Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges
Abstract
:1. Introduction
2. Study Area and Proposed Layout
3. HRES Simulation and Optimization
3.1. Configuration and Key Assumptions of the Simulation
- The reservoir has a trapezoidal shape, and thus the storage and area curves are linear functions of elevation;
- The intake is set to an elevation of 1.2 m from the upper reservoir’s bottom to ensure sufficient capacity for deposit management;
- The pump’s power capacity is 6.0 MW and equal to the maximum potential surplus estimated as the difference between the total capacity of wind turbines (6.4 MW) and the minimum hourly demand (0.4 MW), occurring in winter during the night;
- The turbine’s power capacity is also 6.0 MW, which is slightly higher than the maximum hourly load (5.4 MW) in order to account for uncertainties, as discussed later;
- The total efficiency values of the turbines and pumps are considered constant and equal to 0.85 and 0.80, respectively;
- The penstock’s length and diameter are 910 and 1.0 m, respectively, as specified in our preliminary design analysis.
3.2. Breakdown of the Simulation Model
3.3. Setup of the Optimization Problem
- The civil engineering works (excavations, roadworks, etc.);
- The purchase, installation, and maintenance of the electromechanical equipment (wind turbines, PVs, pumps, and turbines) and the conveyance system (GRP pipes);
- Specific works associated with reservoir waterproofing.
3.4. Results: Benchmark Scenario
4. Issues of Uncertainty in Hybrid Renewable Energy Systems
4.1. Wind Process Uncertainty
4.2. Energy Demand Uncertainty
4.3. Wind-to-Power Conversion Uncertainty
5. HRES Simulations and Optimizations under Uncertainty
5.1. Incorporating Uncertainty in the Simulation
5.2. Results of Monte Carlo Scenarios
5.3. Insight into the Trade-Off between Reservoir Size and Overall System Profit
6. The Challenge of Seawater
6.1. Conveyance System
6.2. Electromechanical Equipment
- Crevice corrosion, which is the most ordinary form of corrosion, is initiated by changes in the local chemistry within a crevice. It is usually associated with a stagnant solution in the micro-environments that tends to occur in crevices. In seawater pumps, crevices can be found where seals and impellers are fastened to the shaft and flange faces are cast in for pipework connections;
- Erosion corrosion can occur from the seawater’s rapid flow rate;
- Cavitation occurs when a fluid’s operational pressure drops below its vapor pressure and causes gas pockets and bubbles to form and collapse. This common phenomenon occurs when a pump operates outside its normal design parameters. The formed bubbles erode the steel;
- Corrosion fatigue derives from the combination of alternating or cycling stresses in a corrosive environment, mainly affecting seawater pump shafts.
6.3. Groundwater Degradation Due to Seawater Effects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EAS | Evolutionary Annealing Simplex |
EIA | Environmental Impact Assessment |
FPV | Floating Photovoltaic |
GRP | Glass-Reinforced Polyester |
HDPE | High-Density Polyethylene |
HRESs | Hybrid Renewable Energy Systems |
OECD | Organization for Economic Cooperation and Development |
PHS | Pumped Hydropower Storage |
PREN | Pitting Resistance Equivalent Number |
PV | Photovoltaic |
SCADA | Supervisory Control and Data Acquisition |
WTG | Wind Turbine Generator |
WTPC | Wind Turbine Power Curve |
References
- Roxani, A.; Zisos, A.; Sakki, G.-K.; Efstratiadis, A. Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water-Energy-Food-Land Dependencies. Land 2023, 12, 1069. [Google Scholar] [CrossRef]
- Bajpai, P.; Dash, V. Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renew. Sustain. Energy Rev. 2012, 16, 2926–2939. [Google Scholar] [CrossRef]
- Ding, J.J.; Buckeridge, J.S. Design Considerations for a Sustainable Hybrid Energy System. Trans. Inst. Prof. Eng. N. Z. Electr. Eng. Sect. 2000, 27, 1–5. Available online: https://search.informit.org/doi/10.3316/informit.288210094845724 (accessed on 15 June 2023).
