Analysis of Ecological Efficiency, Ecological Innovation, Residents’ Well-Being and Their Improvement Paths in Chinese Resource-Based Cities—Based on the Approaches of Two-Stage Super-SBM and fsQCA
Abstract
:1. Introduction
2. Methods and Data
2.1. Two-Stage Network Super-SBM Model
2.2. Improvement Path of Sustainable Development in Resource-Based Cities—fsQCA
2.3. Research Data
3. Results
3.1. Efficiency of 92 Sample Resource-Based Cities Calculated by Two-Stage Super-SBM Method
3.1.1. Spatiotemporal Evolution of EE and Group Comparison Results
3.1.2. Spatiotemporal Evolution of EI and Group Comparison Results
3.1.3. Spatiotemporal Evolution of RW and Group Comparison Results
3.2. Overall Analysis of the EE, EI and RW
3.3. fsQCA Method: Exploration of Sustainable Development Path
3.3.1. Calibration
3.3.2. Analysis of Necessary Conditions
3.3.3. Configuration Analysis
3.3.4. Robust Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
City | City Type | City | City Type |
---|---|---|---|
Lincang | Maturity | Pingxiang | Recession |
Baoshan | Maturity | Ganzhou | Maturity |
Zhaotong | Growth | Tangshan | Regeneration |
Puer | Maturity | Zhangjiakou | Maturity |
Qujing | Maturity | Chengde | Maturity |
Wuhai | Recession | Xingtai | Maturity |
Baotou | Regeneration | Handan | Maturity |
Chifeng | Maturity | Sanmenxia | Maturity |
Erdos | Growth | Pingdingshan | Maturity |
Jilin | Maturity | Luoyang | Regeneration |
Songyuan | Growth | Jiaozuo | Recession |
Liaoyuan | Recession | Hebi | Maturity |
Tonghua | Regeneration | Huzhou | Maturity |
Nanchong | Growth | Ezhou | Maturity |
Panzhihua | Maturity | Huangshi | Recession |
Luzhou | Recession | Loudi | Maturity |
Zigong | Maturity | Hengyang | Maturity |
Ya’an | Maturity | Shaoyang | Maturity |
Shizuishan | Recession | Chenzhou | Maturity |
Xuancheng | Maturity | Pingliang | Maturity |
Huaibei | Recession | Zhangye | Regeneration |
Huainan | Maturity | Wuwei | Growth |
Tongling | Recession | Baiyin | Recession |
Maanshan | Regeneration | Jinchang | Maturity |
Dongying | Maturity | Longnan | Growth |
Linyi | Regeneration | Sanming | Maturity |
Zaozhuang | Recession | Nanping | Maturity |
Tai’an | Maturity | Longyan | Maturity |
Jining | Maturity | Liupanshui | Growth |
Zibo | Regeneration | Anshun | Maturity |
Lvliang | Maturity | Bijie | Growth |
Datong | Maturity | Fushun | Recession |
Yizhou | Maturity | Benxi | Maturity |
Jincheng | Maturity | Panjin | Regeneration |
Yuncheng | Maturity | Huludao | Regeneration |
Yangquan | Maturity | Fuxin | Recession |
Yunfu | Maturity | Anshan | Regeneration |
Shaoguan | Recession | Xianyang | Growth |
Hechi | Maturity | Yan’an | Growth |
Baise | Maturity | Yulin | Growth |
Hezhou | Growth | Weinan | Maturity |
Karamay | Maturity | Tongchuan | Recession |
Suqian | Regeneration | Yichun | Recession |
Xuzhou | Regeneration | Shuangyashan | Recession |
Xinyu | Recession | Daqing | Maturity |
Jingdezhen | Recession | Hegang | Recession |
City | EE (Rank) | EI (Rank) | RW (Rank) | City | EE (Rank) | EI (Rank) | RW (Rank) |
---|---|---|---|---|---|---|---|
Lincang | 0.5575 (34) | 0.1664 (63) | 0.5184 (21) | Pingxiang | 0.4452 (52) | 0.2191 (55) | 0.1139 (71) |
Baoshan | 0.2717 (72) | 0.0827 (79) | 0.3289 (25) | Ganzhou | 0.5130 (39) | 0.1644 (65) | 0.2449 (38) |
Zhaotong | 0.3407 (63) | 0.0220 (90) | 1.0000 (6) | Tangshan | 1.0000 (9) | 0.1012 (74) | 0.0892 (80) |
Puer | 0.2570 (75) | 1.0000 (7) | 1.0000 (18) | Zhangjiakou | 0.2739 (71) | 0.1853 (59) | 0.1401 (65) |
Qujing | 0.4889 (43) | 0.0623 (87) | 0.2605 (35) | Chengde | 0.3274 (65) | 0.1386 (67) | 0.1666 (54) |
Wuhai | 0.3900 (56) | 1.0000 (7) | 1.0000 (10) | Xingtai | 0.4635 (48) | 1.0000 (7) | 0.2835 (31) |
Baotou | 0.6082 (27) | 1.0000 (7) | 0.0629 (91) | Handan | 0.5654 (33) | 0.0724 (83) | 0.2207 (43) |
Chifeng | 0.2605 (73) | 0.1372 (68) | 0.1470 (63) | Sanmenxia | 0.7034 (20) | 0.3023 (41) | 0.0885 (81) |
