Sustainable Waste Management in the Production of Medicinal and Aromatic Plants—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
- There was a duplicate article in another database;
- The full text could not be accessed;
- They were not written in English;
- They were not related to MAPs;
- They did not refer to the circular economy or waste management concepts.
3. Results
3.1. Descriptive Results
3.2. Thematic Results
3.2.1. Energy Purposes
3.2.2. Crop Management
3.2.3. Chemical Industry
3.2.4. Food Industry
3.2.5. Pharmaceutical, Natural Medicine and Cosmetic Industries
3.2.6. Further Applications
3.3. Positive Effects of Waste Valorisation
4. Discussion
- The identification of barriers and drivers for industrial implementation.
- The development of more efficient techniques and technology for the extraction of valuable compounds from MAP residues and for their usage to develop value-added products for crop management.
- The development of a decision support system to assess the sustainable performance considering economic, environmental, and social indicators, of both new and existing businesses based on MAP residues valorisation.
5. Conclusions
- Energy production through direct burning, making of briquettes after drying, pelletising and gasification or in biomethanisation and pyrolysis processes to obtain biodiesel and biochar, also for energy purposes.
- Crop management. Solid residues can be submitted to composting, vermicomposting, anaerobic co-digestion, and anaerobic digestion. They can also be used to produce biochar adsorbents by pyrolysis, as biosorbents, as soil organic cover or for weed management. Hydrolates can be valorised as eco-friendly biopesticides.
- The chemical industry, namely in the production of anthraquinones, platform molecules, and enzyme synthesis.
- The food industry, for both animal and human consumption. Their use in animal feed influenced T. molitor and aquaculture species’ growth performance. Some by-products can be incorporated as supplement additives for the preservation of food.
- The pharmaceutical and cosmetic industry, since they are valuable sources of phenolic compounds of interest, such as terpenes, phenolic monoterpenes, phenolic diterpenes, and flavonoids, among others.
- Further applications such as the production of paper, the wood-based panel industry, composites synthesis, wastewater treatment, and building materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saha, A.; Basak, B.B. Scope of value addition and utilization of residual biomass from medicinal and aromatic plants. Ind. Crops Prod. 2020, 145, 111979. [Google Scholar] [CrossRef]
- Chandra, P.; Sharma, V. Marketing information system and strategies for sustainable and competitive medicinal and aromatic plants trade. Inf. Dev. 2019, 35, 806–818. [Google Scholar] [CrossRef]
- Sharma, N.; Kala, C.P. Harvesting patterns, risk of harvesting and sustainability of medicinal and aromatic plants in Kangra district of Himachal Pradesh in India. J. Appl. Res. Med. Aromat. Plants 2022, 26, 100367. [Google Scholar] [CrossRef]
- Campos, J.L.A.; Albuquerque, U.P. Indicators of conservation priorities for medicinal plants from seasonal dry forests of northeastern Brazil. Ecol. Indic. 2021, 121, 106993. [Google Scholar] [CrossRef]
- Kumar, R. Anticancer Medicinal Plants: Opportunities and Challenges For Conservation and Sustainable Use. Ambient Sci. 2019, 6, 1–3. [Google Scholar] [CrossRef]