- Deb, S.; Li, D.; Sinha, S.; Malik, P.; Raina, G.; Wang, J. Local Energy System: A Comprehensive Review of Modelling, Tools and Pilot Projects. In Proceedings of the 2023 International Conference on Power Electronics and Energy (ICPEE), Singapore, 3–5 November 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Amirante, R.; Cassone, E.; Distaso, E.; Tamburrano, P. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies. Energy Convers. Manag. 2017, 132, 372–387. [Google Scholar] [CrossRef]
- Jacob, T. Pumped storage in Switzerland-an outlook beyond 2000. Int. J. Hydropower Dams 1997. [Google Scholar]
- Aligholami, M.; Khosroshahi, S.S.; Khosroshahi, A.R. Hydrodynamic and thermodynamic enhancement of a solar chimney power plant. Sol. Energy 2019, 191, 180–192. [Google Scholar] [CrossRef]
- European Commission. European Green Deal: New Financing Mechanism to Boost Renewable Energy. Available online: https://ec.europa.eu/info/news/european-green-deal-new-financing-mechanism-boost-renewable-energy-2020-sep-17_en (accessed on 17 February 2023).
- McDowall, J. Integrating energy storage with wind power in weak electricity grids. J. Power Sources 2006, 162, 959–964. [Google Scholar] [CrossRef]
- Bueno, C.; Carta, J.A. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands. Renew. Sustain. Energy Rev. 2006, 10, 312–340. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Zafirakis, D.; Kavadias, K. Techno-economic comparison of energy storage systems for island autonomous electrical networks. Renew. Sustain. Energy Rev. 2009, 13, 378–392. [Google Scholar] [CrossRef]
- Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems—Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221–1250. [Google Scholar] [CrossRef]
- Ansari, B.; Aligholami, M.; Khosroshahi, A.R. An experimental and numerical investigation into using hydropower plant on oil transmission lines. Energy Sci. Eng. 2022, 10, 4397–4410. [Google Scholar] [CrossRef]
- Irene, F.G.; David, F.; Aonghus, M.N. Potential of Energy Recovery and Water Saving Using Micro-Hydropower in Rural Water Distribution Networks. J. Water Resour. Plan. Manag. 2019, 145, 5019001. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Makropoulos, C.; Langousis, A.; Baki, S.; Efstratiadis, A.; Christofides, A.; Karavokiros, G.; Mamassis, N. HESS Opinions: ‘Climate, hydrology, energy, water: Recognizing uncertainty and seeking sustainability. Hydrol. Earth Syst. Sci. 2009, 13, 247–257. [Google Scholar] [CrossRef]
- Dianellou, A.; Christakopoulos, T.; Caralis, G.; Kotroni, V.; Lagouvardos, K.; Zervos, A. Is the Large-Scale Development of Wind-PV with Hydro-Pumped Storage Economically Feasible in Greece? Appl. Sci. 2021, 11, 2368. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Li, R.; Wu, B.; Li, X.; Zhou, F.; Li, Y. Design of Wind-Solar and Pumped-Storage Hybrid Power Supply System. In Proceedings of the 2010 3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; pp. 402–405. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island. Energy Convers. Manag. 2014, 79, 387–397. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Lu, L.; Peng, J. Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong. Renew. Energy 2014, 69, 7–15. [Google Scholar] [CrossRef]
- Al-Addous, M.; Al Hmidan, S.; Jaradat, M.; Alasis, E.; Barbana, N. Potential and Feasibility Study of Hybrid Wind–Hydroelectric Power System with Water-Pumping Storage: Jordan as a Case Study. Appl. Sci. 2020, 10, 3332. [Google Scholar] [CrossRef]
- Makhdoomi, S.; Askarzadeh, A. Techno-enviro-economic feasibility assessment of an off-grid hybrid energy system with/without solar tracker considering pumped hydro storage and battery. IET Renew. Power Gener. 2023, 17, 1194–1211. [Google Scholar] [CrossRef]
- Al Katsaprakakis, D.; Voumvoulakis, M. A hybrid power plant towards 100% energy autonomy for the island of Sifnos, Greece. Perspectives created from energy cooperatives. Energy 2018, 161, 680–698. [Google Scholar] [CrossRef]
- Zafeiratou, E.; Spataru, C. Long Term Analysis of Submarine Transmission Grid Extensions between the Greek Islands and the Mainland. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto, Portugal, 9–11 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Theodoropoulos, P.; Zervos, A.; Mantas, Z.; Betzios, G. Integrated power system of Serifos Island with high RES penetration using pump-storage. A Chall. Isl. Sustain. Dev. 2023, 81. Available online: http://www.globalislands.net/greenislands/docs/greece_100RES.pdf#page=81 (accessed on 15 June 2023).