Erdos | 1.0000 (9) | 0.1112 (72) | 0.0838 (82) | Pingdingshan | 0.4478 (51) | 0.1647 (64) | 0.1617 (58) |
Jilin | 0.5973 (30) | 0.2206 (53) | 0.1123 (72) | Luoyang | 0.4713 (45) | 0.2762 (45) | 0.1375 (67) |
Songyuan | 0.9427 (15) | 1.0000 (7) | 1.0000 (19) | Jiaozuo | 0.5474 (35) | 0.3665 (36) | 0.0928 (79) |
Liaoyuan | 0.8874(16) | 0.2904 (43) | 0.2484 (37) | Hebi | 0.4895 (42) | 0.4268 (34) | 0.1193 (70) |
Tonghua | 0.4683 (46) | 0.1214 (70) | 0.1344 (68) | Huzhou | 0.6456 (23) | 1.0000 (7) | 0.0679 (88) |
Nanchong | 1.0617 (5) | 0.5977 (26) | 1.2923 (1) | Ezhou | 0.4903 (41) | 0.3160 (39) | 1.0000 (13) |
Panzhihua | 0.2005 (84) | 0.5334 (29) | 0.1116 (73) | Huangshi | 0.4568 (49) | 0.4823 (31) | 0.1850 (47) |
Luzhou | 0.3539 (61) | 0.2382 (52) | 0.3101 (27) | Loudi | 0.4482 (50) | 0.0412 (88) | 0.1679 (53) |
Zigong | 1.0067 (7) | 1.4518 (1) | 1.1227 (3) | Hengyang | 0.6377 (24) | 0.2708 (48) | 0.2814 (32) |
Ya’an | 0.3626 (60) | 0.3850 (35) | 0.4286 (23) | Shaoyang | 0.5243 (38) | 1.0000 (7) | 1.0000 (8) |
Shizuishan | 0.2264 (80) | 0.5706 (28) | 0.2361 (39) | Chenzhou | 0.6886 (22) | 0.0873 (77) | 0.1731 (49) |
Xuancheng | 0.3471 (62) | 0.2193 (54) | 0.1437 (64) | Pingliang | 0.2336 (79) | 0.0649 (86) | 0.1487 (61) |
Huaibei | 0.4670 (47) | 1.0000 (7) | 1.0000 (17) | Zhangye | 0.2503 (76) | 0.2963 (42) | 0.3003 (29) |
Huainan | 0.4329 (54) | 0.4360 (33) | 0.1706 (51) | Wuwei | 0.1521 (89) | 1.0000 (7) | 1.0000 (16) |
Tongling | 0.7660 (19) | 1.0000 (7) | 0.0474 (92) | Baiyin | 0.1663 (88) | 0.2444 (51) | 0.1974 (45) |
Maanshan | 0.5323 (36) | 0.4837 (30) | 0.0706 (87) | Jinchang | 0.1294 (91) | 1.0000 (7) | 1.0000 (14) |
Dongying | 1.0000 (9) | 0.4736 (32) | 0.0733 (86) | Longnan | 0.2223 (82) | 0.0369 (89) | 1.0000 (11) |
Linyi | 0.4995 (40) | 0.2482 (50) | 0.2109 (44) | Sanming | 0.5982 (29) | 0.2006 (57) | 0.0937 (78) |
Zaozhuang | 1.0018 (8) | 1.0664 (5) | 0.0825 (84) | Nanping | 0.3795 (58) | 0.7241 (24) | 0.4207 (24) |
Tai’an | 1.1003 (3) | 1.0785 (4) | 0.0957 (76) | Longyan | 0.6243 (25) | 0.1915 (58) | 0.0804 (85) |
Jining | 0.7914 (18) | 0.0780 (81) | 0.1217 (69) | Liupanshui | 0.3861 (57) | 0.0818 (80) | 1.0000 (5) |
Zibo | 1.0000 (9) | 0.3137 (40) | 0.0654 (90) | Anshun | 0.2574 (74) | 0.1260 (69) | 0.1545 (59) |
Lvliang | 1.0000 (9) | 0.0167 (91) | 0.2897 (30) | Bijie | 0.3162 (67) | 0.0980 (75) | 1.0000 (7) |
Datong | 0.2442 (77) | 0.6804 (25) | 0.1628 (57) | Fushun | 0.3353 (64) | 0.3625 (37) | 0.1696 (52) |
Yizhou | 0.2372 (78) | 0.0766 (82) | 0.2779 (33) | Benxi | 0.3272 (66) | 0.1722 (62) | 0.0674 (89) |
Jincheng | 0.4133 (55) | 0.2724 (47) | 0.1473 (62) | Panjin | 0.6182 (26) | 1.0000 (7) | 1.0000 (12) |
Yuncheng | 0.3685 (59) | 0.1778 (60) | 0.2321 (41) | Huludao | 1.0297 (6) | 0.1729 (61) | 1.1198 (4) |
Yangquan | 0.1889 (87) | 1.0000 (7) | 0.1830 (48) | Fuxin | 0.2933 (70) | 0.2861 (44) | 0.1642 (55) |
Yunfu | 0.6029 (28) | 0.1548 (66) | 0.0942 (77) | Anshan | 0.5268 (37) | 0.7647 (23) | 0.1884 (46) |
Shaoguan | 0.3146 (68) | 0.5731 (27) | 0.3181 (26) | Xianyang | 1.0000 (9) | 0.2756 (46) | 0.2493 (36) |
Hechi | 0.1907 (86) | 0.1048 (73) | 0.1632 (56) | Yan’an | 1.1122 (1) | 1.1549 (2) | 1.1514 (2) |
Baise | 0.2050 (83) | 0.1169 (71) | 0.1382 (66) | Yulin | 0.7023 (21) | 0.0683 (84) | 0.1097 (74) |
Hezhou | 0.2945 (69) | 0.0927 (76) | 0.1718 (50) | Weinan | 1.0796 (4) | 1.0219 (6) | 0.2309 (42) |
Karamay | 0.4366 (53) | 1.0000 (7) | 1.0000 (15) | Tongchuan | 0.1965 (85) | 0.0660 (85) | 1.0000 (9) |
Suqian | 0.5755 (32) | 1.0000 (7) | 1.0000 (20) | Yichun | 0.0914 (92) | 1.0000 (7) | 0.2358 (40) |
Xuzhou | 0.8029 (17) | 0.0828 (78) | 0.0837 (83) | Shuangyashan | 0.2242 (81) | 0.2670 (49) | 0.3069 (28) |
Xinyu | 0.5926 (31) | 0.3269 (38) | 0.1016 (75) | Daqing | 1.1011 (2) | 1.0951 (3) | 0.4400 (22) |
