef]
- Phong Vo, H.N.; Ngo, H.H.; Guo, W.; Hong Nguyen, T.M.; Li, J.; Liang, H.; Deng, L.; Chen, Z.; Hang Nguyen, T.A. Poly-and Perfluoroalkyl Substances in Water and Wastewater: A Comprehensive Review from Sources to Remediation. J. Water Process Eng. 2020, 36, 101393. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.; Roccaro, P. Removal of poly-and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef]
- Sleep, J.A.; Miklavcic, S.J.; Juhasz, A.L. Modelling of PFAS-surface interactions: Effect of surface charge and solution ions. Chemosphere 2023, 319, 137910. [Google Scholar] [CrossRef]
- Ateia, M.; Maroli, A.; Tharayil, N.; Karanfil, T. The overlooked short-and ultrashort-chain poly-and perfluorinated substances: A review. Chemosphere 2019, 220, 866–882. [Google Scholar] [CrossRef]
- Li, F.; Duan, J.; Tian, S.; Ji, H.; Zhu, Y.; Wei, Z.; Zhao, D. Short-chain per-and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chem. Eng. J. 2020, 380, 122506. [Google Scholar] [CrossRef]
- Elika, K.; Medha, K.; Sweta, M.; Jasneet, P.; Mohammad, K.; Ali, A.; Rabbani, E.M.; Amir, R. A juxtaposed review on adsorptive removal of PFAS by metal-organic frameworks (MOFs) with carbon-based materials, ion exchange resins, and polymer adsorbents. Chemosphere 2022, 311 Pt 1, 136933. [Google Scholar]
- Dalahmeh, S.S.; Alziq, N.; Ahrens, L. Potential of biochar filters for onsite wastewater treatment: Effects of active and inactive biofilms on adsorption of per-and polyfluoroalkyl substances in laboratory column experiments. Environ. Pollut. 2019, 247, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Inyang, M.; Dickenson, E.R. The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems. Chemosphere 2017, 184, 168–175. [Google Scholar] [CrossRef]
- Yin, S.; Villagrán, D. Design of nanomaterials for the removal of per-and poly-fluoroalkyl substances (PFAS) in water: Strategies, mechanisms, challenges, and opportunities. Sci. Total Environ. 2022, 831, 154939. [Google Scholar] [CrossRef]
- Park, M.; Wu, S.; Lopez, I.J.; Chang, J.Y.; Karanfil, T.; Snyder, S.A. Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics. Water Res. 2020, 170, 115364. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; Rtimi, S. Recent progress and challenges on the removal of per-and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. Environ. Sci. Pollut. Res. 2022, 29, 58405–58428. [Google Scholar] [CrossRef]
- Saha, D.; Khan, S.; Van Bramer, S.E. Can porous carbons be a remedy for PFAS pollution in water? A perspective. J. Environ. Chem. Eng. 2021, 9, 106665. [Google Scholar] [CrossRef]
- Vu, C.T.; Wu, T. Adsorption of short-chain perfluoroalkyl acids (PFAAs) from water/wastewater. Environ. Sci. Water Res. Technol. 2020, 6, 2958–2972. [Google Scholar] [CrossRef]
- Oyetade, O.A.; Varadwaj, G.B.B.; Nyamori, V.O.; Jonnalagadda, S.B.; Martincigh, B.S. A critical review of the occurrence of perfluoroalkyl acids in aqueous environments and their removal by adsorption onto carbon nanotubes. Rev. Environ. Sci. Bio/Technol. 2018, 17, 603–635. [Google Scholar] [CrossRef]
- Wang, F.; Shih, K.; Leckie, J.O. Effect of humic acid on the sorption of perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) on boehmite. Chemosphere 2015, 118, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Q.; Li, L.S.; Xu, L. Removal of perfluorooctanoic acid from water with economical mesoporous melamine-formaldehyde resin microsphere. Chem. Eng. J. 2017, 320, 501–509. [Google Scholar] [CrossRef]