- Kaldellis, J.K.; Kavadias, K.A. Cost–benefit analysis of remote hybrid wind–diesel power stations: Case study Aegean Sea islands. Energy Policy 2007, 35, 1525–1538. [Google Scholar] [CrossRef]
- Kapsali, M.; Anagnostopoulos, J.S.; Kaldellis, J.K. Wind powered pumped-hydro storage systems for remote islands: A complete sensitivity analysis based on economic perspectives. Appl. Energy 2012, 99, 430–444. [Google Scholar] [CrossRef]
- Chalakatevaki, M.; Stamou, P.; Karali, S.; Daniil, V.; Dimitriadis, P.; Tzouka, K.; Iliopoulou, T.; Koutsoyiannis, D.; Papanicolaou, P.; Mamassis, N. Creating the electric energy mix in a non-connected island. Energy Procedia 2017, 125, 425–434. [Google Scholar] [CrossRef]
- Skroufouta, S.; Baltas, E. Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea. Renew. Energy 2021, 173, 141–150. [Google Scholar] [CrossRef]
- Papoulakos, K.; Pollakis, G.; Moustakis, Y.; Markopoulos, A.; Iliopoulou, T.; Dimitriadis, P.; Koutsoyiannis, D.; Efstratiadis, A. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability. Energy Procedia 2017, 125, 405–414. [Google Scholar] [CrossRef]
- Sakki, G.K.; Tsoukalas, I.; Kossieris, P.; Makropoulos, C.; Efstratiadis, A. Stochastic simulation-optimization framework for the design and assessment of renewable energy systems under uncertainty. Renew. Sustain. Energy Rev. 2022, 168, 112886. [Google Scholar] [CrossRef]
- Caputo, A.C.; Federici, A.; Pelagagge, P.M.; Salini, P. Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty. Appl. Energy 2023, 350, 121585. [Google Scholar] [CrossRef]
- Ioannidis, R.; Koutsoyiannis, D. A review of land use, visibility and public perception of renewable energy in the context of landscape impact. Appl. Energy 2020, 276, 115367. [Google Scholar] [CrossRef]
- Vasel-Be-Hagh, A.; Archer, C.L. Wind farm hub height optimization. Appl. Energy 2017, 195, 905–921. [Google Scholar] [CrossRef]
- Hoxha, B.; Shesho, I.K.; Filkoski, R.V. Analysis of Wind Turbine Distances Using a Novel Techno-Spatial Approach in Complex Wind Farm Terrains. Sustainability 2022, 14, 13688. [Google Scholar] [CrossRef]
- Sakki, G.-K.; Tsoukalas, I.; Efstratiadis, A. A reverse engineering approach across small hydropower plants: A hidden treasure of hydrological data? Hydrol. Sci. J. 2022, 67, 94–106. [Google Scholar] [CrossRef]
- Giorsetto, P.; Utsurogi, K.F. Development of a New Procedure for Reliability Modeling of Wind Turbine Generators. IEEE Trans. Power Appar. Syst. 1983, PAS-102, 134–143. [Google Scholar] [CrossRef]
- Thapar, V.; Agnihotri, G.; Sethi, V.K. Critical analysis of methods for mathematical modelling of wind turbines. Renew. Energy 2011, 36, 3166–3177. [Google Scholar] [CrossRef]
- Shokrzadeh, S.; Jozani, M.J.; Bibeau, E. Wind Turbine Power Curve Modeling Using Advanced Parametric and Nonparametric Methods. IEEE Trans. Sustain. Energy 2014, 5, 1262–1269. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S.S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Akram, F.; Asghar, F.; Majeed, M.A.; Amjad, W.; Manzoor, M.O.; Munir, A. Techno-economic optimization analysis of stand-alone renewable energy system for remote areas. Sustain. Energy Technol. Assess. 2020, 38, 100673. [Google Scholar] [CrossRef]