Jingdezhen | 0.4781 (44) | 0.2167 (56) | 0.1514 (60) | Hegang | 0.1432 (90) | 0.0093 (92) | 0.2606 (34) |
City | EE (Rank) | EI (Rank) | RW (Rank) | City | EE (Rank) | EI (Rank) | RW (Rank) |
---|---|---|---|---|---|---|---|
Lincang | 0.6720 (25) | 1.0000 (5) | 1.0000 (31) | Pingxiang | 0.4877 (39) | 0.2283 (56) | 0.2687 (72) |
Baoshan | 0.2899 (69) | 0.1199 (78) | 0.4481 (52) | Ganzhou | 0.4428 (46) | 0.1208 (76) | 0.2148 (81) |
Zhaotong | 0.3676 (57) | 0.0266 (91) | 1.0000 (7) | Tangshan | 1.0000 (6) | 0.1066 (81) | 0.2013 (83) |
Puer | 0.2680 (72) | 0.1946 (60) | 0.5764 (39) | Zhangjiakou | 0.2859 (70) | 0.1275 (74) | 0.2986 (68) |
Qujing | 0.6194 (27) | 0.1387 (72) | 0.3611 (61) | Chengde | 0.2928 (68) | 0.2816 (47) | 0.3240 (65) |
Wuhai | 0.3862 (53) | 0.1639 (65) | 1.0000 (5) | Xingtai | 0.4297 (49) | 0.3049 (41) | 0.3748 (59) |
Baotou | 1.0000 (6) | 0.2838 (46) | 0.1805 (86) | Handan | 0.4538 (44) | 0.1203 (77) | 1.0000 (20) |
Chifeng | 0.2529 (77) | 0.1604 (69) | 0.3703 (60) | Sanmenxia | 0.5157 (35) | 0.3797 (36) | 0.2992 (67) |
Erdos | 1.0000 (6) | 0.2088 (58) | 0.4838 (46) | Pingdingshan | 0.3718 (56) | 0.1634 (66) | 1.0000 (11) |
Jilin | 0.4884 (38) | 0.2378 (55) | 0.2848 (70) | Luoyang | 0.6460 (26) | 0.1995 (59) | 0.2093 (82) |
Songyuan | 1.1930 (2) | 1.1144 (1) | 1.0991 (2) | Jiaozuo | 0.5776 (30) | 1.0000 (5) | 0.5408 (40) |
Liaoyuan | 0.7264 (18) | 0.2762 (49) | 1.0000 (12) | Hebi | 0.5049 (37) | 0.2989 (42) | 1.0000 (10) |
Tonghua | 0.3542 (60) | 0.1050 (82) | 0.2560 (74) | Huzhou | 0.6036 (28) | 1.0000 (5) | 0.1629 (88) |
Nanchong | 0.6904 (22) | 1.0000 (5) | 1.0000 (29) | Ezhou | 0.5545 (32) | 0.3906 (35) | 1.0000 (9) |
Panzhihua | 0.2365 (80) | 0.7335 (25) | 0.5771 (38) | Huangshi | 0.4409 (47) | 0.2509 (54) | 0.1710 (87) |
Luzhou | 0.3811 (54) | 1.0000 (5) | 1.0000 (28) | Loudi | 0.4529 (45) | 0.1818 (63) | 1.0000 (32) |
Zigong | 1.0864 (3) | 1.0975 (2) | 1.0872 (3) | Hengyang | 0.7105 (21) | 1.0000 (5) | 1.0000 (27) |
Ya’an | 0.3519 (61) | 0.7181 (26) | 1.0000 (17) | Shaoyang | 1.0153 (5) | 0.2764 (48) | 1.2764 (1) |
Shizuishan | 0.2611 (74) | 0.4922 (32) | 1.0000 (6) | Chenzhou | 0.9216 (14) | 0.1113 (79) | 0.3062 (66) |
Xuancheng | 0.7213 (19) | 0.5247 (31) | 0.2684 (73) | Pingliang | 0.2446 (78) | 0.1452 (71) | 0.6194 (36) |
Huaibei | 0.4539 (43) | 0.9913 (23) | 0.4501 (51) | Zhangye | 0.1127 (90) | 0.5441 (30) | 1.0000 (22) |
Huainan | 0.3277 (62) | 0.2616 (51) | 0.3404 (62) | Wuwei | 0.2752 (71) | 1.0000 (5) | 1.0000 (21) |
Tongling | 0.5186 (34) | 0.3375 (38) | 0.1611 (90) | Baiyin | 0.1427 (87) | 0.1913 (61) | 0.5125 (43) |
Maanshan | 0.5669 (31) | 1.0000 (5) | 0.2285 (77) | Jinchang | 0.1165 (89) | 1.0000 (5) | 1.0000 (14) |
Dongying | 1.0000 (6) | 0.6351 (27) | 0.2229 (79) | Longnan | 0.2428 (79) | 0.0426 (90) | 1.0000 (16) |
Linyi | 0.4579 (42) | 0.1621 (67) | 1.0000 (15) | Sanming | 0.7176 (20) | 0.2580 (53) | 0.2265 (78) |
Zaozhuang | 0.7806 (16) | 0.5569 (29) | 0.2980 (69) | Nanping | 0.5144 (36) | 1.0000 (5) | 0.4919 (45) |
Tai’an | 1.0677 (4) | 1.0689 (3) | 0.2305 (76) | Longyan | 0.6723 (24) | 0.2973 (43) | 0.1888 (85) |
Jining | 0.8323 (15) | 0.1248 (75) | 0.1961 (84) | Liupanshui | 0.7545 (17) | 0.0776 (84) | 0.4236 (54) |
Zibo | 1.0000 (6) | 0.3267 (39) | 0.1584 (91) | Anshun | 0.3563 (59) | 0.1591 (70) | 0.3914 (57) |
Lvliang | 0.4697 (41) | 0.0624 (87) | 1.0000 (8) | Bijie | 0.4760 (40) | 0.0435 (89) | 0.1612 (89) |
Datong | 0.2171 (83) | 0.2705 (50) | 1.0000 (30) | Fushun | 0.2222 (82) | 1.0000 (5) | 1.0000 (24) |
Yizhou | 0.2566 (76) | 0.1068 (80) | 0.4806 (47) | Benxi | 0.2254 (81) | 0.3994 (34) | 0.4610 (49) |
Jincheng | 0.3756 (55) | 0.2853 (45) | 0.4480 (53) | Panjin | 0.3196 (64) | 1.0000 (5) | 0.6987 (35) |
Yuncheng | 0.3610 (58) | 0.1878 (62) | 0.5249 (41) | Huludao | 0.3877 (52) | 0.8543 (24) | 1.0000 (23) |
Yangquan | 0.1903 (86) | 0.4115 (33) | 0.5233 (42) | Fuxin | 0.1908 (85) | 1.0000 (5) | 1.0000 (25) |