- Gao, X.; Chorover, J. Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy. Environ. Chem. 2012, 9, 148–157. [Google Scholar] [CrossRef]
- Kummert, R.; Stumm, W. The surface complexation of organic acids on hydrous γ-Al2O3. J. Colloid Interface Sci. 1980, 75, 373–385. [Google Scholar] [CrossRef]
- Kaiser, A.-M.; Saracevic, E.; Schaar, H.P.; Weiss, S.; Hornek-Gausterer, R. Ozone as Oxidizing Agent for the Total Oxidizable Precursor (TOP) Assay and as a Preceding Step for Adsorbent materials Treatments Concerning per- and Polyfluoroalkyl Substance Removal. J. Environ. Manag. 2021, 300, 113692. [Google Scholar] [CrossRef]
- Wang, W.; Mi, X.; Shi, H.; Zhang, X.; Zhou, Z.; Li, C.; Zhu, D. Adsorption Behaviour and Mechanism of the PFOS Substitute OBS (Sodium p -Perfluorous Nonenoxybenzene Sulfonate) on Adsorbent materials. R. Soc. Open Sci. 2019, 6, 191069. [Google Scholar] [CrossRef]
- Sun, B.; Ma, J.; Sedlak, D.L. Chemisorption of Perfluorooctanoic Acid on Powdered Adsorbent materials Initiated by Persulfate in Aqueous Solution. Environ. Sci. Technol. 2016, 50, 7618–7624. [Google Scholar] [CrossRef]
- Schuricht, F.; Borovinskaya, E.S.; Reschetilowski, W. Removal of Perfluorinated Surfactants from Wastewater by Adsorption and Ion Exchange—Influence of Material Properties, Sorption Mechanism and Modeling. J. Environ. Sci. 2017, 54, 160–170. [Google Scholar] [CrossRef]
- Dong, Q.; Min, X.; Huo, J.; Wang, Y. Efficient Sorption of Perfluoroalkyl Acids by Ionic Liquid-Modified Natural Clay. Chem. Eng. J. Adv. 2021, 7, 100135. [Google Scholar] [CrossRef]
- Khodabakhshloo, N.; Biswas, B.; Moore, F.; Du, J.; Naidu, R. Organically Functionalized Bentonite for the Removal of Perfluorooctane Sulfonate, Phenanthrene and Copper Mixtures from Wastewater. Appl. Clay Sci. 2021, 200, 105883. [Google Scholar] [CrossRef]
- Ray, J.R.; Shabtai, I.A.; Teixidó, M.; Mishael, Y.G.; Sedlak, D.L. Polymer-Clay Composite Geomedia for Sorptive Removal of Trace Organic Compounds and Metals in Urban Stormwater. Water Res. 2019, 157, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Wang, J.; Wang, W.; Okonkwo, C.J.; Liu, N. A Practical Method to Remove Perfluorooctanoic Acid from Aqueous. Environ. Technol. 2022, 43, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Liu, Y.; Su, P.; Quan, J.; Hu, Y.; Wang, W.; Zhang, C. Removal of COD, NH4-N, and Perfluorinated Compounds from Wastewater Treatment Plant Effluent Using ZnO-Coated Adsorbent materials. Water Sci. Technol. 2020, 81, 2459–2470. [Google Scholar] [CrossRef]
- Sini, K.; Bourgeois, D.; Idouhar, M.; Carboni, M.; Meyer, D. Metal-organic frameworks cavity size effect on the extraction of organic pollutants. Mater. Lett. 2019, 250, 92–95. [Google Scholar] [CrossRef]
- Meng, P.; Fang, X.; Maimaiti, A.; Yu, G.; Deng, S. Efficient removal of perfluorinated compounds from water using a regenerable magnetic activated carbon. Chemosphere 2019, 224, 187–194. [Google Scholar] [CrossRef]
- Clark, C.A.; Heck, K.N.; Powell, C.D.; Wong, M.S. Highly Defective UiO-66 Materials for the Adsorptive Removal of Perfluorooctanesulfonate. ACS Sustain. Chem. Eng. 2019, 7, 6619–6628. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Bhattarai, B.; Suri, R.P.S. Environmentally Friendly β-Cyclodextrin–Ionic Liquid Polyurethane-Modified Magnetic Sorbent for the Removal of PFOA, PFOS, and Cr(VI) from Water. ACS Sustain. Chem. Eng. 2017, 5, 9223–9232. [Google Scholar] [CrossRef]
- Du, Z.; Deng, S.; Zhang, S.; Wang, W.; Wang, B.; Huang, J.; Wang, Y.; Yu, G.; Xing, B. Selective and Fast Adsorption of Perfluorooctanesulfonate from Wastewater by Magnetic Fluorinated Vermiculite. Environ. Sci. Technol. 2017, 51, 8027–8035. [Google Scholar] [CrossRef]