- Wei, L.S.; Goh, K.W.; Abdul Hamid, N.K.; Abdul Kari, Z.; Wee, W.; Van Doan, H. A mini-review on co-supplementation of probiotics and medicinal herbs: Application in aquaculture. Front. Vet. Sci. 2022, 9, 1–10. [Google Scholar] [CrossRef]
- Kong, W.; Huang, C.; Shi, J.; Li, Y.; Jiang, X.; Duan, Q.; Huang, Y.; Duan, Y.; Zhu, X. Recycling of Chinese herb residues by endophytic and probiotic fungus Aspergillus cristatus CB10002 for the production of medicinal valuable anthraquinones. Microb. Cell Fact. 2019, 18, 102. [Google Scholar] [CrossRef]
- Bhat, S.A.; Kumar, V.; Kumar, S.; Atabani, A.E.; Anjum Badruddin, I.; Chae, K.J. Supercapacitors production from waste: A new window for sustainable energy and waste management. Fuel 2023, 337, 127125. [Google Scholar] [CrossRef]
- Rena; Yadav, S.; Patel, S.; Killedar, D.J.; Kumar, S.; Kumar, R. Eco-innovations and sustainability in solid waste management: An indian upfront in technological, organizational, start-ups and financial framework. J. Environ. Manag. 2022, 302, 113953. [Google Scholar] [CrossRef]
- Mandpe, A.; Bhattacharya, A.; Paliya, S.; Pratap, V.; Hussain, A.; Kumar, S. Life-cycle assessment approach for municipal solid waste management system of Delhi city. Environ. Res. 2022, 212, 113424. [Google Scholar] [CrossRef]
- Chavan, D.; Manjunatha, G.S.; Singh, D.; Periyaswami, L.; Kumar, S.; Kumar, R. Estimation of spontaneous waste ignition time for prevention and control of landfill fire. Waste Manag. 2022, 139, 258–268. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, H.A.; Kulkarni, G.; Han, S.S. Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renew. Sustain. Energy Rev. 2018, 82, 1122–1136. [Google Scholar] [CrossRef]
- Freitas, L.C.; Barbosa, J.R.; da Costa, A.L.C.; Bezerra, F.W.F.; Pinto, R.H.H.; de Carvalho Junior, R.N. From waste to sustainable industry: How can agro-industrial wastes help in the development of new products? Resour. Conserv. Recycl. 2021, 169, 105466. [Google Scholar] [CrossRef]
- Taghouti, I.; Cristobal, R.; Brenko, A.; Stara, K.; Markos, N.; Chapelet, B.; Hamrouni, L.; Buršić, D.; Bonet, J.A. The Market Evolution of Medicinal and Aromatic Plants: A Global Supply Chain Analysis and an Application of the Delphi Method in the Mediterranean Area. Forests 2022, 13, 808. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Braga, F.C. Paving New Roads Towards Biodiversity-Based Drug Development in Brazil: Lessons from the Past and Future Perspectives. Rev. Bras. Farmacogn. 2021, 31, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Kurnaz, M.L.; Aksan Kurnaz, I. Commercialization of medicinal bioeconomy resources and sustainability. Sustain. Chem. Pharm. 2021, 22, 100484. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.; Brennan, S.E.; et al. The prisma 2020 statement: An updated guideline for reporting systematic reviews. Med. Flum. 2021, 57, 444–465. [Google Scholar] [CrossRef]
- Harris, J.D.; Quatman, C.E.; Manring, M.M.; Siston, R.A.; Flanigan, D.C. How to write a systematic review. Am. J. Sports Med. 2014, 42, 2761–2768. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Dong, Y.; Dong, L.; Jing, Y. An innovative example of herb residues recycling by gasification in a fluidized bed. Waste Manag. 2013, 33, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Tomar, J.M.S.; Kaushal, R.; Kadam, D.M.; Rathore, A.C.; Mehta, H.; Ojasvi, P.R. Aromatic plants based environmental sustainability with special reference to degraded land management. J. Appl. Res. Med. Aromat. Plants 2021, 22, 100298. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Roscigno, G.; Pane, C.; Celano, G.; Di Matteo, M.; Mainente, M.; Vuotto, A.; Mencherini, T.; Esposito, T.; Vitti, A.; et al. Essential oils and quality composts sourced by recycling vegetable residues from the aromatic plant supply chain. Ind. Crops Prod. 2021, 162, 113255. [Google Scholar] [CrossRef]
