Interactive Cognitive Motor Training: A Promising Approach for Sustainable Improvement of Balance in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
Interactive Cognitive-Motor Training
- (1)
- Fitness boxing 2
- (2)
- ZUMBA
- (3)
- Mario Tennis Ace
3. Balance Test
3.1. Static Balance Test
3.2. Dynamic Balance Test
3.3. Statistical Analysis
4. Results
5. Discussion
6. Strengths and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The United Nations. Sustainable Development Goals Report. 2017. Available online: https://www.un.org/sustainabledevelopment/health/ (accessed on 29 May 2023).
- Charles, P. Sustainable Development and Health: Concepts, Principles and Framework for Action for European Cities and Towns; European Sustainable Development and Health Series: Book 1; WHO Regional Office for Europe: Copenhagen, Denmark, 1997. [Google Scholar]
- Sansoni, J.; Talamonti, A.; Marucci, A.R.; Di Foggia, F.; De Caro, W.; Mitello, L. EU-Project ‘healthPROelderly’—Evidence-based guidelines on health promotion for older people: Social determinants, inequality and sustainability. Prof. Inferm. 2009, 62, 149–160. [Google Scholar] [PubMed]
- World Population Prospects (2022 Revision). Available online: https://population.un.org/wpp/ (accessed on 1 May 2023).
- (China) National Bureau of Statistics. Seventh National Population Census Bulletin (No. 8). 11 May 2021. Available online: http://www.stats.gov.cn/sj/tjgb/rkpcgb/qgrkpcgb/202302/t20230206_1902005.html (accessed on 30 May 2023).
- Soomar, S.M.; Dhalla, Z. Injuries and outcomes resulting due to falls in elderly patients presenting to the Emergency Department of a tertiary care hospital—A cohort study. BMC Emerg. Med. 2023, 23, 14. [Google Scholar] [CrossRef]
- Norouzi, E.; Vaezmosavi, M.; Gerber, M.; Pühse, U.; Brand, S. Dual-task training on cognition and resistance training improved both balance and working memory in older people. Phys. Sportsmed. 2019, 47, 471–478. [Google Scholar] [CrossRef]
- Phelan, E.A.; Ritchey, K. Fall Prevention in Community-Dwelling Older Adults. Ann. Intern. Med. 2018, 169, ITC81. [Google Scholar] [CrossRef]
- Gabr, S.; Al-Momani, M.; Al-Momani, F.; Alghadir, A.; Alharethy, S. Factors related to gait and balance deficits in older adults. Clin. Interv. Aging 2016, 11, 1043–1049. [Google Scholar] [CrossRef]
- Schoene, D.; Valenzuela, T.; Lord, S.R.; de Bruin, E.D. The effect of interactive cognitive-motor training in reducing fall risk in older people: A systematic review. BMC Geriatr. 2014, 14, 107. [Google Scholar] [CrossRef]
- Booth, V.; Hood, V.; Kearney, F. Interventions incorporating physical and cognitive elements to reduce falls risk in cognitively impaired older adults. JBI Database Syst. Rev. Implement. Rep. 2016, 14, 110–135. [Google Scholar] [CrossRef]
- Veronese, N.; Maggi, S.; Schofield, P.; Stubbs, B. Dance movement therapy and falls prevention. Maturitas 2017, 102, 1–5. [Google Scholar] [CrossRef]
- Penn, I.-W.; Sung, W.-H.; Lin, C.-H.; Chuang, E.; Chuang, T.-Y.; Lin, P.-H. Effects of individualized Tai-Chi on balance and lower-limb strength in older adults. BMC Geriatr. 2019, 19, 235. [Google Scholar] [CrossRef] [PubMed]