- Khatri, K.A.; Shah, K.B.; Logeshwaran, J.; Shrestha, A. Genetic Algorithm Based Techno-Economic Optimization of an Isolated Hybrid Energy System. ICTACT J. Microelectron. 2023, 8, 1447–1450. [Google Scholar] [CrossRef]
- Ajiboye, O.K.; Ochiegbu, C.V.; Ofosu, E.A.; Gyamfi, S. A review of hybrid renewable energies optimisation: Design, methodologies, and criteria. Int. J. Sustain. Energy 2023, 42, 648–684. [Google Scholar] [CrossRef]
- Aggidis, G.A.; Luchinskaya, E.; Rothschild, R.; Howard, D.C. The costs of small-scale hydro power production: Impact on the development of existing potential. Renew. Energy 2010, 35, 2632–2638. [Google Scholar] [CrossRef]
- Efstratiadis, A.; Koutsoyiannis, D. An Evolutionary Annealing-Simplex Algorithm for Global Optimisation of Water Resource Systems. In Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK, 1–5 July 2002; pp. 1423–1428. [Google Scholar]
- Nicklow, J.; Reed, P.; Savic, D.; Dessalegne, T.; Harrell, L.; Chan-Hilton, A.; Karamouz, M.; Minsker, B.; Ostfeld, A.; Singh, A.; et al. State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management. J. Water Resour. Plan. Manag. 2010, 136, 412–432. [Google Scholar] [CrossRef]
- Palma-Behnke, R.; Valencia, F.; Vega-Herrera, J.; Núñez-Mata, O. Synthetic Time Series Generation Model for Analysis of Power System Operation and Expansion with High Renewable Energy Penetration. J. Mod. Power Syst. Clean Energy 2021, 9, 849–858. [Google Scholar] [CrossRef]
- Tsekouras, G.; Koutsoyiannis, D. Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy. Renew. Energy 2014, 63, 624–633. [Google Scholar] [CrossRef]
- Katikas, L.; Dimitriadis, P.; Koutsoyiannis, D.; Kontos, T.; Kyriakidis, P. A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series. Appl. Energy 2021, 295, 116873. [Google Scholar] [CrossRef]
- Tsoukalas, I.; Kossieris, P.; Makropoulos, C. Simulation of Non-Gaussian Correlated Random Variables, Stochastic Processes and Random Fields: Introducing the anySim R-Package for Environmental Applications and Beyond. Water 2020, 12, 1645. [Google Scholar] [CrossRef]
- Abdel-Aal, R.E. Univariate modeling and forecasting of monthly energy demand time series using abductive and neural networks. Comput. Ind. Eng. 2008, 54, 903–917. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Palacios, A.; Serrano, S.; Ürge-Vorsatz, D.; Barreneche, C. Comparison of past projections of global and regional primary and final energy consumption with historical data. Renew. Sustain. Energy Rev. 2018, 82, 681–688. [Google Scholar] [CrossRef]
- Warren, K.; Ambrosio, R.; Chen, B.; Fu, Y.H.; Ghosh, S.; Phan, D.; Sinn, M.; Tian, C.H.; Visweswariah, C. Managing uncertainty in electricity generation and demand forecasting. IBM J. Res. Dev. 2016, 60, 8:1–8:13. [Google Scholar] [CrossRef]
- Islam, M.A.; Che, H.S.; Hasanuzzaman, M.; Rahim, N.A. Chapter 5—Energy demand forecasting. In Energy for Sustainable Development; Hasanuzzaman, M.D., Rahim, N.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 105–123. [Google Scholar] [CrossRef]