- Robertson, K.J.; Brar, R.; Randhawa, P.; Stark, C.; Baroutian, S. Opportunities and challenges in waste management within the medicinal cannabis sector. Ind. Crops Prod. 2023, 197, 116639. [Google Scholar] [CrossRef]
- Fardad, K.; Najafi, B.; Ardabili, S.F.; Mosavi, A.; Shamshirband, S.; Rabczuk, T. Biodegradation of medicinal plants waste in an anaerobic digestion reactor for biogas production. Comput. Mater. Contin. 2018, 55, 318–392. [Google Scholar] [CrossRef]
- Greff, B.; Sáhó, A.; Lakatos, E.; Varga, L. Biocontrol Activity of Aromatic and Medicinal Plants and Their Bioactive Components against Soil-Borne Pathogens. Plants 2023, 12, 706. [Google Scholar] [CrossRef]
- de Elguea-Culebras, G.O.; Bravo, E.M.; Sánchez-Vioque, R. Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of Mediterranean aromatic plants. An approach to the valuation of by-products of the essential oil market—A review. Ind. Crops Prod. 2022, 175, 114261. [Google Scholar] [CrossRef]
- Lu, X.L.; Wu, H.; Song, S.L.; Bai, H.Y.; Tang, M.J.; Xu, F.J.; Ma, Y.; Dai, C.C.; Jia, Y. Effects of multi-phase inoculation on the fungal community related with the improvement of medicinal herbal residues composting. Environ. Sci. Pollut. Res. 2021, 28, 27998–28013. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, J.; Wang, X.; Zhang, R.; Tuo, X.; Guo, A.; Qiu, L. Fate of antibiotic resistance genes and mobile genetic elements during anaerobic co-digestion of Chinese medicinal herbal residues and swine manure. Bioresour. Technol. 2018, 250, 799–805. [Google Scholar] [CrossRef]
- Wei, L.; Huang, Y.; Huang, L.; Li, Y.; Huang, Q.; Xu, G.; Müller, K.; Wang, H.; Ok, Y.S.; Liu, Z. The ratio of H/C is a useful parameter to predict adsorption of the herbicide metolachlor to biochars. Environ. Res. 2020, 184, 109324. [Google Scholar] [CrossRef] [PubMed]
- Basak, B.B.; Saha, A.; Sarkar, B.; Kumar, B.P.; Gajbhiye, N.A.; Banerjee, A. Repurposing distillation waste biomass and low-value mineral resources through biochar-mineral-complex for sustainable production of high-value medicinal plants and soil quality improvement. Sci. Total Environ. 2021, 760, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Wang, K.; Huang, Y.; Wang, H. Re-utilization of Chinese medicinal herbal residues improved soil fertility and maintained maize yield under chemical fertilizer reduction. Chemosphere 2021, 283, 131262. [Google Scholar] [CrossRef] [PubMed]
- Filipović, V.; Ugrenović, V.; Popović, V.; Dimitrijević, S.; Popović, S.; Aćimović, M.; Dragumilo, A.; Pezo, L. Productivity and flower quality of different pot marigold (Calendula officinalis L.) varieties on the compost produced from medicinal plant waste. Ind. Crops Prod. 2023, 192, 116093. [Google Scholar] [CrossRef]
