Management Soil Zones, Irrigation, and Fertigation Effects on Yield and Oil Content of Coriandrum sativum L. Using Precision Agriculture with Fuzzy k-Means Clustering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Climatic Conditions
2.2. Experimental Design and Variants
2.3. Crop, Cultivation Technology and Field Management
2.4. Observations and Determinations
2.5. Data Preparation, Exploratory Geostatistics Analysis-Modelling, Interpolation, and Models Validation Measures
2.6. Factor and PCA Analysis, Delineation of Management Zones with Fuzzy k-Means Clustering
2.7. Statistical Analyses
3. Results
3.1. Results and Discussion of Soil’s Chemical, Granular and Hydraulic Analyses
3.2. Results and Discussion of Exploratory Data Analysis
3.3. Results and Discussion of Precision Agriculture Geostatistical Modelling of Soil’s Chemical, Granular and Hydraulic Parameters
3.4. Results and Discussion of Best Fitted Semivariogram Models, and Cross-Validation
3.5. Factor Analysis Results and Discussion of Soil’s Chemical, Granular and Hydraulic Groups
- Factor-1 contains significant loadings of 8 parameters, and it can be considered a ‘Mg-Ca-CaCO3-Sand-pH-K factor-Vfs-Clay’ component that explains the synergistic soil chemistry interactions between the 8 parameters as the dominating chemical processes in the field’s soil. The presence of high levels of calcium Ca++ (0.838) and magnesium Mg++ (0.852) loadings and concentrations in the soil is associated with the intensive farming activities taking place in the area. The soil of the trial field was categorized as alkaline, with pH values between 7.45 and 8.13.
- Factor-2 as a ‘θwp-silt-θfc-nitrogen inorganic-Polsen’ component explains hydraulic and chemical interactions between the above-mentioned five parameters. This factor is mainly represented by positive high loadings of θwp (0.920), silt (0.872), θfc (0.855), and nitrogen inorganic (0.803), and a negative loading of phosphorus (−0.419). Inorganic nitrogen does not have a significant lithologic origin at the site and may be related to the agricultural activities of the region and the surface runoff of nitrogen fertilizers.
- Factor-3 is considered a ‘θsat-PAW-Ks-BD’ component that exhibits a negative loading of bulk density (−0.984) relative to the saturated hydraulic conductivity Ks (0.838), as would be expected, and high positive loadings of PAW (0.894) and θsat (0.985).
- Factor-4 may be considered an ‘organic matter and potassium K’ component that exhibits high loadings of OM (0.918) and potassium K+ (0.891).
- The factor-5 is less significant and accounts for only 5.815% of the overall variance in the data matrix. This factor is considered a ‘gravel’ component that exhibits a high loading of gravel content (0.784), indicating that this factor is rock weathering.
3.6. Delineating Field’s Management Zones Results and Discussion
3.7. Results and Discussion of Soil–Water–Crop–Atmosphere (SWCA) and ASMD Model, the Deficit Irrigation and VRA Effects on Field’s Management Zones Yields and Essential Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Küppers, M.; O’Rourke, L.; Bockelée-Morvan, D.; Zakharov, V.; Lee, S.; Von Allmen, P.; Carry, B.; Teyssier, D.; Marston, A.; Müller, T.; et al. Localized sources of water vapour on the dwarf planet (1). Ceres Nat. 2014, 505, 525–527. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Bramley, H. Water Deficits: Development; CRC Press: Boca Raton, FL, USA, 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Filintas, A. Land Use Evaluation and Environmental Management of Biowastes, for Irrigation with Processed Wastewaters and Application of Bio-Sludge with Agricultural Machinery, for Improvement-Fertilization of Soils and Crops, with the Use of GIS-Remote Sensing, Precision Agriculture and Multicriteria Analysis. Ph.D. Thesis, University of the Aegean, Mitilini, Greece, 2011. [Google Scholar]
- Gleick, P.H.; Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Natl. Acad. Sci. USA 2010, 107, 11155–11162. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. Appraisal and assessment of world water resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Schiermeier, Q. The parched planet: Water on tap. Nature 2014, 510, 326–328. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.H.M.; Turner, N.C.; Li, X.-G.; Niu, J.-Y.; Yang, C.; Liu, L.; Chai, Q. Ridge-furrow mulching systems—An innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agron 2013, 118, 429–476. [Google Scholar] [CrossRef]
- FAO. Coping with Water Scarcity: An Action Framework for Agriculture and Food Security; FAO: Rome, Italy, 2012; p. 100. [Google Scholar]
- Stamatis, G.; Parpodis, K.; Filintas, A.; Zagana, E. Groundwater quality, nitrate pollution and irrigation environmental management in the Neogene sediments of an agricultural region in central Thessaly (Greece). Environ. Earth Sci. 2011, 64, 1081–1105. [Google Scholar] [CrossRef]
- EEA. Use of Freshwater Resources in Europe, CSI 018; European Environment Agency (EEA): Copenhagen, Denmark, 2019. [Google Scholar]