- Gschwind, Y.J.; Kressig, R.W.; Lacroix, A.; Muehlbauer, T.; Pfenninger, B.; Granacher, U. A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults: Study protocol for a randomized controlled trial. BMC Geriatr. 2013, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.C.; Chiu, H.L.; Liu, D.; Chan, P.T.; Tseng, J.; Chen, R.; Niu, S.F.; Chou, K.R. Effect of interactive cognitive motor training on gait and balance among older adults: A randomized controlled trial. Int. J. Nurs. Stud. 2018, 82, 121–128. [Google Scholar] [CrossRef]
- Orr, R.; de Vos, N.J.; Singh, N.A.; Ross, D.A.; Stavrinos, T.M.; Fiatarone-Singh, M.A. Power Training Improves Balance in Healthy Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Suleiman-Martos, N.; García-Lara, R.; Albendín-García, L.; Romero-Béjar, J.L.; Cañadas-De La Fuente, G.A.; Monsalve-Reyes, C.; Gomez-Urquiza, J.L. Effects of active video games on physical function in independent community-dwelling older adults: A systematic review and meta-analysis. J. Adv. Nurs. 2022, 78, 1228–1244. [Google Scholar] [CrossRef]
- Chan, P.T.; Chang, W.C.; Chiu, H.L.; Kao, C.C.; Liu, D.; Chu, H.; Chou, K.R. Effect of interactive cognitive-motor training on eye-hand coordination and cognitive function in older adults. BMC Geriatr. 2019, 19, 27. [Google Scholar] [CrossRef]
- Wang, R.-Y.; Huang, Y.-C.; Zhou, J.-H.; Cheng, S.-J.; Yang, Y.-R. Effects of Exergame-Based Dual-Task Training on Executive Function and Dual-Task Performance in Community-Dwelling Older People: A Randomized-Controlled Trial. Games Health J. 2021, 10, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Zhenxin, Z.H.N. The min-i mental state examination in the Chinese residents population aged55years and over in the urban and rural areas of Beijing. Dep. Neurol. Chin. Acad. Med. Sci. 1999, 32, 149–152. (In Chinsese) [Google Scholar]
- Thomas, S.; Reading, J.; Shephard, R.J. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can. J. Sport Sci. 1992, 17, 338–345. [Google Scholar]
- American College of Sports Medicine. The Chinese Version of Acsm’s Guidelines for Exercise Testing and Prescripiption, 10th ed.; Wang, Z., Translator; Beijing Sports University Press: Beijing, China, 2019. [Google Scholar]
- Zhu, W.; Li, Y.; Wang, B.; Zhao, C.; Wu, T.; Liu, T.; Sun, F. Objectively Measured Physical Activity Is Associated with Static Balance in Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 787. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, C.; Li, Y.; Zhao, M.; Wang, L.; Guo, J.; Zhang, L.; Sun, Y.; Ye, X.; Zhu, W. The Effects of Active Video Game Exercise Based on Self-Determination Theory on Physical Fitness and Cognitive Function in Older Adults. J. Clin. Med. 2022, 11, 3984. [Google Scholar] [CrossRef] [PubMed]
- Tuan, S.-H.; Chang, L.-H.; Sun, S.-F.; Lin, K.-L.; Tsai, Y.-J. Using exergame-based exercise to prevent and postpone the loss of muscle mass, muscle strength, cognition, and functional performance among elders in rural long-term care facilities: A protocol for a randomized controlled trial. Front. Med. 2022, 9, 1071409. [Google Scholar] [CrossRef]
- Kim, J.; Lee, M.; Yim, J. A New Approach to Transcranial Direct Current Stimulation in Improving Cognitive Motor Learning and Hand Function with the Nintendo Switch in Stroke Survivors. Med. Sci. Monit. 2019, 25, 9555–9562. [Google Scholar] [CrossRef]
- Bressel, E.; Yonker, J.C.; Kras, J.; Heath, E.M. Comparison of static and dynamic balance in female collegiate soccer, basketball, and gymnastics athletes. J. Athl. Train 2007, 42, 42–46. [Google Scholar] [PubMed]