- Perlein, A.; Zdanevitch, I.; Gaucher, R.; Robinson, B.; Papin, A.; Sahraoui, A.L.H.; Bert, V. Phytomanagement of a metal(loid)-contaminated agricultural site using aromatic and medicinal plants to produce essential oils: Analysis of the metal(loid) fate in the value chain. Environ. Sci. Pollut. Res. 2021, 28, 62155–62173. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, J.; Duclercq, J.; Facon, N.; Dewaele, D.; Laruelle, F.; Tisserant, B.; Lounès-Hadj Sahraoui, A. Coriander (Coriandrum sativum L.) in Combination with Organic Amendments and Arbuscular Mycorrhizal Inoculation: An Efficient Option for the Phytomanagement of Trace Elements-Polluted Soils. Microorganisms 2022, 10, 2287. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Bou, M.; Ginies, C.; Chevret, D.; Navarro, D.; Drula, E.; Bonnin, E.; Del Río, J.C.; Odinot, E.; Bisotto, A.; et al. Lavender- and lavandin-distilled straws: An untapped feedstock with great potential for the production of high-added value compounds and fungal enzymes. Biotechnol. Biofuels 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Panteli, N.; Mastoraki, M.; Rizou, E.; Stefanou, V.; Tzentilasvili, S.; Sarrou, E.; Chatzifotis, S.; Krigas, N.; Antonopoulou, E. Towards functional insect feeds: Agri-food by-products enriched with post-distillation residues of medicinal aromatic plants in tenebrio molitor (coleoptera: Tenebrionidae) breeding. Antioxidants 2022, 11, 68. [Google Scholar] [CrossRef]
- Mailänder, L.K.; Lorenz, P.; Bitterling, H.; Stintzing, F.C.; Daniels, R.; Kammerer, D.R. Phytochemical Characterization of Chamomile (Matricaria recutita L.) Roots and Evaluation of Their Antioxidant and Antibacterial Potential. Molecules 2022, 27, 8508. [Google Scholar] [CrossRef]
- Dobravalskyte, D.; Venskutonis, P.R.; Talou, T. Antioxidant properties and essential oil composition of Calamintha grandiflora L. Food Chem. 2012, 135, 1539–1546. [Google Scholar] [CrossRef]
- Dziedziński, M.; Kobus-Cisowska, J.; Stachowiak, B. Pinus species as prospective reserves of bioactive compounds with potential use in functional food—Current state of knowledge. Plants 2021, 10, 1306. [Google Scholar] [CrossRef] [PubMed]
- Makbal, R.; Idrissi, F.E.J.; Ouchbani, T.; Tastift, M.A.; Kiai, H.; Hafidi, A.; Gadhi, C. Anti-Inflammatory, Antioxidant, Chemical Characterization, and Safety Assessment of Argania spinosa Fruit Shell Extract from South-Western Morocco. Biomed Res. Int. 2021, 2021, 5536030. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Shen, Z.C.; Li, J.; Liang, T.; Lin, X.F.; Li, Y.P.; Zeng, W.; Zou, Q.; Shen, J.L.; Wang, X.Y. Phytochemicals, biological activity, and industrial application of lotus seedpod (Receptaculum Nelumbinis): A review. Front. Nutr. 2022, 9, 1–16. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Finimundy, T.C.; Pereira, C.; Alves, M.J.; Calhelha, R.C.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Lovage (Levisticum officinale W.D.J. Koch) Roots: A Source of Bioactive Compounds towards a Circular Economy. Resources 2020, 9, 81. [Google Scholar] [CrossRef]
- Sanchez, A.; Míguez, C.; Iglesias, A.; Saborido, L. Value-Added Products by Solvent Extraction and Steam Distillation from Elderberry (Sambucus nigra L.). Appl. Sci. 2022, 12, 2996. [Google Scholar] [CrossRef]
- Christaki, S.; Bouloumpasi, E.; Lalidou, E.; Chatzopoulou, P.; Irakli, M. Bioactive Profile of Distilled Solid By-Products of Rosemary, Greek Sage and Spearmint as Affected by Distillation Methods. Molecules 2022, 27, 9058. [Google Scholar] [CrossRef]