Yunfu | 0.4120 (51) | 0.1648 (64) | 0.2340 (75) | Anshan | 0.2599 (75) | 1.0000 (5) | 0.5108 (44) |
Shaoguan | 0.3187 (65) | 0.3703 (37) | 0.2812 (71) | Xianyang | 1.0000 (6) | 0.2865 (44) | 0.4160 (55) |
Hechi | 1.1958 (1) | 1.0106 (4) | 1.0100 (4) | Yan’an | 0.3005 (67) | 0.0721 (86) | 0.4599 (50) |
Baise | 0.3096 (66) | 0.1366 (73) | 0.3311 (64) | Yulin | 0.5388 (33) | 0.0766 (85) | 0.2224 (80) |
Hezhou | 0.3225 (63) | 0.2205 (57) | 1.0000 (18) | Weinan | 1.0000 (6) | 0.1606 (68) | 0.4112 (56) |
Karamay | 0.2664 (73) | 1.0000 (5) | 1.0000 (33) | Tongchuan | 0.2027 (84) | 0.0603 (88) | 0.4751 (48) |
Suqian | 0.6747 (23) | 1.0000 (5) | 1.0000 (34) | Yichun | 0.0734 (92) | 0.2585 (52) | 1.0000 (26) |
Xuzhou | 1.0000 (6) | 0.0946 (83) | 0.1206 (92) | Shuangyashan | 0.1409 (88) | 1.0000 (5) | 1.0000 (13) |
Xinyu | 0.5807 (29) | 0.5631 (28) | 0.3824 (58) | Daqing | 0.4279 (50) | 1.0000 (5) | 0.6057 (37) |
Jingdezhen | 0.4312 (48) | 0.3080 (40) | 0.3330 (63) | Hegang | 0.1043 (91) | 0.0205 (92) | 1.0000 (19) |
City | EE (Rank) | EI (Rank) | RW (Rank) | City | EE (Rank) | EI (Rank) | RW (Rank) |
---|---|---|---|---|---|---|---|
Lincang | 1.1545 (1) | 1.1412 (2) | 1.1162 (2) | Pingxiang | 0.3693 (51) | 0.3961 (32) | 0.3259 (70) |
Baoshan | 0.5987 (27) | 0.2700 (51) | 0.6017 (45) | Ganzhou | 0.5814 (31) | 0.1018 (84) | 0.2473 (87) |
Zhaotong | 0.5822 (30) | 0.1290 (71) | 1.0000 (31) | Tangshan | 0.6016 (26) | 0.1310 (70) | 0.2506 (86) |
Puer | 0.4911 (35) | 0.0806 (88) | 0.6166 (43) | Zhangjiakou | 0.2666 (70) | 0.1278 (72) | 0.2704 (83) |
Qujing | 1.0303 (6) | 0.1363 (69) | 1.0220 (4) | Chengde | 0.3529 (57) | 0.2658 (52) | 0.3412 (67) |
Wuhai | 0.2727 (69) | 1.0000 (4) | 1.0000 (7) | Xingtai | 0.3622 (53) | 0.2070 (63) | 1.0000 (13) |
Baotou | 0.2555 (73) | 0.2507 (57) | 0.3089 (74) | Handan | 0.3534 (56) | 0.1084 (80) | 1.0000 (9) |
Chifeng | 0.2881 (68) | 0.0996 (85) | 0.3156 (72) | Sanmenxia | 0.4345 (41) | 0.1969 (64) | 0.2794 (82) |
Erdos | 1.0000 (10) | 0.1914 (65) | 0.2825 (81) | Pingdingshan | 0.3255 (60) | 0.1025 (83) | 1.0000 (32) |
Jilin | 0.1852 (82) | 0.3117 (43) | 0.8178 (39) | Luoyang | 0.7550 (18) | 0.2824 (49) | 0.3333 (68) |
Songyuan | 0.3232 (61) | 0.4250 (29) | 1.0000 (24) | Jiaozuo | 1.0231 (8) | 1.0137 (3) | 0.8966 (36) |
Liaoyuan | 0.2970 (65) | 0.1230 (75) | 1.0000 (23) | Hebi | 0.5949 (28) | 0.2652 (53) | 1.0000 (16) |
Tonghua | 0.2618 (71) | 0.1233 (74) | 0.3593 (64) | Huzhou | 0.6296 (23) | 1.0000 (4) | 0.2239 (90) |
Nanchong | 1.0056 (9) | 1.4923 (1) | 1.9137 (1) | Ezhou | 1.0000 (13) | 0.4127 (31) | 0.3665 (63) |
Panzhihua | 0.2235 (75) | 0.2989 (45) | 0.4614 (51) | Huangshi | 0.4472 (39) | 0.3099 (44) | 0.3234 (71) |
Luzhou | 0.3664 (52) | 1.0000 (4) | 1.0000 (11) | Loudi | 0.3848 (49) | 0.1847 (66) | 0.7307 (40) |
Zigong | 1.0000 (12) | 0.6885 (23) | 0.6536 (42) | Hengyang | 0.6805 (21) | 1.0000 (4) | 1.0000 (21) |
Ya’an | 0.4264 (44) | 1.0000 (4) | 1.0000 (8) | Shaoyang | 1.1082 (3) | 0.3505 (38) | 1.0165 (5) |
Shizuishan | 0.2162 (77) | 0.4856 (26) | 1.0000 (33) | Chenzhou | 0.8092 (17) | 0.1200 (77) | 0.4091 (57) |
Xuancheng | 0.8487 (16) | 1.0000 (4) | 0.3018 (76) | Pingliang | 0.2885 (67) | 1.0000 (4) | 0.5891 (47) |
Huaibei | 0.5372 (33) | 1.0000 (4) | 1.0000 (19) | Zhangye | 0.1536 (87) | 1.0000 (4) | 1.0000 (10) |
Huainan | 0.3551 (55) | 0.2105 (62) | 0.3820 (60) | Wuwei | 0.2195 (76) | 0.5267 (25) | 0.6039 (44) |
Tongling | 0.3191 (62) | 0.3383 (39) | 0.2084 (91) | Baiyin | 0.1453 (88) | 0.2382 (60) | 0.7262 (41) |
Maanshan | 0.4722 (36) | 1.0000 (4) | 0.3050 (75) | Jinchang | 0.1249 (90) | 1.0000 (4) | 1.0000 (34) |
Dongying | 0.4336 (42) | 0.5826 (24) | 0.3006 (77) | Longnan | 0.4046 (48) | 0.0920 (87) | 0.5201 (49) |
Linyi | 0.4129 (45) | 0.1261 (73) | 1.0000 (14) | Sanming | 1.0000 (11) | 0.2437 (59) | 0.2851 (79) |
Zaozhuang | 0.5064 (34) | 0.2548 (55) | 0.4406 (52) | Nanping | 0.7276 (20) | 1.0000 (4) | 0.3898 (59) |