- Sell, T.C. An examination, correlation, and comparison of static and dynamic measures of postural stability in healthy, physically active adults. Phys. Ther. Sport 2012, 13, 80–86. [Google Scholar] [CrossRef]
- Sierra-Guzmán, R.; Jiménez-Diaz, F.; Ramírez, C.; Esteban, P.; Abián-Vicén, J. Whole-body-vibration training and balance in recreational athletes with chronic ankle instability. J. Athl. Train 2018, 53, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; L. Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Nazari, N.; Sadeghi, M.; Ghadampour, E.; Mirzaeefar, D. Transdiagnostic treatment of emotional disorders in people with multiple sclerosis: Randomized controlled trial. BMC Psychol. 2020, 8, 114. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Yang, C.-M.; Hsieh, J.S.C.; Chen, Y.-C.; Yang, S.-Y.; Lin, H.-C.K. Effects of Kinect exergames on balance training among community older adults: A randomized controlled trial. Medicine 2020, 99, e21228. [Google Scholar] [CrossRef]
- Grewal, G.S.; Schwenk, M.; Lee-Eng, J.; Parvaneh, S.; Bharara, M.; Menzies, R.A.; Talal, T.K.; Armstrong, D.G.; Najafi, B. Sensor-Based Interactive Balance Training with Visual Joint Movement Feedback for Improving Postural Stability in Diabetics with Peripheral Neuropathy: A Randomized Controlled Trial. Gerontology 2015, 61, 567–574. [Google Scholar] [CrossRef]
- Nitz, J.C.; Kuys, S.; Isles, R.; Fu, S. Is the Wii FitTM a new-generation tool for improving balance, health and well-being? A pilot study. Climacteric 2010, 13, 487–491. [Google Scholar] [CrossRef]
- Tsang, W.W.N.; Hui-Chan, C.W.Y. Effects of Exercise on Joint Sense and Balance in Elderly Men: Tai Chi versus Golf. Med. Sci. Sport. Exerc. 2004, 36, 658–667. [Google Scholar] [CrossRef]
- Martínez-Amat, A.; Hita-Contreras, F.; Lomas-Vega, R.; Caballero-Martínez, I.; Alvarez, P.J.; Martínez-López, E. Effects of 12-Week Proprioception Training Program on Postural Stability, Gait, and Balance in Older Adults. J. Strength Cond. Res. 2013, 27, 2180–2188. [Google Scholar] [CrossRef]
- Patti, A.; Zangla, D.; Sahin, F.N.; Cataldi, S.; Lavanco, G.; Palma, A.; Fischietti, F. Physical exercise and prevention of falls. Effects of a Pilates training method compared with a general physical activity program: A randomized controlled trial. Medicine 2021, 100, e25289. [Google Scholar] [CrossRef]
- Granacher, U.; Lacroix, A.; Muehlbauer, T.; Roettger, K.; Gollhofer, A. Effects of Core Instability Strength Training on Trunk Muscle Strength, Spinal Mobility, Dynamic Balance and Functional Mobility in Older Adults. Gerontology 2013, 59, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Schellbach, J.; Klein, K.; Prieske, O.; Baeyens, J.-P.; Muehlbauer, T. Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2014, 6, 40. [Google Scholar] [CrossRef]
- Staron, R.S.; Karapondo, D.L.; Kraemer, W.J.; Fry, A.C.; Gordon, S.E.; Falkel, J.E.; Hagerman, F.C.; Hikida, R.S. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J. Appl. Physiol. 1994, 76, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Gong, J.; Yim, J. Effects of a sitting boxing program on upper limb function, balance, gait, and quality of life in stroke patients. NeuroRehabilitation 2017, 40, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Yee, E.; Willis, B.W.; Prost, E.L.; Gray, A.D.; Mann, J.B. A Community-based Boxing Program is Associated with Improved Balance in Individuals with Parkinson’s Disease. Int. J. Exerc. Sci. 2021, 14, 876–884. [Google Scholar] [PubMed]