- Koutseris, Ε.; Filintas, A.; Dioudis, P. Antiflooding prevention, protection, strategic environmental planning of aquatic resources and water purification: The case of Thessalian basin, in Greece. Desalination 2010, 250, 318–322. [Google Scholar] [CrossRef]
- Islam, S.M.F.; Karim, Z. World’s Demand for Food and Water: The Consequences of Climate Change. In Desalination-Challenges and Opportunities; Farahani, M.H.D.A., Vatanpour, V., Taheri, A.H., Eds.; IntechOpen: London, UK, 2019; Chapter 4; pp. 1–27. [Google Scholar] [CrossRef]
- Filintas, A.; Wogiatzi, E.; Gougoulias, N. Rainfed cultivation with supplemental irrigation modelling on seed yield and oil of Coriandrum sativum L. using Precision Agriculture and GIS moisture mapping. Water Supply 2021, 21, 2569–2582. [Google Scholar] [CrossRef]
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef]
- Garrote, L.; Iglesias, A.; Granados, A.; Mediero, L.; Martin-Carrasco, F. Quantitative assessment of climate change vulnerability of irrigation demands in Mediterranean Europe. Water Resour. Manag. 2015, 29, 325–338. [Google Scholar] [CrossRef]
- Kreins, P.; Henseler, M.; Anter, J.; Herrmann, F.; Wendland, F. Quantification of climate change impact on regional agricultural irrigation and groundwater demand. Water Resour. Manag. 2015, 29, 3585–3600. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration; Drainage & Irrigation paper Nº56; FAO: Rome, Italy, 1998. [Google Scholar]
- Filintas, A.; Nteskou, A.; Kourgialas, N.; Gougoulias, N.; Hatzichristou, E. A Comparison between Variable Deficit Irrigation and Farmers’ Irrigation Practices under Three Fertilization Levels in Cotton Yield (Gossypium hirsutum L.) Using Precision Agriculture, Remote Sensing, Soil Analyses, and Crop Growth Modeling. Water 2022, 14, 2654. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, J.; Liang, Z.; Hu, X.; Cai, H. The controlled alternative irrigation-A new approach for water saving regulation in farm land. Agric. Res. Arid Areas 1997, 15, 1–6. (In Chinese) [Google Scholar] [CrossRef]
- Dioudis, P.; Filintas, A.; Koutseris, E. GPS and GIS based N-mapping of agricultural fields’ spatial variability as a tool for non-polluting fertilization by drip irrigation. Int. J. Sus. Dev. Plann. 2009, 4, 210–225. [Google Scholar] [CrossRef]
- Filintas, A.; Dioudis, P.; Prochaska, C. GIS modeling of the impact of drip irrigation, of water quality and of soil’s available water capacity on Zea mays L, biomass yield and its biofuel potential. Desalination Water Treat. 2010, 13, 303–319. [Google Scholar] [CrossRef]
- Bakhsh, A.; Hussein, F.; Ahmad, N.; Hassan, A.; Farid, H.U. Modeling deficit irrigation effects in maize to improve water use efficiency. Pak. J. Agric. Sci 2012, 49, 365–374. [Google Scholar]
- Jinxia, Z.; Ziyong, C.; Rui, Z. Regulated deficit drip irrigation influences on seed maize growth and yield under film. Proc. Engin. 2012, 28, 464–468. [Google Scholar] [CrossRef]
- Qiu, Y.F.; Meng, G. The effect of water saving and production increment by drip irrigation schedules. In Proceedings of the Third International Conference on Intelligent System Design and Engineering Applications (ISDEA), Hong Kong, China, 16–18 January 2013. [Google Scholar]
- Filintas, A. Soil Moisture Depletion Modelling Using a TDR Multi-Sensor System, GIS, Soil Analyzes, Precision Agriculture and Remote Sensing on Maize for Improved Irrigation-Fertilization Decisions. Eng. Proc. 2021, 9, 36. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Zhang, F.; Wang, X. Effects of Soil Water Deficit at Different Growth Stages on Maize Growth, Yield, and Water Use Efficiency under Alternate Partial Root-Zone Irrigation. Water 2021, 13, 148. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- FAO. 2018 New Quality Criteria to be Developed for Booming Spice and Herb Sector. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/news/story/en/item/213612/icode/ (accessed on 5 February 2021).
- Evergetis, E.; Haroutounian, S.A. Exploitation of apiaceae family plants as valuable renewable source of essential oils containing crops for the production of fine chemicals. Ind. Crop. Prod. 2014, 54, 70–77. [Google Scholar] [CrossRef]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar] [CrossRef]
- Khodadadi, M.; Dehghani, H.; Jalali-Javaran, M.; Christopher, T.J. Fruit yield, fatty and essential oils content genetics in coriander. Ind. Crops Prod. 2016, 94, 72–81. [Google Scholar] [CrossRef]
- Wei, J.N.; Liu, Z.H.; Zhao, Y.P.; Zhao, L.L.; Xue, T.K.; Lan, Q.K. Phytochemical and bioactives profile of Cordiandrum sativum L. Food Chem. 2019, 286, 260–267. [Google Scholar] [CrossRef]
- Nadeem, M.; Anjum, F.M.; Khan, M.I.; Tehseen, S.; El-Ghorab, A.; Sultan, J.I. Nutritional and medicinal aspects of coriander (Coriandrum sativum L.) a review. Brit. Food J. 2013, 115, 743–755. [Google Scholar] [CrossRef]
- Lenardis, A.D.; De-la-Fuente, E.; Gil, A.; Tubia, A. Response of coriander (Coriandrum sativum L.) to nitrogen availability. J. Herbs Spices Med. Plants 2000, 7, 47–58. [Google Scholar] [CrossRef]
