Immobilization of UiO-66-NH2 into Bacterial Cellulose Aerogels for Efficient Particulate Matter Filtration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of UiO-66 and UiO-66-NH2
2.3. Preparation of UiO-66@BC Filters
2.4. Characterization
2.5. Air Filtration Tests
3. Results
3.1. Characterization of UiO-66s Deposited BC Filters
3.2. Air Purification Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Declaration of Competing Interest
References
- Ma, X.; Lou, Y.; Chen, X.-B.; Shi, Z.; Xu, Y. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chem. Eng. J. 2019, 356, 227–235. [Google Scholar] [CrossRef]
- Li, Y.; Cao, L.; Yin, X.; Si, Y.; Yu, J.; Ding, B. Semi-Interpenetrating Polymer Network Biomimetic Structure Enables Superelastic and Thermostable Nanofibrous Aerogels for Cascade Filtration of PM 2.5. Adv. Funct. Mater. 2020, 30, 1910426. [Google Scholar] [CrossRef]
- Yoo, D.K.; Woo, H.C.; Jhung, S.H. Removal of particulate matter with metal-organic framework-incorporated materials. Coord. Chem. Rev. 2020, 422, 213477. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Bao, L.; Chen, J.; Duan, S.; Chen, S.-C.; Xu, P.; Wang, W.-N. Self-decontaminating nanofibrous filters for efficient particulate matter removal and airborne bacteria inactivation. Environ. Sci. Nano 2021, 8, 1081–1095. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan; Pope, C.A. Brook, Particulate Matter Air Pollution and Cardiovascular Disease. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.Y.; Ren, C.-Y.; Lu, Y.-W.; Zhang, Q.-J.; Wu, Q.; Wang, S.-Q.; Dai, C.-P.; Zhang, W.-B.; Huang, J.-D. Cellulose nanofibril/PVA/bamboo activated charcoal aerogel sheet with excellent capture for PM2.5 and thermal stability. Carbohydr. Polym. 2022, 291, 119625. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Lin, J.; Li, X.; Bian, F.; Wang, J. Hierarchically Structured Nanocellulose-Implanted Air Filters for High-Efficiency Particulate Matter Removal. ACS Appl. Mater. Interfaces 2021, 13, 12408–12416. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, J.; Saito, T.; Isogai, A. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. ACS Appl. Mater. Interfaces 2015, 7, 19809–19815. [Google Scholar] [CrossRef]
- Koo, W.T.; Jang, J.S.; Qiao, S.; Hwang, W.; Jha, G.; Penner, R.M.; Kim, I.D. Hierarchical Metal-Organic Framework-Assembled Membrane Filter for Efficient Removal of Particulate Matter. ACS Appl. Mater. Interfaces 2018, 10, 19957–19963. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, F.; Mao, J.; Huang, J.; Chen, Z.; Jiang, Y.; Lai, Y. Freestanding MoS2@carbonized cellulose aerogel derived from waste cotton for sustainable and highly efficient particulate matter capturing. Sep. Purif. Technol. 2021, 254, 117571. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Zhu, Z.; Wang, W.-N.; Chen, S.-C. Simultaneous removal of VOCs and PM2.5 by metal-organic framework coated electret filter media. J. Membr. Sci. 2021, 618, 118629. [Google Scholar] [CrossRef]
- Ma, X.Y.D.; Zeng, Z.; Wang, Z.; Xu, L.; Zhang, Y.; Ang, J.M.; Wan, M.P.; Ng, B.F.; Lu, X. Robust microhoneycomb-like nanofibrous aerogels derived from cellulose and lignin as highly efficient, low-resistant and anti-clogging air filters. J. Membr. Sci. 2022, 642, 119977. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, F.; Zhang, X.F.; Zheng, T.; Yao, J. Delignified wood filter functionalized with metal-organic frameworks for high-efficiency air filtration. Sep. Purif. Technol. 2022, 293, 121095. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, Z.; Zhang, X.F.; Yao, J. Metal-organic frameworks decorated wood aerogels for efficient particulate matter removal. J. Colloid Interface Sci. 2023, 629, 182–188. [Google Scholar] [CrossRef]