- Kerdsawatmongkon, J.; Nualnetr, N.; Isariyapan, O.; Kitreerawutiwong, N.; Srisoparb, W. Effects of home-based boxing training on trunk performance, balance, and enjoyment of patients with chronic stroke. Ann. Rehabil. Med. 2023, 47, 36–44. [Google Scholar] [CrossRef]
- Mattle, M.; Chocano-Bedoya, P.O.; Fischbacher, M.; Meyer, U.; Abderhalden, L.A.; Lang, W.; Mansky, R.; Kressig, R.W.; Steurer, J.; Orav, E.J.; et al. Association of dance-based mind-motor activities with falls and physical function among healthy older adults: A systematic review and meta-analysis. JAMA Netw. Open 2020, 3, e2017688. [Google Scholar] [CrossRef]
- Khushnood, K.; Sultan, N.; Altaf, S.; Qureshi, S.; Mehmood, R.; Awan, M.M.A. Effects of Wii Fit exer-gaming on balance and gait in elderly population; a randomized control trial. J. Pak. Med. Assoc. 2020, 71, 410–413. [Google Scholar] [CrossRef]
- Khushnood, K.; Altaf, S.; Sultan, N.; Awan, M.M.A.; Mehmood, R.; Qureshi, S. Role Wii Fit exer-games in improving balance confidence and quality of life in elderly population. J. Pak. Med. Assoc. 2021, 71, 2130–2134. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.; Bohm, S.; Mersmann, F.; Arampatzis, A. Exercises of dynamic stability under unstable conditions increase muscle strength and balance ability in the elderly. Scand. J. Med. Sci. Sports 2018, 28, 961–971. [Google Scholar] [CrossRef]
- Duque, G.; Boersma, D.; Loza-Diaz, G.; Hassan, S.; Suarez, H.; Geisinger, D.; Suriyaarachchi, P.; Sharma, A.; Demontiero, O. Effects of balance training using a virtual-reality system in older fallers. Clin. Interv. Aging 2013, 8, 257–263. [Google Scholar] [CrossRef]
- Bacha, J.M.; Gomes, G.C.; de Freitas, T.B.; Viveiro, L.A.; da Silva, K.G.; Bueno, G.C.; Varise, E.M.; Torriani-Pasin, C.; Alonso, A.C.; Luna, N.M.; et al. Effects of Kinect Adventures Games Versus Conventional Physical Therapy on Postural Control in Elderly People: A Randomized Controlled Trial. Games Health J. 2018, 7, 24–36. [Google Scholar] [CrossRef]
- Burke, T.N.; França, F.J.R.; De Meneses, S.R.F.; Pereira, R.M.R.; Marques, A.P. Postural control in elderly women with osteoporosis: Comparison of balance, strengthening and stretching exercises. A randomized controlled trial. Clin. Rehabil. 2012, 26, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Phirom, K.; Kamnardsiri, T.; Sungkarat, S. Beneficial Effects of Interactive Physical-Cognitive Game-Based Training on Fall Risk and Cognitive Performance of Older Adults. Int. J. Environ. Res. Public Health 2020, 17, 6079. [Google Scholar] [CrossRef]
- Adzhar, M.A.; Manlapaz, D.; Singh, D.K.A.; Mesbah, N. Exercise to Improve Postural Stability in Older Adults with Alzheimer’s Disease: A Systematic Review of Randomized Control Trials. Int. J. Environ. Res. Public Health 2022, 19, 350. [Google Scholar] [CrossRef]
- Li, F.; Harmer, P.; Fitzgerald, K.; Eckstrom, E.; Stock, R.; Galver, J.; Maddalozzo, G.; Batya, S.S. Tai chi and postural stability in patients with Parkinson’s disease. N. Engl. J. Med. 2012, 366, 511–519. [Google Scholar] [CrossRef]