- Ghazanfari, N.; Mortazavi, S.A.; Yazdi, F.T.; Mohammadi, M. Microwave-assisted hydrodistillation extraction of essential oil from coriander seeds and evaluation of their composition, antioxidant and antimicrobial activity. Heliyon 2020, 6, e04893. [Google Scholar] [CrossRef]
- Anitescu, G.; Doneanu, C.; Radulescu, V. Isolation of coriander oil:comparison between steam distillation and supercritical CO2 extraction. Flavour. Frag. J. 1997, 12, 73–176. [Google Scholar] [CrossRef]
- Jeliazkova, E.A.; Craker, L.E.; Zheljazkov, V.D. Irradiation of seeds and productivity of coriander, Coriandrum sativum L. J. Herbs Spices Med. Plants 1997, 5, 73–79. [Google Scholar] [CrossRef]
- Smallfield, B.M.; Van-Klink, J.W.; Perry, N.B.; Dodds, K.G. Coriander spice oil: Effects of fruit crushing and distillation time on yield and composition. J. Agric. Food. Chem. 2001, 49, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Ayanoglue, F.; Ahmet, M.; Neset, A.; Bilal, B. Seed yields, yield components and essential oil of selected coriander (Coriandrum sativum L.) lines. J. Herbs Spices Med. Plants 2002, 9, 71–76. [Google Scholar] [CrossRef]
- Msaada, K.; Taarit, M.B.; Hosni, K.; Hammami, M.; Marzouk, B. Regional and maturational effects on essential oils yields and composition of coriander (Coriandrum sativum L.) fruits. Sci. Hortic. 2009, 122, 116–124. [Google Scholar] [CrossRef]
- Gil, A.; De-La-Fuente, E.B.; Lenardis, A.E.; Pereira, M.L.; Suarez, S.A.; Arnaldo, B.; Holsten, A.; Vetter, T.; Vohland, K.; Krysanova, V. Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas. Ecol. Model. 2009, 220, 2076–2087. [Google Scholar]
- Neffati, M.; Sriti, J.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Salinity impact on fruit yield, essential oil composition and antioxidant activities of Coriandrum sativum fruit extracts. Food Chem. 2011, 124, 221–225. [Google Scholar] [CrossRef]
- Asgharpanah, J.; Kazemivash, N. Phytochemistry, pharmacology and medicinal properties of Coriandrum sativum L. Afr. J. Pharm. Pharmacol. 2012, 6, 2340–2345. [Google Scholar] [CrossRef]
- Momin, A.H.; Acharya, S.S.; Gajjar, A.V. Coriandrum sativum-review of advances in phytopharmacology. Int. J. Pharm. Sci. Res. 2012, 3, 1233–1239. [Google Scholar]
- Laribi, B.; Kouki, K.; M’Hamdi, M.; Bettaieb, T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia 2015, 103, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Garten, C.T., Jr.; Classen, A.T.; Norby, R.J. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment. Plant. Soil 2009, 319, 85–94. [Google Scholar] [CrossRef]
- Falloon, P.; Jones, C.D.; Ades, M.; Paul, K. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty. Glob. Biogeochem. Cycles 2011, 25, GB3010. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis Part 2: Chemical and Microbiological Properties; Agronomy, ASA and SSSA: Madison, WI, USA, 1982; p. 1159. [Google Scholar]
- Lamas, F.; Irigaray, C.; Oteo, C.; Chacon, J. Selection of the most appropriate method to determine the carbonate content for engineering purposes with particular regard to marls. Eng. Geol. 2005, 81, 32–41. [Google Scholar] [CrossRef]
- Johnson, G.V.; Raun, W.R.; Zhang, H.; Hattey, J.A. Oklahoma Soil Fertility Handbook; OK Agricultural Experiment Station and Oklahoma Cooperative Extension Service, Oklahoma State University: Stillwater, OK, USA, 2000. [Google Scholar]
- Bezdek, J.C. Cluster validity with fuzzy sets. J. Cybern. 1974, 3, 58–73. [Google Scholar] [CrossRef]
- Bezdek, J.C. A convergence theorem for the fuzzy ISODATA clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Bezdek, J.C.; Trivedi, M.; Ehrlich, R.; Full, W. Fuzzy clustering: A new approach for geostatistical analysis. International. J. Syst. Meas. Decis. 1981, 2, 13–23. [Google Scholar]
- Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- McBratney, A.B.; Moore, A.W. Application of fuzzy sets to climate classification. Agric. For. Meteorol. 1985, 35, 165–185. [Google Scholar] [CrossRef]
- De Gruijter, J.J.; McBratney, A.B. A modified fuzzy k-means method for predictive classification. In Classijkation and Related Methods of Data Analysis; Editor Bock, H.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1988; pp. 97–104. [Google Scholar]
- Odeh, I.O.A.; McBratney, A.B.; Chittleborough, D.J. Design of optimal sample spacings for mapping soil using fuzzy k-means and regionalized variable theory. Geoderma 1990, 47, 93–122. [Google Scholar] [CrossRef]
- Xie, X.L.; Beni, G. A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 841–847. [Google Scholar] [CrossRef]
- McBratney, A.B.; de Gruijter, J.J. A continuum approach to soil classification by modified fuzzy k-means with extragrades. J. Soil Sci. 1992, 43, 159–175. [Google Scholar] [CrossRef]
- Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On clustering validation techniques. J. Intell. Inf. Syst. 2001, 17, 107–145. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. FuzME version 3.0.; Australian Centre for Precision Agriculture; The University of Sydney: Sydney, Australia, 2002; Available online: http://www.usyd.edu.au/sulagriclacpa (accessed on 16 May 2006).