- Moisa, C.; Copolovici, L.; Bungau, S.; Pop, G.; Imbrea, I.; Lupitu, A.; Nemeth, S.; Copolovici, D. Wastes resulting from aromatic plants distillation − Bio-sources of antioxidants and phenolic compounds with biological active principles. Farmacia 2018, 66, 289–295. [Google Scholar]
- Zou, X.; BK, A.; Abu-Izneid, T.; Aziz, A.; Devnath, P.; Rauf, A.; Mitra, S.; Emran, T.B.; Mujawah, A.A.H.; Lorenzo, J.M.; et al. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: A review. Biomed. Pharmacother. 2021, 143, 112191. [Google Scholar] [CrossRef]
- Tsai, P.W.; Hsueh, C.C.; Yang, H.C.; Tsai, H.Y.; Chen, B.Y. Interactive deciphering electron-shuttling characteristics of agricultural wastes with potential bioenergy-steered anti-COVID-19 activity via microbial fuel cells. J. Taiwan Inst. Chem. Eng. 2022, 136, 104426. [Google Scholar] [CrossRef]
- Rodrigues, L.; Coelho, E.; Madeira, R.; Teixeira, P.; Henriques, I.; Coimbra, M.A. Food Ingredients Derived from Lemongrass Byproduct Hydrodistillation: Essential Oil, Hydrolate, and Decoction. Molecules 2022, 27, 2493. [Google Scholar] [CrossRef]
- Truzzi, E.; Chaouch, M.A.; Rossi, G.; Tagliazucchi, L.; Bertelli, D.; Benvenuti, S. Characterization and Valorization of the Agricultural Waste Obtained from Lavandula Steam Distillation for Its Reuse in the Food and Pharmaceutical Fields. Molecules 2022, 27, 1613. [Google Scholar] [CrossRef] [PubMed]
- Luca, S.V.; Zengin, G.; Sinan, K.I.; Korona-Glowniak, I.; Minceva, M.; Skalicka-Woźniak, K.; Trifan, A. Value-Added Compounds with Antimicrobial, Antioxidant, and Enzyme-Inhibitory Effects from Post-Distillation and Post-Supercritical CO2 Extraction By-Products of Rosemary. Antioxidants 2023, 12, 244. [Google Scholar] [CrossRef]
- Saha, A.; Basak, B.B.; Manivel, P.; Kumar, J. Valorization of Java citronella (Cymbopogon winterianus Jowitt) distillation waste as a potential source of phenolics/antioxidant: Influence of extraction solvents. J. Food Sci. Technol. 2021, 58, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Hcini, K.; Bahi, A.; Zarroug, M.B.; Farhat, M.B.; Lozano-Pérez, A.A.; Cenis, J.L.; Quílez, M.; Stambouli-Essassi, S.; Jordán, M.J. Polyphenolic Profile of Tunisian Thyme (Thymbra capitata L.) Post-Distilled Residues: Evaluation of Total Phenolic Content and Phenolic Compounds and Their Contribution to Antioxidant Activity. Molecules 2022, 27, 8791. [Google Scholar] [CrossRef] [PubMed]
- Nasti, R.; Bassanini, I.; Ferrandi, E.E.; Linguardo, F.; Bertuletti, S.; Vanoni, M.; Riva, S.; Verotta, L.; Monti, D. Stereoselective Biocatalyzed Reductions of Ginger Active Components Recovered from Industrial Wastes. ChemBioChem 2022, 23, e202200105. [Google Scholar] [CrossRef]
- Birsa, M.L.; Sarbu, L.G. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023, 15, 1322. [Google Scholar] [CrossRef]
- Sabahi, Z.; Farmani, F.; Mousavinoor, E.; Moein, M. Valorization of waste water of rosa damascena oil distillation process by ion exchange chromatography. Sci. World J. 2020, 2020, 5409493. [Google Scholar] [CrossRef]
- Parisi, M.; Verrillo, M.; Luciano, M.A.; Caiazzo, G.; Quaranta, M.; Scognamiglio, F.; Di Meo, V.; Villani, A.; Cantelli, M.; Gallo, L.; et al. Use of Natural Agents and Agrifood Wastes for the Treatment of Skin Photoaging. Plants 2023, 12, 840. [Google Scholar] [CrossRef]
- Marzorati, S.; Massironi, A.; Nasti, R.; Jiménez-Quero, A.; Verotta, L. “Zero Waste” and “Green” Approaches towards Valorisation of Vegetable Residues. Chem. Eng. Trans. 2022, 92, 577–582. [Google Scholar] [CrossRef]