Tai’an | 0.6184 (24) | 0.2566 (54) | 0.3105 (73) | Longyan | 0.8561 (15) | 0.3511 (37) | 0.2063 (92) |
Jining | 0.5872 (29) | 0.1063 (81) | 0.3268 (69) | Liupanshui | 0.7463 (19) | 0.0951 (86) | 0.3728 (61) |
Zibo | 0.4629 (37) | 0.3309 (41) | 0.2282 (89) | Anshun | 0.3081 (63) | 0.1400 (67) | 0.4016 (58) |
Lvliang | 1.0000 (14) | 0.1225 (76) | 0.4225 (56) | Bijie | 0.3558 (54) | 0.3354 (40) | 1.0000 (26) |
Datong | 0.2143 (78) | 0.1155 (78) | 0.3575 (65) | Fushun | 0.1665 (85) | 1.0000 (4) | 1.0000 (27) |
Yizhou | 0.4047 (47) | 0.1092 (79) | 0.5543 (48) | Benxi | 0.1670 (84) | 1.0000 (4) | 1.0000 (35) |
Jincheng | 0.6132 (25) | 0.2176 (61) | 0.3454 (66) | Panjin | 0.3283 (58) | 1.0000 (4) | 1.0000 (30) |
Yuncheng | 0.4374 (40) | 0.2505 (58) | 1.0000 (17) | Huludao | 0.2391 (74) | 0.4474 (28) | 1.0000 (20) |
Yangquan | 0.1829 (83) | 0.3151 (42) | 0.4338 (54) | Fuxin | 0.1883 (81) | 1.0000 (4) | 1.0000 (22) |
Yunfu | 0.2020 (80) | 0.0106 (92) | 0.2563 (85) | Anshan | 0.2142 (79) | 0.3694 (34) | 0.8281 (38) |
Shaoguan | 0.3265 (59) | 0.4648 (27) | 0.3725 (62) | Xianyang | 1.0878 (4) | 0.3552 (36) | 0.8750 (37) |
Hechi | 1.0249 (7) | 0.2931 (47) | 1.0396 (3) | Yan’an | 0.4480 (38) | 0.3600 (35) | 0.4388 (53) |
Baise | 0.4289 (43) | 0.0737 (89) | 0.2845 (80) | Yulin | 0.4104 (46) | 0.0512 (90) | 0.2376 (88) |
Hezhou | 0.2599 (72) | 0.2540 (56) | 1.0000 (25) | Weinan | 1.0623 (5) | 0.1380 (68) | 0.4811 (50) |
Karamay | 0.2973 (64) | 1.0000 (4) | 1.0000 (15) | Tongchuan | 0.1556 (86) | 0.1043 (82) | 0.4276 (55) |
Suqian | 0.6592 (22) | 1.0000 (4) | 1.0000 (6) | Yichun | 0.1243 (91) | 1.0000 (4) | 1.0000 (28) |
Xuzhou | 1.1122 (2) | 0.2939 (46) | 0.2579 (84) | Shuangyashan | 0.1369 (89) | 0.2927 (48) | 1.0000 (18) |
Xinyu | 0.3772 (50) | 0.3738 (33) | 0.5904 (46) | Daqing | 0.2934 (66) | 0.4221 (30) | 1.0000 (12) |
Jingdezhen | 0.5568 (32) | 0.2756 (50) | 0.2872 (78) | Hegang | 0.1046 (92) | 0.0175 (91) | 1.0000 (29) |
References
- The International Energy Agency. Data and Statistics of International Energy Agency. Available online: https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=Total% (accessed on 15 August 2023).
- The International Energy Agency. CO2 Emissions in 2022. Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 15 August 2023).
- Balakrishnan, K.; Dey, S.; Gupta, T.; Dhaliwal, R.S.; Brauer, M.; Cohen, A.J.; Stanaway, J.D.; Beig, G.; Joshi, T.K.; Aggarwal, A.N.; et al. The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The Global Burden of Disease Study 2017. Lancet Planet. Health 2019, 3, e26–e39. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Ezzati, M.; Cannon, J.B.; Allen, R.T.; Jerrett, M.; Burnett, R.T. Mortality risk and PM2.5 air pollution in the USA: An analysis of a national prospective cohort. Air Qual. Atmos. Health 2018, 11, 245–252. [Google Scholar] [CrossRef]
- Zhang, Y.; Shuai, C.; Bian, J.; Chen, X.; Wu, Y.; Shen, L. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. J. Clean. Prod. 2019, 218, 96–107. [Google Scholar] [CrossRef]
- United Nations. Revision of World Urbanization Prospects 2018. 2018. Available online: https://population.un.org/wup/ (accessed on 15 August 2023).
- Liu, S.; Zhang, J.J.; Li, J.; Li, Y.; Zhang, J.; Wu, X. Simulating and mitigating extreme urban heat island effects in a factory area based on machine learning. Build. Environ. 2021, 202, 108051. [Google Scholar] [CrossRef]
- Mauree, D.; Naboni, E.; Coccolo, S.; Perera, A.T.D.; Nik, V.M.; Scartezzini, J.L. A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renew. Sustain. Energy Rev. 2019, 112, 733–746. [Google Scholar] [CrossRef]
- The Chinese Government. The Sustainable Development Plan for Resources-Based Cities in China (2013–2020). Available online: https://www.gov.cn/gongbao/content/2013/content_2547140.htm (accessed on 23 August 2023).