- Fridgen, J.J.; Kitchen, N.R.; Sudduth, A.K.; Drummond, S.T. Management Zone Analyst (MZA): Software for subfeld management zone delineation. Agron. J. 2004, 96, 100–108. [Google Scholar] [CrossRef]
- Steinley, D. K-means clustering: A half-century synthesis. Br. J. Math. Stat. Psychol. 2006, 59, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Luz López García, M.; García-Ródenas, R.; González Gómez, A. K-means algorithms for functional data. Neurocomputing 2015, 151, 231–245. [Google Scholar] [CrossRef]
- Taylor, J.A.; Dresser, J.; Hickey, C.C.; Nuske, S.T.; Bates, T.R. Considerations on spatial crop load mapping. Aust. J. Grape Wine Res. 2019, 25, 144–155. [Google Scholar] [CrossRef]
- Friedrich, S.; Konietschke, F.; Pauly, M. Resampling-based analysis of multivariate data and repeated measures designs with the R Package MANOVA.RM. R J. 2019, 11, 380–400. [Google Scholar] [CrossRef]
- ISO S9261; Agricultural Irrigation Equipment Emitting Pipe Systems-Specifications and Test Methods. International Organization for Standardization (ISO): Geneva, Switzerland, 1991.
- Beretta, N.A.; Silbermann, V.A.; Paladino, L.; Torres, D.; Bassahun, D.; Musselli, R.; García-Lamohte, A. Soil texture analyses using a hydrometer: Modification of the Bouyoucos method. Cien. Inv. Agr. 2014, 41, 263–271. [Google Scholar] [CrossRef]
- Filintas, A.; Gougoulias, N.; Hatzichristou, E. Modeling Soil Erodibility by Water (Rainfall/Irrigation) on Tillage and No-Tillage Plots of a Helianthus Field Utilizing Soil Analysis, Precision Agriculture, GIS, and Kriging Geostatistics. Environ. Sci. Proc. 2023, 25, 54. [Google Scholar] [CrossRef]
- Meena, S.S.; Singh, B.; Singh, D.; Ranjan, J.K.; Meena, R.D. Pre and post harvest factors effecting yield and quality of seed spices: A review. Int. J. Seed Spices 2013, 3, 1–17. [Google Scholar]
- Topp, G.C.; Davis, J.L. Measurement of soil water content using time-domain reflectometry: A field evaluation. Soil Sci. Soc. Am. J. 1985, 49, 19–24. [Google Scholar] [CrossRef]
- Zegelin, S.J.; White, I.; Russel, G.F. A critique of the time domain reflectometry technique for determining field soil-water content. In Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice; SSSA Special Publication: Madison, WI, USA, 1992; Volume 30, pp. 187–208. [Google Scholar]
- Cassman, K.G.; Gines, G.C.; Dizon, M.A.; Samson, M.I.; Alcantara, J.M. Nitrogen use efficiency in tropical low land rice systems: Contributions from indigenous and applied nitrogen. Field Crop. Res. 1996, 47, 1–12. [Google Scholar] [CrossRef]
- Ierna, A.; Pandino, G.; Lombardo, S.; Mauromicale, G. Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization. Agric. Water Manag. 2011, 101, 35–41. [Google Scholar] [CrossRef]
- Norusis, M.J. IBM SPSS Statistics 19 Advanced Statistical Procedures Companion; Pearson: London, UK, 2011. [Google Scholar]
- Hatzigiannakis, E.; Filintas, A.; Ilias, A.; Panagopoulos, A.; Arampatzis, G.; Hatzispiroglou, I. Hydrological and rating curve modelling of Pinios River water flows in Central Greece, for environmental and agricultural water resources management. Desalination Water Treat. 2016, 57, 11639–11659. [Google Scholar] [CrossRef]
- Davis, J.C. Statistics and Data Analysis in Geology; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Hatzopoulos, N.J. Topographic Mapping, Covering the Wider Field of Geospatial Information Science & Technology (GIS&T); Universal Publishers: Irvine, CA, USA, 2008. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: Berlin, Germany, 1986. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Manly, B.F.J.; Navarro Alberto, J.A. Multivariate Statistical Methods: A Primer, 4th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Kalavrouziotis, I.K.; Filintas, A.T.; Koukoulakis, P.H.; Hatzopoulos, J.N. Application of multicriteria analysis in the Management and Planning of Treated Municipal Wastewater and Sludge reuse in Agriculture and Land Development: The case of Sparti’s Wastewater Treatment Plant, Greece. Fresenious Environ. Bull. 2011, 20, 287–295. [Google Scholar]
- Bogunovic, I.; Mesic, M.; Zgorelec, Z.; Jurisic, A.; Bilandzija, D. Spatial variation of soil nutrients on sandy-loam soil. Soil Tillage Res. 2014, 144, 174–183. [Google Scholar] [CrossRef]
- Cass, A. Interpretation of some soil physical indicators for assessing soil physical fertility. In Soil Analysis: An Interpretation Manual, 2nd ed.; Peverill, K.I., Sparrow, L.A., Reuter, D.J., Eds.; CSIRO Publishing: Melbourne, Australia, 1999; pp. 95–102. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Handbook 537; USDA-ARS-58; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In Agricultural Handbook; United States Government Printing: Washington, DC, USA, 1997; pp. 65–100. [Google Scholar]
- USDA. Department of Agriculture—Agricultural Research Service: Revised Universal Soil Loss Equation. 2002. Available online: http://www.sedlab.olemiss.edu/rusle (accessed on 22 April 2022).