- Liu, H.; Cao, C.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. Correction: Progress on particulate matter filtration technology: Basic concepts, advanced materials, and performances. Nanoscale 2020, 12, 2156. [Google Scholar] [CrossRef]
- Yoo, D.K.; Jhung, S.H. Effect of Functional Groups of Metal-Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS Appl. Mater. Interfaces 2019, 11, 47649–47657. [Google Scholar] [CrossRef]
- Zhang, K.; Huo, Q.; Zhou, Y.-Y.; Wang, H.-H.; Li, G.-P.; Wang, Y.-W.; Wang, Y.-Y. Textiles/metal-organic frameworks composites as flexible air Filters for efficient particulate matter removal. ACS Appl. Mater. Interfaces 2019, 11, 17368–17374. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, L.; Guo, Y.; Ma, X.; Li, Z.; Ying, W.; Peng, X. Porous cellulose nanofiber stringed HKUST-1 polyhedron membrane for air purification. Appl. Mater. Today 2019, 14, 96–101. [Google Scholar] [CrossRef]
- Wu, C.-N.; Saito, T.; Fujisawa, S.; Fukuzumi, H.; Isogai, A. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 2012, 13, 1927–1932. [Google Scholar] [CrossRef]
- Zhou, S.; Stromme, M.; Xu, C. Highly transparent; flexible, and mechanically strong nanopapers of cellulose nanofibers @metal-organic frameworks. Chem. A Eur. J. 2019, 25, 3515–3520. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, J.Z.; Feng, X.; Li, J.; Hao, Y.C.; Zhang, J.W.; Wang, H.; Yin, A.X.; Zhou, J.W.; Ma, X.J.; et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, S.; Feng, X.; Li, H.; Zhou, J.; Wang, B. Preparation of Nanofibrous Metal-Organic Framework Filters for Efficient Air Pollution Control. J. Am. Chem. Soc. 2016, 138, 5785–5788. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, S.; Cao, S.; Li, S.; Chen, F.; Yuan, S.; Xu, C.; Zhou, J.; Feng, X.; Ma, X.; et al. Roll-to-Roll Production of Metal-Organic Framework Coatings for Particulate Matter Removal. Adv. Mater. 2017, 29, 1606221. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.K.; Woo, H.C.; Jhung, S.H. Removal of Particulate Matters with Isostructural Zr-Based Metal-Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS Appl. Mater. Interfaces 2020, 12, 34423–34431. [Google Scholar] [CrossRef]
- Ma, X.; Chai, Y.; Li, P.; Wang, B. Metal-Organic Framework Films and Their Potential Applications in Environmental Pollution Control. Acc. Chem. Res. 2019, 52, 1461–1470. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, H.; Hu, Q.; Jiang, L.; Shen, Y.; Zhao, D.; Zhou, Z. CelluMOFs: Green, Facile, and Flexible Metal-Organic Frameworks for Versatile Applications. Adv. Funct. Mater. 2021, 31, 2105395. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, M.; Nie, J.; Tan, J.; Yang, B.; Song, S. Design of double-component metal-organic framework air filters with PM2.5 capture, gas adsorption and antibacterial capacities. Carbohydr. Polym. 2019, 203, 415–422. [Google Scholar] [CrossRef]
- Hao, D.; Fu, B.; Zhou, J.; Liu, J. Efficient particulate matter removal by metal-organic frameworks encapsulated in cellulose/chitosan foams. Sep. Purif. Technol. 2022, 294, 120927. [Google Scholar] [CrossRef]
- Wang, Z.G.; Zhang, X.F.; Shu, L.; Yao, F. Copper sulfide integrated functional cellulose hydrogel for efficient solar water purification. Carbohyd. Polym. 2023, 319, 121161. [Google Scholar] [CrossRef]
- Zheng, S.-Z.; Du, H.D.; Yang, L.-X.; Tan, M.; Li, N.-Y.; Fu, Y.-J.; Hao, D.; Wang, Q. PDINH bridged NH2-UiO-66(Zr) Z-scheme heterojunction for promoted photocatalytic Cr(VI) reduction and antibacterial activity. J. Hazard. Mater. 2023, 447, 130849. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Z.G.; Zhang, X.F.; Yao, J.F. Bimetallic MOF@bacterial cellulose derived carbon aerogel for efficient electromagnetic wave absorption. Ceram. Int. 2023, 49, 20951–20959. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, Y.; Zhang, X.F.; Xu, C.; Yao, J. Integrating two-dimensional MXene fillers into nanocellulose for the fabrication of CO2 separation membranes. Sep. Purif. Technol. 2023, 326, 124704. [Google Scholar] [CrossRef]