- Li, H.; Long, R.; Chen, H. Economic transition policies in Chinese resource-based cities: An overview of government efforts. Energy Policy. 2013, 55, 251–260. [Google Scholar] [CrossRef]
- Shao, S.; Zhang, Y.; Tian, Z.; Li, D.; Yang, L. The regional Dutch disease effect within China: A spatial econometric investigation. Energy Econ. 2020, 88, 104766. [Google Scholar] [CrossRef]
- Qin, B.; Liu, L.; Tao, Y. Evaluation of sustainable development of resource-based cities in China. J. Environ. Econ. 2019, 4, 142–158. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, D.; Qi, Y.; Shao, S.; Zhou, Y.; Shan, Y. The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach. Energy Econ. 2021, 101, 105408. [Google Scholar] [CrossRef]
- Koppl, R.; Kauffman, S.; Felin, T.; Longo, G. Economics for a creative world. J. Institutional Econ. 2015, 11, 1–31. [Google Scholar] [CrossRef]
- Kiani, M.R.; Saen, R.F.; Goh, M. Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach. Technol. Forecast. Soc. Chang. 2019, 144, 553–562. [Google Scholar] [CrossRef]
- Schaltegger, S.; Andreas, S. Ökologische Rationalität: Ansatzpunkte Zur Ausgestaltung von Ökologieorientierten Managementinstrumenten. Die Unternehm. 1990, 44, 273–290. [Google Scholar]
- Camarero, M.; Castillo, J.; Picazotadeo, A.J.; Tamarit, C. Eco-efficiency and convergence in OECD countries. Environ. Resour. Econ. 2013, 55, 87–106. [Google Scholar] [CrossRef]
- De Araujo, R.V.; Espejo, R.A.; Constantino, M.; de Moraes, P.M.; Taveira, J.C.; Lira, F.S.; Herrera, G.P.; Costa, R. Eco-efficiency measurement as an approach to improve the sustainable development of municipalities: A case study in the Midwest of Brazil. Environ. Dev. 2021, 39, 100652. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Z.; Wong, S.W.; Liao, S.; Lou, Y. A holistic evaluation of smart city performance in the context of China. J. Clean. Prod. 2018, 200, 667–679. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, D.; Shi, Q.; Cheng, M. Which countries are more ecologically efficient in improving human well-being? An application of the index of ecological well-being performance. Resour. Conserv. Recycl. 2018, 129, 112–119. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, Y.; Jiao, L.; Shuai, C.; Zhang, H. Eco-efficiency, eco-technology innovation and eco-well-being performance to improve global sustainable development. Environ. Impact Assess. Rev. 2021, 89, 106580. [Google Scholar] [CrossRef]
- Long, L.; Wang, X.; Guo, B. Evaluation of urban ecological well-being performance based on revised DEA model—A case study of 35 major cities in China. J. Nat. Resour. 2017, 32, 595–605. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M. Determining the innovation efficiency of resource-based cities using a relational network dea model: Evidence from China. Extr. Ind. Soc. 2020, 7, 1557–1566. [Google Scholar] [CrossRef]
- Li, B.; Dewan, H. Efficiency differences among China’s resource-based cities and their determinants. Resour. Policy 2017, 51, 31–38. [Google Scholar] [CrossRef]
- Ruan, F.; Liang, Y.; Wang, D. The complexity for the resource-based cities in China on creating sustainable development. Cities 2020, 97, 102571. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, F.; Lu, Z. Resource-based cities (RBC): A road to sustainability. Int. J. Sustain. Dev. World Ecol. 2014, 21, 465–470. [Google Scholar] [CrossRef]
- Li, L.; Lei, Y.; Pan, D.; Si, C. Research on Sustainable Development of Resource-Based Cities Based on the DEA Approach: A Case Study of Jiaozuo, China. Math. Probl. Eng. 2016, 2016, 5024837. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, Y.; Zhou, Y.; Wang, Y. Analysis of the water use efficiency using super-efficiency data envelopment analysis. Appl. Water Sci. 2020, 10, 139. [Google Scholar] [CrossRef]
- Guo, S.-D.; Li, H.; Zhao, R.; Zhou, X. Industrial environmental efficiency assessment for China’s western regions by using a SBM-based DEA. Environ. Sci. Pollut. Res. 2019, 26, 27542–27550. [Google Scholar] [CrossRef]
- Meng, M.; Qu, D. Understanding the green energy efficiencies of provinces in China: A super-SBM and GML analysis. Energy 2022, 239, 121912. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H.; Ortiz, J.; Huang, J.; Zhao, C.; Wang, Z. A Decomposed Data Analysis Approach to Assessing City Sustainable Development Performance: A Network DEA Model with a Slack-Based Measure. Sustainability 2022, 14, 11037. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S. Digital Economy, Entrepreneurship, and High-Quality Economic Development: Empirical Evidence from Urban China. J. Manag. World 2020, 36, 65–76. [Google Scholar] [CrossRef]
- Cheng, Z.; King, S.P.; Smyth, R.; Wang, H. Housing property rights and subjective wellbeing in urban China. Eur. J. Political Econ. 2016, 45, 160–174. [Google Scholar] [CrossRef]
- Handrich, L.; Charles, C. Ragin: Fuzzy-Set Social Science; The University of Chicago Press: Chicago, IL, USA, 2000; Volume 41, pp. 788–789. [Google Scholar] [CrossRef]
- Arch, G.W. Moving beyond multiple regression analysis to algorithms: Calling for adoption of a paradigm shift from symmetric to asymmetric thinking in data analysis and crafting theory. J. Bus. Res. 2013, 66, 463–472. [Google Scholar] [CrossRef]
- Zhou, Y.; Jia, L. Configuration Perspective and Qualitative Comparative Analysis (QCA): A New Path in Management Research. J. Manag. World 2017, 6, 155–167. [Google Scholar] [CrossRef]
- Hernndez-Perlines, F.; Moreno-Garca, J.; Yañez-Araque, B. The Mediating Role of Competitive Strategy in International Entrepreneurial Orientation. J. Bus. Res. 2019, 69, 5383–5389. [Google Scholar] [CrossRef]
- Morgan, S.L. Review of Redesigning Social Inquiry: Fuzzy Sets and Beyond. Soc. Forces 2010, 88, 1936–1938. [Google Scholar] [CrossRef]
- Guo, C.; Luo, L.; Ye, M. Empirical Analysis of Factors Influencing the Sustainable Development of Resource-based Cities. China Popul. Resour. Environ. 2014, 24, 81–89. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, Y.; Shuai, C.; Shen, L.; Ren, H.; Wang, Y. Have cities effectively improved ecological well-being performance? Empirical analysis of 278 Chinese cities. J. Clean. Prod. 2020, 245, 118913. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, Y.; Ren, J.; Sun, L.; Liu, C. Inequality in the distribution of health resources and health services in China: Hospitals versus primary care institutions. Int. J. Equity Health 2017, 16, 42. [Google Scholar] [CrossRef]