- Panagos, P.; Meusburger, K.; Alewell, C.; Montarella, L. Soil erodibility estimation using LUCAS point survey data of Europe. Environ. Model. Softw. 2012, 30, 143–145. [Google Scholar] [CrossRef]
- Wilding, L.P. Spatial variability: Its documentation, accommodation and implication to soil survey. In Soil Spatial Variability; Nielsen, D.R., Bouma, J., Eds.; Pudoc: Wagenigen, The Netherlands, 1985; pp. 166–189. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons: Chichester, UK, 2007; p. 271. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470517277 (accessed on 16 July 2023).
- Soropa, G.; Mbisva, O.M.; Nyamangara, J.; Nyakatawa, E.Z.; Nyapwere, N.; Lark, R.M. Spatial variability and mapping of soil fertility status in a high-potential smallholder farming area under sub-humid conditions in Zimbabwe. SN. Appl. Sci. 2021, 3. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Zhang, H.; Zhuang, S.; Qian, H.; Wang, F.; Ji, H. Spatial variability of the topsoil organic carbon in the Moso bamboo forests of southern China in association with soil properties. PLoS ONE 2015, 10, e0119175. [Google Scholar] [CrossRef]
- Yang, P.G.; Byrne, J.M.; Yang, M. Spatial variability of soil magnetic susceptibility, organic carbon and total nitrogen from farmland in northern China. Catena 2016, 145, 92–98. [Google Scholar] [CrossRef]
- John, K.; Abraham, I.I.; Kebonye, N.M.; Agyeman, P.C.; Ayito, E.O.; Kudjo, A.S. Soil organic carbon prediction with terrain derivatives using geostatistics and sequential Gaussian simulation. J. Saudi Soc. Agric. Sci. 2021, 20, 379–389. [Google Scholar] [CrossRef]
- Qu, M.K.; Li, W.D.; Zhang, C.R.; Wang, S.Q. Effect of land use types on the spatial prediction of soil nitrogen. GISci. Remote Sens. 2012, 49, 397–411. [Google Scholar] [CrossRef]
- Ferreiro, J.P.; Pereira De Almeida, V.; Cristina Alves, M.; Aparecida De Abreu, C.; Vieira, S.R.; Vidal Vázquez, E. Spatial variability of soil organic matter and cation exchange capacity in an Oxisol under different land uses. Commun. Soil. Sci. Plant Anal. 2016, 47 (Suppl. S1), 75–89. [Google Scholar] [CrossRef]
- Yamamoto, J.K. Comparing ordinary kriging interpolation variance and indicator kriging conditional variance for assessing uncertainties at unsampled locations. In Proceedings of the Application of Computers and Operations Research in the Mineral Industry (APCOM), Tucson, AZ, USA, 30 March–1 April 2005. [Google Scholar]
- Goovaerts, P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils 1998, 27, 315–334. [Google Scholar] [CrossRef]
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
Trial Season | Factors | |||||||
---|---|---|---|---|---|---|---|---|
1st cultivation season | 1st MZ | 2nd MZ | 3rd MZ | 4th MZ | ||||
Percentage of field’s cultivated area | 23.61% | 24.31% | 23.61% | 28.47% | ||||
Irrigation levels | IR1:FI * | IR2:VDI ** | IR1:FI * | IR2:VDI ** | IR1:FI * | IR2:VDI ** | IR1:FI * | IR2:VDI ** |
VRA mean Nitrogen levels (kg·ha−1) | 518.985 | 518.985 | 593.528 | 593.528 | 548.310 | 548.310 | 572.270 | 572.270 |
VRA mean P2O5 levels (kg·ha−1) | 28.648 | 28.648 | 45.290 | 45.290 | 49.929 | 49.929 | 25.168 | 25.168 |
2nd cultivation season | 1st MZ | 2nd MZ | 3rd MZ | 4th MZ | ||||
Irrigation levels | IR1:FI * | IR2:VDI ** | IR1:FI * | IR2:VDI ** | IR1:FI * | IR2:VDI ** | IR1:FI * | IR2:VDI ** |
VRA mean Nitrogen levels (kg·ha−1) | 612.402 | 612.402 | 611.334 | 611.334 | 594.916 | 594.916 | 595.160 | 595.160 |
VRA mean P2O5 levels (kg·ha−1) | 44.404 | 44.404 | 40.761 | 40.761 | 39.943 | 39.943 | 44.799 | 44.799 |
SN | Parameter | Minimum | Maximum | Mean | Std. Deviation * | Variance | CV (%) | Range |