- Qian, J.; Shen, M.; Wang, P.; Wang, C.; Hu, J.; Hou, J.; Ao, Y.; Zheng, H.; Li, K.; Liu, J. Co-adsorption of perfluorooctane sulfonate and phosphate on boehmite: Influence of temperature, phosphate initial concentration and pH. Ecotoxicol. Environ. Saf. 2017, 137, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhou, Y.; Lee, P.-H.; Shih, K. Mineralization of perfluorooctanesulfonate (PFOS) and perfluorodecanoate (PFDA) from aqueous solution by porous hexagonal boron nitride: Adsorption followed by simultaneous thermal decomposition and regeneration. RSC Adv. 2016, 6, 113773–113780. [Google Scholar] [CrossRef]
- Licato, J.J.; Foster, G.D.; Huff, T.B. Zeolite Composite Materials for the Simultaneous Removal of Pharmaceuticals, Personal Care Products, and Perfluorinated Alkyl Substances in Water Treatment. ACS EST Water 2022, 2, 1046–1055. [Google Scholar] [CrossRef]
- Chang, P.-H.; Chen, C.-Y.; Mukhopadhyay, R.; Chen, W.; Tzou, Y.-M.; Sarkar, B. Novel MOF-808 metal–organic framework as highly efficient adsorbent of perfluorooctane sulfonate in water. J. Colloid Interface Sci. 2022, 623, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wei, X.; Luo, P.; Dai, S.; Zhang, W.; Zhang, Y. Novel Fluorinated Nitrogen-Rich Porous Organic Polymer for Efficient Removal of Perfluorooctanoic Acid from Water. Water 2022, 14, 1010. [Google Scholar] [CrossRef]
- Ateia, M.; Arifuzzaman; Pellizzeri, S.; Attia, M.F.; Tharayil, N.; Anker, J.N.; Karanfil, T. Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels. Water Res. 2019, 163, 114874. [Google Scholar] [CrossRef]
- Lei, X.; Lian, Q.; Zhang, X.; Wang, T.; Gee, M.; Holmes, W.; Jin, S.; Ponnusamy, S.K.; Gang, D.D.; Zappi, M.E. Removal of perfluorooctanoic acid via polyethyleneimine modified graphene oxide: Effects of water matrices and understanding mechanisms. Chemosphere 2022, 308, 136379. [Google Scholar] [CrossRef]
- Kong, K.; Cheng, B.; Liang, J.; Guo, Y.; Wang, R. The aminated covalent organic polymers for reversible removal of concurrent perfluorooctane sulfonate and dichromate. Chem. Eng. J. 2022, 446, 137343. [Google Scholar] [CrossRef]
- Wu, Y.; Qi, L.; Chen, G. A mechanical investigation of perfluorooctane acid adsorption by engineered biochar. J. Clean. Prod. 2022, 340, 130742. [Google Scholar] [CrossRef]
- Steigerwald, J.M.; Ray, J.R. Adsorption behavior of perfluorooctanesulfonate (PFOS) onto activated spent coffee grounds biochar in synthetic wastewater effluent. J. Hazard. Mater. Lett. 2021, 2, 100025. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, M.; Huang, D.; Xu, L.; Yu, M.; Zhu, Y.; Niu, J. Modulating hierarchically microporous biochar via molten alkali treatment for efficient adsorption removal of perfluorinated carboxylic acids from wastewater. Sci. Total. Environ. 2020, 757, 143719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; He, Q.; Wang, M.; Zhang, W.; Liang, Y. Sorption of perfluoroalkylated substances (PFASs) onto granular activated carbon and biochar. Environ. Technol. 2019, 42, 1798–1809. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Blowes, D.W.; Ptacek, C.J.; Groza, L.G. Removal of pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances from water using a passive treatment system containing zero-valent iron and biochar. Sci. Total. Environ. 