- Papavasiliou, A.; Oren, S.S.; Aravena, I. Stochastic Modeling of Multi-area Wind Power Production. In Proceedings of the 2015 48th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015; pp. 2616–2626. [Google Scholar] [CrossRef]
- Rezamand, M.; Carriveau, R.; Ting, D.S.-K.; Davison, M.; Davis, J.J. Aggregate reliability analysis of wind turbine generators. IET Renew. Power Gener. 2019, 13, 1902–1910. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Q.; Li, L.; Foley, A.M.; Srinivasan, D. Approaches to wind power curve modeling: A review and discussion. Renew. Sustain. Energy Rev. 2019, 116, 109422. [Google Scholar] [CrossRef]
- Villanueva, D.; Feijóo, A. Comparison of logistic functions for modeling wind turbine power curves. Electr. Power Syst. Res. 2018, 155, 281–288. [Google Scholar] [CrossRef]
- Pagnini, L.C.; Burlando, M.; Repetto, M.P. Experimental power curve of small-size wind turbines in turbulent urban environment. Appl. Energy 2015, 154, 112–121. [Google Scholar] [CrossRef]
- Antoniou, I.; Pedersen, S.; Enevoldsen, P. Wind Shear and Uncertainties in Power Curve Measurement and Wind Resources. Wind Eng. 2009, 33, 449–468. [Google Scholar] [CrossRef]
- King, J.; Clifton, A.; Hodge, B.M. Validation of Power Output for the WIND Toolkit; National Renewable Energy Laboratory (NREL): Denver, CO, USA, 2014. [Google Scholar] [CrossRef]
- Kusiak, A.; Zheng, H.; Song, Z. On-line monitoring of power curves. Renew. Energy 2009, 34, 1487–1493. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, H.; Liu, Y.; Han, S.; Li, L. Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling. Appl. Energy 2019, 239, 1356–1370. [Google Scholar] [CrossRef]
- Cutululis, N.A.; Litong-Palima, M.; Sørensen, P. Offshore Wind Power Production in Critical Weather Conditions. In Proceedings of the EWEC 2012-European Wind Energy Conference & Exhibition, Copenhagen, Denmark, 16–19 April 2012; Volume 1, pp. 74–81. [Google Scholar]
- Petrović, V.; Bottasso, C.L. Wind turbine optimal control during storms. J. Phys. Conf. Ser. 2014, 524, 012052. [Google Scholar] [CrossRef]
- Castellani, F.; Natili, F.; Astolfi, D.; Cianetti, F. Mechanical behaviour of wind turbines operating above design conditions. Procedia Struct. Integr. 2019, 24, 495–509. [Google Scholar] [CrossRef]
- Jelavić, M.; Petrović, V.; Barišić, M.; Ivanović, I. Wind turbine control beyond the cut-out wind speed. Eur. Wind Energy Conf. Exhib. EWEC 2013, 1, 343–349. [Google Scholar]
- Astolfi, D.; Castellani, F.; Lombardi, A.; Terzi, L. About the Extension of Wind Turbine Power Curve in the High Wind Region. J. Sol. Energy Eng. 2018, 141, 2018. [Google Scholar] [CrossRef]
- Luo, Z.; Fang, C.; Liu, C.; Liu, S. Method for Cleaning Abnormal Data of Wind Turbine Power Curve Based on Density Clustering and Boundary Extraction. IEEE Trans. Sustain. Energy 2022, 13, 1147–1159. [Google Scholar] [CrossRef]
- Liang, G.; Su, Y.; Chen, F.; Long, H.; Song, Z.; Gan, Y. Wind Power Curve Data Cleaning by Image Thresholding Based on Class Uncertainty and Shape Dissimilarity. IEEE Trans. Sustain. Energy 2021, 12, 1383–1393. [Google Scholar] [CrossRef]