1 | Calcium Ca++ (mg·kg−1) | 1190.84 | 3472.84 | 2236.16 | 427.38 | 182,653.09 | 19.11 | 2282.00 |
2 | Calcium carbonate CaCO3 (%) | 0.37 | 4.22 | 1.57 | 0.83 | 0.68 | 52.58 | 3.85 |
3 | Magnesium Mg++ (mg·kg−1) | 1100.82 | 2876.33 | 1900.58 | 304.55 | 92,753.40 | 16.02 | 1775.51 |
4 | Nitrogen inorganic(mg·kg−1) | 47.50 | 101.00 | 68.09 | 10.34 | 106.98 | 15.19 | 53.50 |
5 | Organic matter (%) | 1.33 | 4.07 | 1.79 | 0.33 | 0.11 | 18.49 | 2.74 |
6 | pH [1:2 soil/water solution] | 7.45 | 8.13 | 7.82 | 0.09 | 0.01 | 1.22 | 0.68 |
7 | Phosphorus P-olsen (mg·kg−1) | 8.96 | 21.43 | 15.95 | 2.29 | 5.24 | 14.35 | 12.47 |
8 | Potassium K+ (mg·kg−1) | 238.50 | 758.51 | 409.43 | 81.04 | 6566.86 | 19.79 | 520.01 |
9 | Clay (size: <0.002 mm) (%) | 22.18 | 28.72 | 24.83 | 1.13 | 1.28 | 4.55 | 6.54 |
10 | Gravel (%) | 0.01 | 0.25 | 0.08 | 0.03 | 0.00 | 43.66 | 0.23 |
11 | Sand pr (size: 0.2–2 mm) (%) | 30.13 | 35.69 | 33.37 | 1.32 | 1.74 | 3.95 | 5.57 |
12 | Silt (size: 0.002–0.02 mm) (%) | 13.61 | 22.31 | 19.66 | 1.69 | 2.87 | 8.61 | 8.70 |
13 | Soil Erodibility [Kfactor] (Mg·ha·h·ha−1·MJ−1·mm−1) | 0.02 | 0.03 | 0.03 | 0.00 | 0.00 | 4.73 | 0.01 |
14 | Vfs sand (size: 0.02–0.2 mm) (%) | 20.72 | 23.06 | 21.94 | 0.16 | 0.03 | 0.74 | 2.34 |
15 | Bulk density (g·cm−1) | 1.31 | 1.66 | 1.41 | 0.05 | 0.00 | 3.90 | 0.35 |
16 | Field capacity θfc (m3·m−3) | 25.12 | 30.47 | 27.66 | 0.92 | 0.85 | 3.34 | 5.34 |
17 | Plant available water (cm·cm−1) | 0.08 | 0.13 | 0.11 | 0.01 | 0.00 | 6.11 | 0.05 |
18 | Saturation θsat (m3·m−3) | 37.29 | 50.55 | 46.68 | 2.21 | 4.90 | 4.74 | 13.25 |
19 | Sat. Hydraulic conductivity Ks (mm·h−1) | 4.66 | 22.94 | 16.27 | 4.22 | 17.85 | 25.96 | 18.28 |
20 | Wilting point θwp (m3·m−3) | 13.36 | 17.97 | 15.98 | 0.67 | 0.45 | 4.20 | 4.61 |
SN | Parameter | Group’s Best-Fitted Model | Percentage of Group’s Best-Fitted Model (%) | Group’s Parameters List That Was Best-Fitted | N:S Ratio | Spatial Dependence | RRMSE |
---|---|---|---|---|---|---|---|
1 | Chemical group | Exponential | 62.50 | Calcium Ca++ (mg·kg−1), | 0.007 | Strong | 6.000 |
Magnesium Mg++ (mg·kg−1), | 0.077 | 7.237 | |||||
Nitrogen inorganic (mg·kg−1), | 0.003 | 6.181 | |||||
Organic matter (%), | 0.015 | 12.821 | |||||
pH [1:2 soil/water solution] (-). | 0.009 | 0.350 | |||||
Gaussian | 25.00 | Calcium carbonate CaCO3 (%), | 0.090 | Strong | 19.033 | ||
Phosphorus P-olsen (mg·kg−1). | 0.276 | Medium | 8.218 | ||||
Circular | 12.50 | Potassium K+ (mg·kg−1) | 0.110 | Strong | 12.496 | ||
2 | Granular group | Exponential | 50.00 | Silt (size: 0.002–0.02 mm) (%), | 0.387 | Medium | 5.901 |
Kfactor (Mg·ha·h·ha−1·MJ−1·mm−1), | 0.756 | Strong | 3.548 | ||||
Vf sand (size: 0.02–0.2 mm) (%). | 0.024 | Weak | 0.686 | ||||
Pentaspherical | 33.33 | Clay (size: <0.002 mm) (%), | 0.048 | Strong | 2.107 | ||
Sand pr (size: 0.2–2 mm) (%). | 0.173 | 2.615 | |||||
Spherical | 16.67 | Gravel (%) | 0.472 | Medium | 39.481 | ||
3 | Hydraulic group | Circular | 50.00 | Field capacity θfc (m3·m−3), | 0.166 | Strong | 1.833 |
Plant PAW (cm·cm−1), | 0.132 | 3.514 | |||||
Sat. Hydr. Cond. Ks (mm·h−1) | 0.061 | 3.950 | |||||
Gaussian | 33.33 | Saturation θsat (m3·m−3), | 0.188 | Strong | 6.370 | ||
Wilting point θwp (m3·m−3). | 0.180 | 2.476 | |||||
Exponential | 16.67 | Bulk density (g·cm−1). | 0.029 | Strong | 1.986 |
SN | Parameter | Model | ASE | MPE | RMSE | MSPE | RMSSE |
---|---|---|---|---|---|---|---|
1 | Calcium Ca++ (mg·kg−1) | Exponential | 212.201 | 3.262 | 134.166 | 0.031 | 0.675 |
2 | Calcium carbonate CaCO3 (%) | Gaussian | 0.310 | 0.000 | 0.299 | −0.001 | 0.948 |
3 | Magnesium Mg++ (mg·kg−1) | Exponential | 161.583 | −0.590 | 137.540 | 0.005 | 0.862 |