- Yu, B.; Jin, G.; Cheng, Z. Economic Effects of Environmental Regulations: “Emission Reduction” or “Efficiency Enhancement”. Stat. Res. 2019, 36, 88–100. [Google Scholar] [CrossRef]
- Shen, K.; Jin, G.; Fang, X. Does Environmental Regulation Cause Pollution to Transfer Nearby? Econ. Res. J. 2017, 52, 44–59. [Google Scholar]
- Zhang, X. China Regional Innovation and Entrepreneurship Index, V4; Peking University Open Research Data: Beijing, China, 2019. [Google Scholar] [CrossRef]
- Xu, X.; Xu, X.F.; Chen, Q.; Che, Y. The research on generalized regional “resource curse” in China’s new normal stage. Resour. Policy 2016, 49, 12–19. [Google Scholar] [CrossRef]
- Lv, X.; Mu, X. Investigating the Synergistic Evolution Mechanism of Multi-Scale Cities: A Case Study of Three Urban Agglomerations in Eastern China. Buildings 2023, 13, 1197. [Google Scholar] [CrossRef]
- Sukhov, A.; Friman, M.; Olsson, L.E. Unlocking potential: An integrated approach using PLS-SEM, NCA, and fsQCA for informed decision making. J. Retail. Consum. Serv. 2023, 74, 103424. [Google Scholar] [CrossRef]
- Greckhamer, T.; Furnari, S.; Fiss, P.C.; Aguilera, R.V. Studying configurations with qualitative comparative analysis: Best practices in strategy and organization research. Strateg. Organ. 2018, 16, 482–495. [Google Scholar] [CrossRef]
- Li, J.; Wu, H. Innovation and Entrepreneurship Efficiency and Its Improvement Path in China’s Crowd Innovation Spaces. RD Manag. 2022, 34, 66–80. [Google Scholar] [CrossRef]
- Duan, Z.; Li, M.; Wu, P. High-Quality Regional Economic Development Paths in China—QCA-Based Linkage Effect. Sustainability 2023, 15, 6325. [Google Scholar] [CrossRef]
- Roig-Tierno, N.; Gonzalez-Cruz, T.F.; Llopis-Martinez, J. An overview of qualitative comparative analysis: A bibliometric analysis. J. Innov. Knowl. 2017, 2, 15–23. [Google Scholar] [CrossRef]
- Wang, L.; Hu, H.; Wang, X.; Zhang, X.; Sun, H. Spatiotemporal Evolution and Cause Analysis of Urban Housing Investment Resilience: An Empirical Study of 35 Large and Medium-Sized Cities in China. Land 2022, 11, 1725. [Google Scholar] [CrossRef]
- Fiss, P.C.; Sharapov, D.; Cronqvist, L. Opposites attract? Opportunities and challenges for integrating large-N QCA and econometric analysis. Political Res. Q. 2013, 66, 191–198. [Google Scholar]
- Schneider, C.Q.; Wagemann, C. Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis; Cambridge University Press: Cambridge, UK, 2012; pp. 291–293. [Google Scholar]
- Custodio, H.M.; Hadjikakou, M.; Bryan, B.A. A Review of socioeconomic indicators of sustainability and wellbeing building on the social foundations framework. Ecol. Econ. 2023, 203, 107608. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, J. Sustainable development evaluation of the society–economy–environment in a resource-based city of China: A complex network approach. J. Clean. Prod. 2020, 263, 121510. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, C.; Huang, N.; Fu, Y.; Yan, Z. Developing an Indicator System to Monitor City’s Sustainability Integrated Local Governance: A Case Study in Zhangjiakou. Sustainability 2022, 14, 5047. [Google Scholar] [CrossRef]
- Luo, L.; Liu, P.; Zhu, F.; Sun, Y.; Liu, L. Policy objective bias and institutional quality improvement: Sustainable development of resource-based cities. Resour. Policy 2022, 78, 102932. [Google Scholar] [CrossRef]
- Li, X.; Zhuang, X. Eco-City Problems: Industry–City–Ecology, Urbanization Development Assessment in Resource-Exhausted Cities. Sustainability 2023, 15, 166. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Yang, X.; Wang, W.; Wu, H.; Ran, Q.; Luo, R. The impact of innovative city construction on ecological efficiency: A quasi-natural experiment from China. Sustain. Prod. Consum. 2021, 28, 1724–1735. [Google Scholar] [CrossRef]
- Luo, G.; Guo, J.; Yang, F.; Wang, C. Environmental regulation, green innovation and high-quality development of enterprise: Evidence from China. J. Clean. Prod. 2023, 418, 138112. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.; Liu, Y.; Zhang, X.; Fang, X. Where is the pathway to sustainable urban development? Coupling coordination evaluation and configuration analysis between low-carbon development and eco-environment: A case study of the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109473. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, D.; Zhang, B.; Guan, C.H.; Cheng, X.; Cheng, T. Coal resource-based cities at the crossroads: Towards a sustainable urban future. Cities 2023, 140, 104424. [Google Scholar] [CrossRef]
- Wang, L. Research on the Coordinated Development of Chinese Tertiary Industry. In Proceedings of the International Conference on Information Engineering and Applications (IEA) 2012. Lecture Notes in Electrical Engineering; Zhong, Z., Ed.; Springer: London, UK, 2013; p. 217. [Google Scholar] [CrossRef]
- Aversa, P.; Furnari, S.; Haefliger, S. Business model configurations and performance: A qualitative comparative analysis in Formula One racing, 2005–2013. Ind. Corp. Chang. 2015, 24, 655–676. [Google Scholar] [CrossRef]
City Type | Number | Characteristics |
---|---|---|
Growth | 31 | The resource development of growth resource-based cities is in an ascending phase, with significant potential for resource security. These cities possess strong economic and social development momentum, positioning them as crucial suppliers and reserve bases for energy resources in China. |
Maturity | 141 | The resource development of maturity resource-based has reached a stable phase, characterized by robust resource security capabilities. These cities boast a higher level of economic and social development, making them the pivotal hub for ensuring energy resource security in China. |
Recession | 67 | In recession resource-based cities, resources are depleting, economic development lags behind, social issues become pronounced, and ecological environmental pressures intensify. These cities represent pivotal and challenging areas where expediting the transformation of economic development is of paramount importance. |