- Tsoukalas, I.; Papalexiou, S.M.; Efstratiadis, A.; Makropoulos, C. A cautionary note on the reproduction of dependencies through linear stochastic models with non-Gaussian white noise. Water 2018, 10, 771. [Google Scholar] [CrossRef]
- Tsoukalas, I.; Makropoulos, C.; Koutsoyiannis, D. Simulation of Stochastic Processes Exhibiting Any-Range Dependence and Arbitrary Marginal Distributions. Water Resour. Res. 2018, 54, 9484–9513. [Google Scholar] [CrossRef]
- Tsoukalas, I.; Efstratiadis, A.; Makropoulos, C. Building a puzzle to solve a riddle: A multi-scale disaggregation approach for multivariate stochastic processes with any marginal distribution and correlation structure. J. Hydrol. 2019, 575, 354–380. [Google Scholar] [CrossRef]
- Lira, A.; Rosas, P.; Araújo, A.; Castro, N. Uncertainties in the estimate of wind energy production. In Proceedings of the Energy Economics Iberian Conference, Lisbon, Portugal, 4–5 February 2016. [Google Scholar]
- Delignette-Muller, M.L.; Dutang, C. Fitdistrplus: An R Package for Fitting Distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef]
- Xue-Kun Song, P. Multivariate Dispersion Models Generated From Gaussian Copula. Scand. J. Stat. 2000, 27, 305–320. [Google Scholar] [CrossRef]
- Masarotto, G.; Varin, C. Gaussian copula marginal regression. Electron. J. Stat. 2012, 6, 1517–1549. [Google Scholar] [CrossRef]
- Hiratsuka, A.; Arai, T.; Yoshimura, T. Seawater pumped-storage power plant in Okinawa island, Japan. Eng. Geol. 1993, 35, 237–246. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assessments 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Kim, J.; Suharto, Y.; Daim, T.U. Evaluation of Electrical Energy Storage (EES) technologies for renewable energy: A case from the US Pacific Northwest. J. Energy Storage 2017, 11, 25–54. [Google Scholar] [CrossRef]
- Ioakimidis, C.S.; Genikomsakis, K.N. Integration of Seawater Pumped-Storage in the Energy System of the Island of São Miguel (Azores). Sustainability 2018, 10, 3438. [Google Scholar] [CrossRef]
- Ali, S.; Jang, C.-M. Optimum Design of Hybrid Renewable Energy System for Sustainable Energy Supply to a Remote Island. Sustainability 2020, 12, 1280. [Google Scholar] [CrossRef]
- Oshima, K.; Kawai, J.; Otsuka, S.; Wada, T.; Imano, H. Development of Pump Turbine for Seawater Pumped- Storage Power Plant. Hitachi Rev. 1998, 47, 199–202. [Google Scholar]
- Katsaprakakis, D.A.; Christakis, D.G.; Stefanakis, I.; Spanos, P.; Stefanakis, N. Technical details regarding the design, the construction and the operation of seawater pumped storage systems. Energy 2013, 55, 619–630. [Google Scholar] [CrossRef]
- Jin, N.J.; Hwang, H.G.; Yeon, J.H. Structural analysis and optimum design of GRP pipes based on properties of materials. Constr. Build. Mater. 2013, 38, 316–326. [Google Scholar] [CrossRef]
- Yebra, D.M.; Kiil, S.; Dam-Johansen, K. Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coatings 2004, 50, 75–104. [Google Scholar] [CrossRef]
- Usachev, I.N. Results of 30-year monitoring of the marine concretes and floating structure of the kislogubsk tidal electric power plant in the Far North. Hydrotech. Constr. 1998, 32, 705–712. [Google Scholar] [CrossRef]