- Wang, Z.G.; Shu, L.; Zhang, X.F.; Yao, J.F. Double cross-linked wood hydrogels with high anisotropy and ionic conductivity for sensitive pressure sensing. Colloid Surf. A 2023, 658, 130688. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, M.; Lu, T.; Fan, Q.; Ma, W.; Zhang, X.; Chen, L.; Min, H.; Xiong, R.; Huang, C. Hierarchical fiber with granular-convex structure for highly efficient PM2.5 capture. Sep. Purif. Technol. 2023, 304, 122235. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, F.; Xue, T.; Wali, Q.; Fan, W.; Liu, T. Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal. Sep. Purif. Technol. 2022, 300, 121881. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, Z.G.; Ding, M.L.; Feng, Y.; Yao, J.F. Advances in cellulose-metal organic framework composites: Preparation and application. J. Mater. Chem. A 2021, 9, 23353–23363. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, T.; Zhang, X.; Zeng, Z.; Tao, R.; Qu, Q.; Zhang, Y.; Zhu, M.; Xiong, R.; Huang, C. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration. J. Membr. Sci. 2022, 660, 120857. [Google Scholar] [CrossRef]
- Feng, D.-D.; Guo, W.; Zhang, Y.; Sun, S.-Z.; Zhao, Y.-J.; Shang, Q.; Sun, H.-L. Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption. Chem. Eng. J. 2021, 410, 127707. [Google Scholar] [CrossRef]
- Shu, L.; Wang, Z.G.; Zhang, X.F.; Yao, J.F. Highly conductive and anti-freezing cellulose hydrogel for flexible sensors. Int. J. Biol. Macromol. 2023, 230, 123425. [Google Scholar] [CrossRef]
- Ma, S.S.; Zhang, M.Y.; Nie, J.Y.; Yang, B.; Song, S.X.; Lu, P. Multifunctional cellulose-based air filters with high loadings of metal–organic frameworks prepared by in situ growth method for gas adsorption and antibacterial applications. Cellulose 2018, 25, 5999–6010. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, Z.G.; Song, L.; Yao, J.F. In situ growth of ZIF-8 within wood channels for water pollutants removal. Sep. Purif. Tech. 2021, 266, 118527. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Z.W.; Zhang, X.F.; Ding, M.L.; Yao, J.F. In situ growth of amino-functionalized ZIF-8 on bacterial cellulose foams for enhanced CO2 adsorption. Carbohyd. Polym. 2021, 270, 118376. [Google Scholar] [CrossRef]
Sample | Filtration Efficiency (%) | Pressure Drop (Pa) | Quality Factor |
---|---|---|---|
BC | 50.6 ± 0.9 | 22.8 ± 0.5 | 0.031 |
UiO-66@BC | 91.1 ± 1.1 | 27.3 ± 0.2 | 0.088 |
UiO-66-NH2@BC | 96.9 ± 0.7 | 28.1 ± 0.7 | 0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Q.; Liu, J.; Zheng, J.; Fu, B. Immobilization of UiO-66-NH2 into Bacterial Cellulose Aerogels for Efficient Particulate Matter Filtration. Sustainability 2023, 15, 13382. https://doi.org/10.3390/su151813382
Dai Q, Liu J, Zheng J, Fu B. Immobilization of UiO-66-NH2 into Bacterial Cellulose Aerogels for Efficient Particulate Matter Filtration. Sustainability. 2023; 15(18):13382. https://doi.org/10.3390/su151813382
Chicago/Turabian StyleDai, Qihang, Ju Liu, Junjie Zheng, and Bo Fu. 2023. "Immobilization of UiO-66-NH2 into Bacterial Cellulose Aerogels for Efficient Particulate Matter Filtration" Sustainability 15, no. 18: 13382. https://doi.org/10.3390/su151813382
APA StyleDai, Q., Liu, J., Zheng, J., & Fu, B. (2023). Immobilization of UiO-66-NH2 into Bacterial Cellulose Aerogels for Efficient Particulate Matter Filtration. Sustainability, 15(18), 13382. https://doi.org/10.3390/su151813382