4 | Nitrogen inorganic (mg·kg−1) | Exponential | 4.761 | 0.062 | 4.209 | 0.013 | 0.823 |
5 | Organic matter (%) | Exponential | 0.164 | −0.002 | 0.230 | −0.017 | 1.254 |
6 | pH [1:2 soil/water solution] | Exponential | 0.040 | 0.000 | 0.027 | 0.002 | 0.671 |
7 | Phosphorus P-olsen (mg·kg−1) | Gaussian | 1.422 | 0.007 | 1.311 | 0.002 | 0.917 |
8 | Potassium K+ (mg·kg−1) | Circular | 48.916 | −0.037 | 51.164 | 0.012 | 0.982 |
9 | Clay (size: <0.002 mm) (%) | Pentaspherical | 0.492 | 0.003 | 0.523 | 0.005 | 1.050 |
10 | Gravel (%) | Spherical | 0.034 | 0.001 | 0.030 | −0.019 | 1.003 |
11 | Sand pr (size: 0.2–2 mm) (%) | Pentaspherical | 0.816 | −0.002 | 0.873 | −0.002 | 1.064 |
12 | Silt (size: 0.002–0.02 mm) (%) | Exponential | 1.205 | −0.015 | 1.160 | −0.012 | 0.960 |
13 | Soil Erodibility [Kfactor] (Mg·ha·h·ha−1·MJ−1·mm−1) | Exponential | 0.001 | 0.000 | 0.001 | −0.011 | 1.027 |
14 | Vfs (size: 0.02–0.2 mm) (%) | Exponential | 0.138 | −0.001 | 0.151 | −0.008 | 1.079 |
15 | Bulk density (g·cm−1) | Exponential | 0.031 | 0.000 | 0.028 | −0.007 | 0.899 |
16 | Field capacity θfc (m3·m−3) | Circular | 0.553 | 0.000 | 0.507 | −0.002 | 0.909 |
17 | Plant available water PAW (cm·cm−1) | Circular | 0.004 | 0.000 | 0.004 | 0.024 | 0.938 |
18 | Sat. Hydraulic conductivity Ks (mm·h−1) | Circular | 2.676 | 0.082 | 1.844 | 0.016 | 0.983 |
19 | Saturation θsat (m3·m−3) | Gaussian | 1.148 | 0.021 | 1.037 | 0.014 | 0.886 |
20 | Wilting point θwp (m3·m−3) | Gaussian | 0.393 | −0.005 | 0.396 | −0.011 | 1.007 |
SN | Factor (PCA) | Description of Component | Variance (%) | Cumulative Variance (%) |
---|---|---|---|---|
1 | Factor 1 | ‘Mg-Ca-CaCO3-Sand-pH-K factor-Vfs-Clay’ | 28.798 | 28.798 |
2 | Factor 2 | ‘θwp-silt-θfc-nitrogen inorganic-Polsen’ | 22.725 | 51.523 |
3 | Factor 3 | ‘θsat-PAW-Ks-BD’ | 17.693 | 69.216 |
4 | Factor 4 | ‘organic matter and potassium K’ | 9.976 | 79.192 |
5 | Factor 5 | ‘gravel’ | 5.815 | 85.006 |
SN | Soil Parameters Group | Optimal Fuzziness Exponent φ | Fuzzy Clustering Percentage of Management Zones Spatial Agreement (PoMZSA) (%) between Soil Groups | ||||
---|---|---|---|---|---|---|---|
MZ 1 | MZ 2 | MZ 3 | MZ 4 | All MZs | |||
1 | “soil All parameters group” (20 parameters), 4 MZs | 1.14 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
2 | “soil All parameters group” (20 PCAs), 4 MZs | 1.14 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
3 | “soil All parameters group” (5 PCAs), 4 MZs | 1.56 | 40.00 | 60.00 | 20.59 | 2.44 | 29.86 |
4 | “soil chemical group” (8 parameters), 4 MZs | 1.14 | 35.29 | 74.29 | 61.76 | 2.44 | 41.67 |
5 | “soil granular group” (6 parameters), 4 MZs | 1.26 | 11.76 | 57.14 | 35.29 | 14.63 | 29.17 |
6 | “soil hydraulic group” (6 parameters), 4 MZs | 1.48 | 11.76 | 77.14 | 55.88 | 9.76 | 37.50 |
Management Zones Results of the SWCA and the Depletion Models of Coriandrum sativum L. in 1st c.s. | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | 1st MZ | 2nd MZ | 3rd MZ | 4th MZ | ||||
Season duration in days | 233 | 233 | 233 | 233 | ||||
Irrigation treatment | IR1:Full | IR2:VDI | IR1:Full | IR2:VDI | IR1:Full | IR2:VDI | IR1:Full | IR2:VDI |
Water deficit [%] | 100% | 60–75% | 100% | 60–75% | 100% | 60–75% | 100% | 60–75% |
ASMD average [%] | 17.89 | 24.69 | 18.13 | 24.25 | 18.36 | 24.48 | 18.87 | 24.16 |
ASMD max [%] | 75.77 | 80.24 | 83.71 | 83.72 | 84.80 | 84.80 | 80.76 | 80.76 |
Ks average [–] * | 0.976 | 0.913 | 0.976 | 0.920 | 0.975 | 0.918 | 0.968 | 0.919 |
Ks max [–] | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Ks min [–] * | 0.355 | 0.269 | 0.366 | 0.240 | 0.361 | 0.236 | 0.287 | 0.259 |