- Clark, R.H. Prospects for Fundy tidal power. Houille Blanche 1997, 83, 79–85. [Google Scholar] [CrossRef]
- Chen, X.; Noy, A. Antifouling strategies for protecting bioelectronic devices. APL Mater. 2021, 9, 2021. [Google Scholar] [CrossRef]
- Abarzua, S.; Jakubowski, S. Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar. Ecol. Prog. Ser. 1995, 123, 301–312. Available online: https://www.int-res.com/abstracts/meps/v123/p301-312/ (accessed on 15 June 2023). [CrossRef]
- Rittschof, D. Natural product antifoulants: One perspective on the challenges related to coatings development. Biofouling 2000, 15, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Manfrida, G.; Secchi, R. Seawater pumping as an electricity storage solution for photovoltaic energy systems. Energy 2014, 69, 470–484. [Google Scholar] [CrossRef]
- Francis, R.; Hebdon, S. The Selection of Stainless Steels for Seawater Pumps; Paper 5446; Corrosion 2015; NACE International: Houston, TX, USA, 2015. [Google Scholar]
- Standards Norway. Materials Selection, M-001, Edition 5, September 2014. Available online: http://aboutcorrosion.s3.amazonaws.com/Standards/NORSOK/m00001_2014%7B5%7Den.0115940830.pdf (accessed on 15 June 2023).
- Das, P.; Das, B.K.; Mustafi, N.N.; Sakir, M.T. A review on pump-hydro storage for renewable and hybrid energy systems applications. Energy Storage 2021, 3, e223. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Sawle, Y.; Lala, H. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques. Renew. Sustain. Energy Rev. 2023, 176, 113192. [Google Scholar] [CrossRef]
- Ruiz, R.A.; De Vilder, L.H.; Prasasti, E.B.; Aouad, M.; De Luca, A.; Geisseler, B.; Terheiden, K.; Scanu, S.; Miccoli, A.; Roeber, V.; et al. Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater. Renew. Sustain. Energy Rev. 2022, 160, 112281. [Google Scholar] [CrossRef]
- EC. Directive 2014/52/EU of the European Parliament and of the Council of 16 April 2014 amending Directive 2011/92/EU on the assessment of the effects of certain public and private projects on the environment. Off. J. Eur. Union 2014, 50. [Google Scholar]
- Dai, J.; Zhang, C.; Lim, H.V.; Ang, K.K.; Qian, X.; Wong, J.L.H.; Tan, S.T.; Wang, C.L. Design and construction of floating modular photovoltaic system for water reservoirs. Energy 2020, 191, 116549. [Google Scholar] [CrossRef]
- Kakoulaki, G.; Sanchez, R.G.; Amillo, A.G.; Szabó, S.; De Felice, M.; Farinosi, F.; De Felice, L.; Bisselink, B.; Seliger, R.; Kougias, I.; et al. Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe. Renew. Sustain. Energy Rev. 2023, 171, 112989. [Google Scholar] [CrossRef]
- Exley, G.; Armstrong, A.; Page, T.; Jones, I.D. Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification. Sol. Energy 2021, 219, 24–33. [Google Scholar] [CrossRef]
- Faccio, M.; Gamberi, M.; Bortolini, M.; Nedaei, M. State-of-art review of the optimization methods to design the configuration of hybrid renewable energy systems (HRESs). Front. Energy 2018, 12, 591–622. [Google Scholar] [CrossRef]