- Huang, C.; Li, Z.X.; Wu, Y.; Huang, Z.Y.; Hu, Y.; Gao, J. Treatment and bioresources utilization of traditional Chinese medicinal herb residues: Recent technological advances and industrial prospect. J. Environ. Manag. 2021, 299, 113607. [Google Scholar] [CrossRef]
- Meng, F.; Yang, S.; Wang, X.; Chen, T.; Wang, X.; Tang, X.; Zhang, R.; Shen, L. Reclamation of Chinese herb residues using probiotics and evaluation of their beneficial effect on pathogen infection. J. Infect. Public Health 2017, 10, 749–754. [Google Scholar] [CrossRef]
- Fehrmann, J.; Belleville, B.; Ozarska, B. Effects of Particle Dimension and Constituent Proportions on Internal Bond Strength of Ultra-Low-Density Hemp Hurd Particleboard. Forests 2022, 13, 1967. [Google Scholar] [CrossRef]
- Luo, X.; Dessie, W.; Wang, M.; Duns, G.J.; Rong, N.; Feng, L.; Zeng, J.; Qin, Z.; Tan, Y. Comprehensive utilization of residues of Magnolia officinalis based on fiber characteristics. J. Mater. Cycles Waste Manag. 2021, 23, 548–556. [Google Scholar] [CrossRef]
- Ratiarisoa, R.V.; Magniont, C.; Ginestet, S.; Oms, C.; Escadeillas, G. Assessment of distilled lavender stalks as bioaggregate for building materials: Hygrothermal properties, mechanical performance and chemical interactions with mineral pozzolanic binder. Constr. Build. Mater. 2016, 124, 801–815. [Google Scholar] [CrossRef]
Search String | Database | Articles Found |
---|---|---|
TITLE-ABS-KEY (“circular economy” OR “circular farming” OR “circular agriculture”) AND (“aromatic plant*” OR “medicinal plant*” OR “aromatic herb*” OR “medicinal herb*” OR “aromatic flower*” OR “medicinal flower*”) | Scopus | 21 |
Web of Science | 18 | |
PubMed | 8 | |
TITLE-ABS-KEY (“*waste* management” OR “*waste* valorization” OR “*waste* valorisation” OR “*waste* reuse” OR “*waste* recycling” OR “management of *waste*” OR “valorization of *waste*” OR “valorisation of *waste*” OR “reuse of *waste*” OR “recycling of *waste*”) AND (“aromatic plant*” OR “medicinal plant*” OR “aromatic herb*” OR “medicinal herb*” OR “aromatic flower*” OR “medicinal flower*”) | Scopus | 59 |
Web of Science | 24 | |
PubMed | 14 | |
TITLE-ABS-KEY (“*residue* management” OR “*residue* valorization” OR “*residue* valorisation” OR “*residue* reuse” OR “*residue* recycling” OR “management of *residue*” OR “valorization of *residue*” OR “valorisation of *residue*” OR “reuse of *residue*” OR “recycling of *residue*”) AND (“aromatic plant*” OR “medicinal plant*” OR “aromatic herb*” OR “medicinal herb*” OR “aromatic flower*” OR “medicinal flower*”) | Scopus | 4 |
Web of Science | 5 | |
PubMed | 122 | |
TITLE-ABS-KEY (“by-product* management” OR “by-product* valorization” OR “by-product* valorisation” OR “by-product* reuse” OR “by-product* recycling” OR “management of by-product*” OR “valorization of by-product*” OR “valorisation of by-product*” OR “reuse of by-product*” OR “recycling of by-product*”) AND (“aromatic plant*” OR “medicinal plant*” OR “aromatic herb*” OR “medicinal herb*” OR “aromatic flower*” OR “medicinal flower*”) | Scopus | 3 |
Web of Science | 1 | |
PubMed | 21 | |
Total | 300 |
Plant Specie | Origin of Sample Materials | Waste Type | Properties | Application | Reference |
---|---|---|---|---|---|
Mangaba (Hancornia speciosa Gomes, Apocynaceae) | North-east Brazil | Leaves | Extract rich in cyclitols and flavonoids and high amounts of bornesitol. | Development of antihypertensive herbal medicine or as source of the bioactive constituent bornesitol. | [17] * |