2019, 691, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Deng, S.; Liu, D.; Yao, X.; Wang, Y.; Lu, X.; Wang, B.; Huang, J.; Wang, Y.; Xing, B.; et al. Efficient adsorption of PFOS and F53B from chrome plating wastewater and their subsequent degradation in the regeneration process. Chem. Eng. J. 2016, 290, 405–413. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Canato, M.; Abbà, A.; Miino, M.C. Biosolids: What are the different types of reuse? J. Clean. Prod. 2019, 238, 117844. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Li, L.Y.; Hamid, H.; Jeronimo, M. Sludge-based activated carbon and its application in the removal of perfluoroalkyl substances: A feasible approach towards a circular economy. Chemosphere 2022, 294, 133707. [Google Scholar] [CrossRef]
- Zhang, Z.; Sarkar, D.; Datta, R.; Deng, Y. Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by aluminum-based drinking water treatment residuals. J. Hazard. Mater. Lett. 2021, 2, 100034. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.; Naidu, R.; Du, J.; Qi, F. Adsorption of Perfluorooctane sulfonate (PFOS) onto metal oxides modified biochar. Environ. Technol. Innov. 2020, 19, 100816. [Google Scholar] [CrossRef]
- Pettinari, C.; Marchetti, F.; Mosca, N.; Tosi, G.; Drozdov, A. Application of metal−organic frameworks. Polym. Int. 2017, 66, 731–744. [Google Scholar] [CrossRef]
- Álvarez, P.; Beltrán, F.; Gómez-Serrano, V.; Jaramillo, J.; Rodríguez, E. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Res. 2004, 38, 2155–2165. [Google Scholar] [CrossRef]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; De Melo, I.C.N.A.; Melo, L.C.A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef]
- Lu, J.; Lu, H.; Liang, D.; Feng, S.; Li, Y.; Li, J. A review of the occurrence, monitoring, and removal technologies for the remediation of per- and polyfluoroalkyl substances (PFAS) from landfill leachate. Chemosphere 2023, 332, 138824. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, D.W.; Wershaw, R.L.; Rostad, C.E.; Kelly, C.N. Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenergy 2012, 46, 693–701. [Google Scholar] [CrossRef]
- Ilango, A.K.; Jiang, T.; Zhang, W.; Feldblyum, J.I.; Efstathiadis, H.; Liang, Y. Surface-modified biopolymers for removing mixtures of per- and polyfluoroalkyl substances from water: Screening and removal mechanisms. Environ. Pollut. 2023, 331 Pt 1, 121865. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collivignarelli, M.C.; Bellazzi, S.; Caccamo, F.M.; Calatroni, S.; Milanese, C.; Baldi, M.; Abbà, A.; Sorlini, S.; Bertanza, G. Removal of Per- and Polyfluoroalkyl Substances by Adsorption on Innovative Adsorbent Materials. Sustainability 2023, 15, 13056. https://doi.org/10.3390/su151713056
Collivignarelli MC, Bellazzi S, Caccamo FM, Calatroni S, Milanese C, Baldi M, Abbà A, Sorlini S, Bertanza G. Removal of Per- and Polyfluoroalkyl Substances by Adsorption on Innovative Adsorbent Materials. Sustainability. 2023; 15(17):13056. https://doi.org/10.3390/su151713056
Chicago/Turabian StyleCollivignarelli, Maria Cristina, Stefano Bellazzi, Francesca Maria Caccamo, Silvia Calatroni, Chiara Milanese, Marco Baldi, Alessandro Abbà, Sabrina Sorlini, and Giorgio Bertanza. 2023. "Removal of Per- and Polyfluoroalkyl Substances by Adsorption on Innovative Adsorbent Materials" Sustainability 15, no. 17: 13056. https://doi.org/10.3390/su151713056
APA StyleCollivignarelli, M. C., Bellazzi, S., Caccamo, F. M., Calatroni, S., Milanese, C., Baldi, M., Abbà, A., Sorlini, S., & Bertanza, G. (2023). Removal of Per- and Polyfluoroalkyl Substances by Adsorption on Innovative Adsorbent Materials. Sustainability, 15(17), 13056. https://doi.org/10.3390/su151713056