- Zisos, A.; Pantazi, M.E.; Diamanta, M.; Koutsouradi, I.; Kontaxopoulou, A.; Tsoukalas, I.; Sakki, G.K.; Efstratiadis, A. Towards Energy Autonomy of Small Mediterranean Islands: Challenges, Perspectives and Solutions. In Proceedings of the EGU General Assembly, Vienna, Austria, 23–27 May 2022. EGU22-5468. [Google Scholar] [CrossRef]
Wind Turbines | ||
---|---|---|
Model | Enercon E-44 | Enercon E-70 E4 |
Rated power (kW) | 900.0 | 2300.0 |
Minimum power (kW) | 4.0 | 2.0 |
Cut-in wind speed (m/s) | 3.0 | 2.5 |
Rated wind speed (m/s) | 16.5 | 15.0 |
Cut-out wind speed (m/s) | 34.0 | 34.0 |
Tower height (m) | 55.0 | 113.0 |
Rotor diameter (m) | 44.0 | 71.0 |
Solar panels | ||
Surface area (m2) | 1.94 | |
Nominal power (W) | 340.0 | |
Efficiency (%) | 17.5 |
Unit Cost (EUR) | Unit of Measurement | |
---|---|---|
Excavations | 6.00 | m3 |
Waterproofing membranes | 1.50 | m2 |
Conveyance system | 25.0 | m |
Installed wind power | 1,200,000 | MW |
Installed solar power | 1,100,000 | MW |
Energy profit | 300 | MWh |
Energy penalty | 350 | MWh |
Mean annual production from wind turbines and solar panels (GWh) | 24.98 |
Mean annual production from PHS system (GWh) | 4.69 |
Reliability (%) | 94.76 |
Mean annual profit (EUR) | 789,131 |
Investment cost (EUR) | 15,526,518 |
Ordinary annuity (EUR) | 1,814,222 |
Payback period (years) | 5.90 |
Capacity factors | |
Photovoltaics | 0.207 |
Small wind turbines | 0.304 |
Large wind turbines | 0.424 |
Hydropower station | 0.108 |
Mean | Standard Deviation | 10% Quantile | 50% Quantile | 90% Quantile | |
---|---|---|---|---|---|
Reservoir active depth (m) | 3.07 | 0.76 | 3.96 | 2.98 | 2.36 |
Reservoir storage capacity (m3) | 329,882 | 53,370 | 400,282 | 323,278 | 274,583 |
Solar power capacity (MW) | 1.69 | 0.03 | 1.70 | 1.69 | 1.67 |
Mean annual energy production from wind turbines and solar panels (GWh) | 24.24 | 1.90 | 26.78 | 24.43 | 21.86 |
Mean annual energy production from PHS system (GWh) | 4.93 | 0.19 | 5.16 | 4.95 | 4.69 |
Reliability (%) | 94.89 | 1.50 | 96.75 | 95.11 | 92.98 |
Mean annual net profit (EUR) | 640,234 | 255,062 | 959,029 | 669,924 | 315,269 |
Investment cost (EUR) | 15,615,067 | 339,558 | 16,039,471 | 15,575,241 | 15,274,195 |
Ordinary annuity (EUR) | 1,820,737 | 24,986 | 1,851,966 | 1,817,807 | 1,795,283 |
Payback period (years) | 6.35 | 0.51 | 5.71 | 6.26 | 7.24 |
Capacity factors | |||||
Small wind turbines | 0.29 | 0.03 | 0.34 | 0.30 | 0.25 |
Large wind turbines | 0.41 | 0.03 | 0.46 | 0.41 | 0.37 |
Hydropower station | 0.09 | 0.01 | 0.10 | 0.09 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zisos, A.; Sakki, G.-K.; Efstratiadis, A. Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges. Sustainability 2023, 15, 13313. https://doi.org/10.3390/su151813313
Zisos A, Sakki G-K, Efstratiadis A. Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges. Sustainability. 2023; 15(18):13313. https://doi.org/10.3390/su151813313
Chicago/Turabian StyleZisos, Athanasios, Georgia-Konstantina Sakki, and Andreas Efstratiadis. 2023. "Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges" Sustainability 15, no. 18: 13313. https://doi.org/10.3390/su151813313