Caryocar brasiliense A.St.-Hil., (Pequi) | North-east Brazil | Peels | Tannins, including corilagin and geraniin; antiviral properties. | Development of antidiabetic and antiviral herbal medicine. | [17] * |
Chamomile (Matricaria recutita L. and Matricaria discoidea DC) | Germany | Roots of flower production for tea | Middle polar extracts have bioactive phytochemicals, potent antioxidant, and antibacterial activity. | Phytomedicinal or cosmetic preparations (oil-based cosmetic products) | [39] |
Calamintha grandiflora L. | South-west of France | Water extracts | Antioxidant activity and offers protection against oxidative deterioration. | Food industry, including the formulation of food additives and healthy supplements. | [40] |
Solid hydrodistillation residue | Antioxidants and volatile aroma compounds. | ||||
Pine (Pinus pinaster) | - | Shoots | Rich source of natural polyphenols. | Pharmacological applications. Production of pine shoot syrup, pine shoot-based beer and herbal teas. | [41] * |
Bark extracts | Photoprotective and anti-photoaging activities. | Pharmaceutical industry. | |||
Antioxidant capacities. | Food applications to extend shelf-life. | ||||
Argan (Argania spinosa L.) | South-western Morocco | Shell fruit from argan oil production | Ethanol extract has high level of total phenol content, flavonoids, condensed tannins, and flavanol; has a potential antioxidant effect, potential anti-inflammatory, and antioxidant activities. | Pharmaceutical and food industries. | [42] |
Lotus (Nelumbo nucifera Gaertn.) | - | Lotus seedpods | Extracts exhibit antioxidant, anti-cancer, anti-melanogenic, anti-inflammatory, anti-irradiation, cardioprotection and hepatoprotection activities. Water extracts exhibit antioxidation, anti-cancer, anti-melanogenic, anti-inflammatory and hepatoprotection activities. | Health food and pharmaceutical industry. | [43] * |
Lovage (Levisticum officinale W.D.J. Koch) | Spain | Dried Roots | Bioactive compounds, such as phthalides and phenolic acids. | Food and/or the pharmaceutical industry. | [44] |
Elderberry (Sambucus nigra L.) | Spain | Hydrolates | Active principles of elderberry bark and stems. | Cosmetic industry, as skin tonic or for therapeutic baths. | [45] |
Rosemary (Rosmarinus officinalis L.), Greek sage (Salvia fruticosa L.) and Spearmint (Mentha spicata L.) | Greece | Distilled solid residues | Rich in bioactive compounds with antioxidant activity, mainly polyphenols. | Food, pharmaceutical and cosmetic industry. | [46] |
Oregano (Origanum vulgare var. aureum), Thyme (Thymus vulgaris, var. Doone Valley) and Summer savory (Satureja hortensis) | Romania | Distilled residues | Hydro-alcoholic extracts have high phenolic content which is a valuable source of biologically active compounds, such as antioxidants. | Food and pharmaceutical industry. | [47] |
Tobacco (Nicotiana tabacum) | - | Tobacco processing waste | Extracts exhibit anti-inflammatory, antitumor, antibacterial, and antioxidant functions. | Food additive, cosmetic and pharmaceutical industry to provide resistance to numerous diseases, regulation of human health, sterilisation, and pest control. | [48] * |
Trichodesma khasianum and Euphorbia hirta | Taiwan | Euphorbia hirta aerial parts Trichodesma khasianum leaves | Bioenergy potentials for antiviral activities. | COVID-19 drug development. | [49] |