- Liao, Y.-Y.; Chen, I.-H.; Wang, R.-Y. Effects of Kinect-based exergaming on frailty status and physical performance in prefrail and frail elderly: A randomized controlled trial. Sci. Rep. 2019, 9, 9353. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Liu, C.J.; Kilpatrick, M.; Jim, H.; McMillan, S.; Vijayakumar, N.; McDonald, S.; Padhya, T.; Russell, J.; Vondruska, K.; et al. Exergame Grading Scheme: Concept Development and Preliminary Psychometric Evaluations in Cancer Survivors. Rehabil. Res. Pract. 2017, 2017, 6843016. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, Y.; Taghizadeh, G.; Azad, A.; Behzadipour, S. The effects of supervised and non-supervised upper limb virtual reality exercises on upper limb sensory-motor functions in patients with idiopathic Parkinson’s disease. Hum. Mov. Sci. 2022, 85, 102977. [Google Scholar] [CrossRef] [PubMed]
ICMT (n = 22) | CG (n = 16) | Total | F/χ2 | p | |||||
---|---|---|---|---|---|---|---|---|---|
Age M, (SD) | 65.6 | 4.2 | 65.8 | 3.2 | 65.6 | 3.8 | 0.005 | 0.945 | |
Sex (%) | Men | 8 | 14% | 6 | 11% | 14 | 37% | 0.008 | 0.929 |
Women | 14 | 25% | 10 | 18% | 24 | 63% | |||
Education (%) | Primary school | 1 | 2% | 1 | 2% | 2 | 5% | 0.982 | 0.328 |
Junior high school | 8 | 14% | 2 | 4% | 10 | 26% | |||
Senior high school | 5 | 9% | 7 | 13% | 12 | 32% | |||
Junior college | 6 | 11% | 2 | 4% | 8 | 21% | |||
Undergraduate | 2 | 4% | 4 | 7% | 6 | 16% | |||
Smoking (%) | Yes | 1 | 2% | 1 | 2% | 2 | 5% | 0.051 | 0.822 |
No | 21 | 38% | 15 | 27% | 36 | 95% | |||
Alcohol drinking (%) | Yes | 4 | 7% | 1 | 2% | 5 | 13% | 1.128 | 0.295 |
No | 18 | 32% | 15 | 27% | 33 | 87% | |||
MMSE, M (SD) | 29.0 | 1.1 | 28.7 | 1.1 | 28.8 | 1.1 | 0.786 | 0.381 | |
MVPA%, M (SD) | 16.9 | 5.4 | 18.3 | 7.0 | 17.5 | 6.0 | 0.535 | 0.469 |
ICMT (n = 22), M ± SD | CG (n = 16), M ± SD | Comparison of Two Groups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | F | p | ηp2 | 1-β | |||||
(Open Eyes) | ||||||||||||
The total length of the swing [mm] | 209.8 | 51.8 | 205.1 | 60.4 | 213.4 | 47.7 | 226.1 | 49.6 | 0.922 | 0.344 | 0.029 | |
Sway path A-P [mm] | 176.2 | 48.4 | 177.0 | 59.2 | 181.7 | 48.4 | 195.5 | 49.1 | 0.660 | 0.423 | 0.021 | |
Sway path M-L [mm] | 81.8 | 17.8 | 72.4 | 13.7 | 79.7 | 9.8 | 80.4 | 12.1 | 4.299 | 0.047 * | 0.122 # | 0.594 |
Total V of the swing [mm/s] | 10.5 | 2.6 | 10.3 | 3.0 | 10.7 | 2.4 | 11.3 | 2.5 | 0.915 | 0.346 | 0.029 | |
Sway V A-P [mm/s] | 8.8 | 2.4 | 8.9 | 3.0 | 9.1 | 2.4 | 9.8 | 2.5 | 0.663 | 0.422 | 0.021 | |
Sway V M-L [mm/s] | 4.1 | 0.9 | 3.6 | 0.7 | 4.0 | 0.5 | 4.0 | 0.6 | 4.269 | 0.047 * | 0.121 # | 0.590 |
The total area of swing, [mm2] | 192.5 | 79.2 | 166.3 | 77.3 | 194.3 | 65.6 | 202.8 | 69.2 | 3.100 | 0.088 | 0.091 # | 0.588 |
Sway area A-P [mm × s] | 79.0 | 36.8 | 72.4 | 27.0 | 74.8 | 17.8 | 71.2 | 19.1 | 0.000 | 0.984 | 0.000 | |
Sway area M-L [mm × s] | 19.4 | 8.0 | 19.4 | 10.6 | 17.5 | 6.5 | 20.1 | 0.77 | 0.766 | 0.388 | 0.024 | |
(Close Eyes) | ||||||||||||
The total length of the swing [mm] | 271.5 | 82.4 | 230.9 | 74.6 | 257.3 | 80.4 | 288.6 | 95.9 | 3.485 | 0.071 | 0.101 # | 0.537 |
Sway path A-P [mm] | 237.6 | 76.3 | 200.7 | 73.2 | 226.2 | 78.8 | 259 | 92.6 | 3.708 | 0.063 | 0.107 # | 0.585 |
Sway path M-L [mm] | 91.1 | 24.3 | 79.2 | 16.9 | 85.6 | 17.2 | 87.5 | 19.3 | 1.458 | 0.243 | 0.057 | |