Regeneration | 23 | The regeneration cities have largely overcome their reliance on resources, propelling their economic and social realms onto a virtuous developmental trajectory. These cities serve as pioneering regions for the transformation of economic development. |
Class | Indicator | Unit | Description/ Basis for Indicator Selection |
---|---|---|---|
Inputs (for Stage I) | Land area | km2 | Administrative area/ Literature study: [15,21] |
Labor force | 104 persons | Number of the labor force in the primary, secondary, and tertiary industries/ Literature study: [15,21] | |
Energy consumption | 104 t | Converting to standard coal/ Literature study: [15,21] | |
Intermediate outputs (for Stage I) | GDP | 104 USD | —/ Literature study: [15,21] |
Pollution indicator | — | Equations (5) and (6)/ Literature study: [43] | |
CO2 emissions | 104 t | —/ Literature study: [21] | |
Intermediate outputs (for Stage II) | R&D expenses | 104 USD | Expenses in research and development/ Literature study: [15] |
Education expenses | 104 USD | —/ Literature study: [21] | |
Environmental regulation | — | Equations (7)–(9)/ Literature study: [44] | |
Outputs (for Stage II) | Green patents | A unit | Number of green patent applications/ Literature study: [15] |
Researchers in R&D | Person | Researchers in research and development/ Literature study: [15] | |
Internet popularization | Per 100 persons | Number of people who use Internet among 100 persons/ Literature study: [33] | |
Income | USD | The average salary of employees/ Literature study: [21] | |
Health care | A unit | Number of hospitals and health centers/ Literature study: [21] | |
Education | 104 persons | Number of middle school and primary school students in school/ Literature study: [21] | |
Average housing price | USD | —/ Literature study: [34] | |
Condition variable (for fsQCA) | Per capita GDP | USD | Per capita GDP/ Literature study: [40] |
Industrial structure | % | The proportion of the value of the tertiary industry to GDP/ Literature study: [40] | |
City size | 104 persons | The population at the end of the year/ Literature study: [40] | |
Tech innovation | Score | The score of technological innovation ability/ Literature study: [40] | |
City type | — | Growth, maturity, recession, and regeneration/ Literature study: [9,25] | |
Export dependence | % | The proportion of exports to GDP/ Literature study: [40] |
Conditions | Completely Affiliated | Intersections | Completely Unaffiliated |
---|---|---|---|
EE | 0.6212 | 0.4076 | 0.2711 |
EI | 0.6091 | 0.2935 | 0.1350 |
RW | 1.0000 | 0.5898 | 0.3266 |
Per capita GDP | 0.3878 | 0.2503 | 0.1920 |
Industrial structure | 0.7232 | 0.6056 | 0.4838 |
City size | 0.4320 | 0.2992 | 0.2217 |
Tech innovation | 0.6473 | 0.4805 | 0.2955 |
City type | 0.7000 | 0.4000 | 0.1000 |
Export dependence | 0.3148 | 0.1875 | 0.1389 |
Conditions | High EE | High EI | High RW | |||
---|---|---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | Consistency | Coverage | |
High per capita GDP | 0.612 | 0.643 | 0.625 | 0.658 | 0.407 | 0.424 |
Non-high per capita GDP | 0.480 | 0.447 | 0.480 | 0.448 | 0.684 | 0.631 |
High industrial structure | 0.468 | 0.452 | 0.514 | 0.498 | 0.545 | 0.522 |
Non-high industrial structure | 0.623 | 0.630 | 0.603 | 0.610 | 0.542 | 0.542 |
High city size | 0.682 | 0.672 | 0.439 | 0.434 | 0.528 | 0.516 |
Non-high city size | 0.410 | 0.405 | 0.665 | 0.660 | 0.575 | 0.563 |
High tech innovation | 0.683 | 0.679 | 0.542 | 0.540 | 0.393 | 0.388 |
Non-high tech innovation | 0.410 | 0.403 | 0.571 | 0.562 | 0.696 | 0.676 |
High city type | 0.606 | 0.496 | 0.731 | 0.599 | 0.681 | 0.552 |
Non-high city type | 0.518 | 0.646 | 0.425 | 0.531 | 0.452 | 0.559 |
High export dependence | 0.607 | 0.640 | 0.573 | 0.606 | 0.457 | 0.478 |
Non-high export dependence | 0.470 | 0.436 | 0.526 | 0.489 | 0.628 | 0.578 |
Conditions | High EE | High EI | High RW | |||||||
---|---|---|---|---|---|---|---|---|---|---|
H1a | H1b | H1c | H1d | H1e | H2a | H2b | H2c | H3a | H3b | |
Per capita GDP | ● | ● | ⊗ | ⊗ | ⊗ | ● | ● | ⊗ | ||
Industrial structure | ⊗ | ⊗ | ⊗ | ⊗ | ⊗ | ⊗ | ⊗ | ⊗ | ⊗ | |
City size | ● | ● | ● | ● | ⊗ | ⊗ | ⊗ | ⊗ | ⊗ | |
Tech innovation | ● | ● | ⊗ | ● | ● | ⊗ | ⊗ | ⊗ | ⊗ | |
City type | • | • | ⊗ | • | ⊗ | • | • | • | ● | ● |
Export dependence | ● | ● | ● | ● | ● | ● | ||||
Consistency | 0.955 | 0.886 | 0.855 | 0.860 | 0.925 | 0.893 | 0.921 | 0.939 | 0.902 | 0.902 |
Raw coverage | 0.212 | 0.269 | 0.120 | 0.085 | 0.076 | 0.190 | 0.132 | 0.169 | 0.178 | 0.131 |
Unique coverage | 0.039 | 0.096 | 0.056 | 0.013 | 0.012 | 0.106 | 0.047 | 0.085 | 0.078 | 0.030 |
Solution consistency | 0.859 | 0.909 | 0.912 | |||||||
Solution coverage | 0.432 | 0.323 | 0.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Yin, Q.; Huang, M.; Sun, W. Analysis of Ecological Efficiency, Ecological Innovation, Residents’ Well-Being and Their Improvement Paths in Chinese Resource-Based Cities—Based on the Approaches of Two-Stage Super-SBM and fsQCA. Sustainability 2023, 15, 13332. https://doi.org/10.3390/su151813332
Wang Q, Yin Q, Huang M, Sun W. Analysis of Ecological Efficiency, Ecological Innovation, Residents’ Well-Being and Their Improvement Paths in Chinese Resource-Based Cities—Based on the Approaches of Two-Stage Super-SBM and fsQCA. Sustainability. 2023; 15(18):13332. https://doi.org/10.3390/su151813332
Chicago/Turabian StyleWang, Qilong, Qi Yin, Muyi Huang, and Wei Sun. 2023. "Analysis of Ecological Efficiency, Ecological Innovation, Residents’ Well-Being and Their Improvement Paths in Chinese Resource-Based Cities—Based on the Approaches of Two-Stage Super-SBM and fsQCA" Sustainability 15, no. 18: 13332. https://doi.org/10.3390/su151813332
APA StyleWang, Q., Yin, Q., Huang, M., & Sun, W. (2023). Analysis of Ecological Efficiency, Ecological Innovation, Residents’ Well-Being and Their Improvement Paths in Chinese Resource-Based Cities—Based on the Approaches of Two-Stage Super-SBM and fsQCA. Sustainability, 15(18), 13332. https://doi.org/10.3390/su151813332