Lemongrass (Cymbopogon citratus) | Portugal | Hydrolate | Composed of emulsified citral-rich essential oil. | Functional ingredient in a matcha tea formulation to provide taste and extended shelf life. | [50] |
Non-distilled aqueous phase (decoction) | Glucose-rich polysaccharides, and antioxidant and anti-inflammatory properties. | Possible application as a functional dietary fibre in the food industry. | |||
Lavender (Lavandula angustifolia Mill. (LA) and Lavandula intermedia Emeric ex Loisel (LI)) | Italy | Oil-exhausted biomasses from distillation | Antioxidant and anti-tyrosinase activities. | Food and cosmetic industries to prevent the browning and deterioration of active compounds and improve the conservation of final products. | [51] |
Anti-enzymatic capabilities. | Pharmaceutical industry to create a therapeutic alternative for the prevention and treatment of chronic diseases such as Alzheimer’s disease and hyperpigmentation. | ||||
Rosemary (Salvia rosmarinus Schleid., formerly Rosmarinus officinalis L.) | Germany | Post-distillation residual water, spent plant material extracts, and post-supercritical CO2 spent plant material extracts | Antimicrobial, antioxidant, and enzyme-inhibitory activities. | Pharmaceutical, cosmetic, and nutraceutical industries. Terpene-rich extracts can be used as food preservatives (antioxidants) or aroma-active ingredients. | [52] |
Cymbopogon winterianus Jowitt (Java citronella) | India | Solid distillation waste | Antioxidant activity. | Dietary industry. | [53] |
Thyme (Thymbra capitata L.) | Tunisia | Post-distilled residues | Antioxidant, antimicrobial, anti-biofilm, anti-inflammatory and anticarcinogenic capacities. | Replace or even decrease synthetic antioxidants in foods, cosmetics, and pharmaceutical products. | [54] |
Ginger (Zingiber officinale) | Italy | Lees | Extracts have an appreciable amount of oleoresin rich in gingerol-like compounds. | Flavour, perfume, and nutraceutical sectors. | [55] |
Chicory (Cichorium intybus L.) | - | Forced chicory roots | Caffeoylquinic acid and antioxidant activity. | Possible therapeutic application. | [56] * |
Rose (Rosa damascena Mill) | Iran | Residual water of hydrodistillation | Phenolic content (phenol, flavonoid, and anthocyanin). Recovered fraction of waste materials could be considered as a proper antioxidant, DNA damage-protection agent, and xanthine oxidase inhibitor. | Pharmaceutical and nutraceutical industry. | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcelino, S.; Gaspar, P.D.; Paço, A. Sustainable Waste Management in the Production of Medicinal and Aromatic Plants—A Systematic Review. Sustainability 2023, 15, 13333. https://doi.org/10.3390/su151813333
Marcelino S, Gaspar PD, Paço A. Sustainable Waste Management in the Production of Medicinal and Aromatic Plants—A Systematic Review. Sustainability. 2023; 15(18):13333. https://doi.org/10.3390/su151813333
Chicago/Turabian StyleMarcelino, Sara, Pedro Dinis Gaspar, and Arminda Paço. 2023. "Sustainable Waste Management in the Production of Medicinal and Aromatic Plants—A Systematic Review" Sustainability 15, no. 18: 13333. https://doi.org/10.3390/su151813333
APA StyleMarcelino, S., Gaspar, P. D., & Paço, A. (2023). Sustainable Waste Management in the Production of Medicinal and Aromatic Plants—A Systematic Review. Sustainability, 15(18), 13333. https://doi.org/10.3390/su151813333