Total V of the swing [mm/s] | 13.6 | 4.1 | 11.5 | 3.7 | 12.9 | 4.0 | 14.4 | 4.8 | 3.548 | 0.069 | 0.103 # | 0.585 |
Sway V A-P [mm/s] | 11.9 | 3.8 | 10.0 | 3.7 | 11.3 | 3.9 | 12.9 | 4.6 | 3.688 | 0.064 | 0.106 # | 0.584 |
Sway V M-L [mm/s] | 4.6 | 1.2 | 4.0 | 0.8 | 4.3 | 0.9 | 4.4 | 1.0 | 2.666 | 0.113 | 0.079 # | 0.573 |
The total area of swing [mm2] | 271.2 | 141.1 | 186.7 | 83.2 | 216.8 | 93.3 | 269.1 | 142.6 | 5.605 | 0.024 * | 0.153 ## | 0.601 |
Sway area-M-L [mm × s] | 85.7 | 30.5 | 69.7 | 25.2 | 73.4 | 21.3 | 74.5 | 15.6 | 0.247 | 0.623 | 0.008 | |
Sway area A-P [mm × s] | 20.7 | 8.5 | 21.3 | 11.8 | 17.1 | 5.2 | 19.9 | 7.6 | 0.224 | 0.639 | 0.007 |
ICMT (n = 22), M ± SD | CG (n = 16), M ± SD | Comparison of Two Groups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | F | p | ηp2 | 1-β | |||||
Limits of stability | ||||||||||||
Average angle [°] | 6.2 | 0.7 | 6.1 | 0.6 | 6.0 | 0.6 | 6.0 | 0.6 | 0.948 | 0.338 | 0.030 | |
Anterior angle [°] | 7.1 | 1.1 | 7.1 | 0.8 | 7.0 | 0.8 | 7.1 | 1.0 | 0.000 | 0.995 | 0.000 | |
P angle [°] | 4.0 | 0.7 | 3.7 | 1.0 | 3.8 | 0.6 | 3.4 | 0.9 | 1.459 | 0.236 | 0.045 | |
M angle [°] | 6.5 | 0.6 | 6.6 | 0.7 | 6.5 | 1.2 | 6.6 | 0.8 | 0.011 | 0.918 | 0.000 | |
L angle [°] | 6.5 | 1.0 | 6.5 | 0.6 | 6.4 | 0.6 | 5.9 | 1.2 | 6.202 | 0.018 * | 0.167 ## | 0.606 |
M-A Angle [°] | 7.7 | 1.2 | 7.8 | 0.9 | 7.7 | 1.0 | 8.0. | 1.0 | 0.349 | 0.559 | 0.011 | |
L-A Angle [°] | 7.7 | 1.4 | 7.8 | 0.6 | 7.4 | 0.8 | 7.5 | 1.2 | 2.404 | 0.131 | 0.072 # | 0.570 |
M-P Angle [°] | 5.0 | 0.7 | 4.8 | 0.9 | 4.8 | 0.9 | 4.9 | 1.0 | 0.000 | 0.987 | 0.000 | |
L-P Angle [°] | 5.0 | 0.7 | 4.7 | 1.1 | 4.7 | 0.8 | 4.7 | 0.8 | 0.349 | 0.559 | 0.011 | |
Postural stability | ||||||||||||
Stability Overall | 0.8 | 0.2 | 0.8 | 0.2 | 0.8 | 0.3 | 0.8 | 0.2 | 0.379 | 0.542 | 0.012 | |
A-P | 0.6 | 0.3 | 0.5 | 0.2 | 0.4 | 0.3 | 0.4 | 0.2 | 2.952 | 0.096 | 0.087 # | 0.578 |
M-L | 0.6 | 0.1 | 0.6 | 0.2 | 0.6 | 0.2 | 0.6 | 0.2 | 0.068 | 0.796 | 0.002 | |
Sway Overall | 0.3 | 0.4 | 0.2 | 0.3 | 0.5 | 1.1 | 0.3 | 0.5 | 0.632 | 0.433 | 0.020 | |
A-P | 0.2 | 0.3 | 0.2 | 0.4 | 0.4 | 0.9 | 0.3 | 0.4 | 0.082 | 0.777 | 0.003 | |
M-L | 0.2 | 0.3 | 0.2 | 0.2 | 0.3 | 0.6 | 0.2 | 0.2 | 0.319 | 0.576 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Guo, J.; Zhang, J.; Zhang, L.; Li, Y.; Yang, S.; Zhu, W.; Guo, F. Interactive Cognitive Motor Training: A Promising Approach for Sustainable Improvement of Balance in Older Adults. Sustainability 2023, 15, 13407. https://doi.org/10.3390/su151813407
Zhang L, Guo J, Zhang J, Zhang L, Li Y, Yang S, Zhu W, Guo F. Interactive Cognitive Motor Training: A Promising Approach for Sustainable Improvement of Balance in Older Adults. Sustainability. 2023; 15(18):13407. https://doi.org/10.3390/su151813407
Chicago/Turabian StyleZhang, Longhai, Jiawei Guo, Jing Zhang, Ling Zhang, Yanbing Li, Shutong Yang, Wenfei Zhu, and Fei Guo. 2023. "Interactive Cognitive Motor Training: A Promising Approach for Sustainable Improvement of Balance in Older Adults" Sustainability 15, no. 18: 13407. https://doi.org/10.3390/su151813407
APA StyleZhang, L., Guo, J., Zhang, J., Zhang, L., Li, Y., Yang, S., Zhu, W., & Guo, F. (2023). Interactive Cognitive Motor Training: A Promising Approach for Sustainable Improvement of Balance in Older Adults. Sustainability, 15(18), 13407. https://doi.org/10.3390/su151813407