Ks-weighted average [–] * | 0.936 | 0.842 | 0.936 | 0.852 | 0.935 | 0.850 | 0.924 | 0.852 |
Number of days with Ks < 1 * | 38 | 73 | 38 | 69 | 38 | 69 | 42 | 68 |
Percentage of days with Ks < 1 * | 16.31 | 31.33 | 16.31 | 29.61 | 16.31 | 29.61 | 18.03 | 29.18 |
Net Irrigation NIR [mm] | 348.74 | 246.05 | 359.38 | 256.30 | 358.82 | 255.10 | 330.35 | 254.85 |
Effective rainfall Pe = P-RO [mm] | 344.28 | 344.28 | 344.28 | 344.28 | 344.28 | 344.28 | 344.28 | 344.28 |
TWI = (NIR + Pe) [mm] | 693.02 | 590.34 | 703.66 | 600.59 | 703.10 | 599.39 | 674.63 | 599.14 |
ETc [mm/stage] | 564.44 | 559.85 | 564.25 | 559.01 | 564.12 | 558.89 | 562.07 | 558.77 |
ETα [mm/stage] | 546.28 | 474.46 | 546.24 | 479.03 | 545.27 | 477.19 | 537.36 | 478.74 |
Deep percolation DP [mm] | 177.70 | 149.76 | 183.71 | 151.64 | 183.74 | 151.81 | 167.50 | 151.50 |
DP (% losses of NIR) | 50.96 | 60.87 | 51.12 | 59.16 | 51.21 | 59.51 | 50.70 | 59.45 |
DP (% losses of TWI) | 25.64 | 25.37 | 26.11 | 25.25 | 26.13 | 25.33 | 24.83 | 25.29 |
TWI-DP [mm] | 515.32 | 440.58 | 519.95 | 448.95 | 519.36 | 447.58 | 507.13 | 447.64 |
Kcb average | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
Kcb deviation | 0.30–1.19 | 0.30–1.19 | 0.30–1.19 | 0.30–1.19 | 0.30–1.19 | 0.30–1.19 | 0.30–1.19 | 0.30–1.19 |
Kc average | 1.15 | 1.14 | 1.15 | 1.14 | 1.15 | 1.14 | 1.14 | 1.14 |
Management Zones Results of the SWCA and the Depletion Model of Coriandrum sativum L. in 2nd c.s. | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | 1st MZ | 2nd MZ | 3rd MZ | 4th MZ | ||||
Season duration in days | 233 | 233 | 233 | 233 | ||||
Irrigation treatment | IR1:Full | IR2:VDI | IR1:Full | IR2:VDI | IR1:Full | IR2:VDI | IR1:Full | IR2:VDI |
Water deficit [%] of | 100% | 60–75% | 100% | 60–75% | 100% | 60–75% | 100% | 60–75% |
ASMD average [%] | 20.99 | 28.17 | 19.57 | 27.30 | 19.51 | 27.42 | 19.29 | 27.11 |
ASMD max [%] | 81.96 | 87.28 | 84.53 | 85.11 | 85.61 | 85.62 | 83.34 | 84.30 |
Ks average [–] * | 0.960 | 0.904 | 0.954 | 0.906 | 0.953 | 0.906 | 0.957 | 0.908 |
Ks max [–] | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Ks min [–] * | 0.233 | 0.135 | 0.183 | 0.167 | 0.178 | 0.164 | 0.203 | 0.185 |
Ks-weighted average [–] * | 0.918 | 0.825 | 0.910 | 0.831 | 0.909 | 0.830 | 0.913 | 0.834 |
Number of days with Ks < 1 * | 41 | 81 | 43 | 78 | 43 | 78 | 43 | 76 |
Percentage of days with Ks < 1 * | 17.60 | 34.76 | 18.45 | 33.48 | 18.45 | 33.48 | 18.45 | 32.62 |
Net Irrigation NIR [mm] | 308.54 | 225.25 | 315.39 | 236.43 | 314.19 | 236.43 | 319.75 | 236.39 |
Effective rainfall Pe = P−RO [mm] | 220.03 | 220.03 | 220.03 | 220.03 | 220.03 | 220.03 | 220.03 | 220.03 |
TWI = (NIR + Pe) [mm] | 528.57 | 445.29 | 535.42 | 456.46 | 534.22 | 456.46 | 539.79 | 456.42 |
ETc [mm/stage] | 521.97 | 520.57 | 521.46 | 519.50 | 521.38 | 519.43 | 521.42 | 519.46 |
ETα [mm/stage] | 493.03 | 435.44 | 488.70 | 436.58 | 487.82 | 436.01 | 491.01 | 436.86 |
Deep percolation DP [mm] | 70.36 | 47.57 | 78.05 | 51.61 | 77.24 | 51.64 | 81.23 | 52.49 |
DP (% losses of NIR) | 22.80 | 21.12 | 24.75 | 21.83 | 24.58 | 21.84 | 25.40 | 22.21 |
DP (% losses of TWI) | 13.31 | 10.68 | 14.58 | 11.31 | 14.46 | 11.31 | 15.05 | 11.50 |
TWI-DP [mm] | 458.21 | 397.71 | 457.37 | 404.85 | 456.98 | 404.82 | 458.56 | 403.93 |
Kcb average | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
Kcb deviation | 0.30–1.18 | 0.30–1.18 | 0.30–1.18 | 0.30–1.18 | 0.30–1.18 | 0.30–1.18 | 0.30–1.18 | 0.30–1.18 |
Kc average | 1.13 | 1.13 | 1.13 | 1.12 | 1.13 | 1.12 | 1.13 | 1.12 |
SN | Parameter | 1st MZ | 2nd MZ | 3rd MZ | 4th MZ |
---|---|---|---|---|---|
1 | Calcium Ca++ (mg·kg−1) | 2233.121 | 1896.783 | 2391.906 | 2399.249 |
2 | Calcium carbonate CaCO3 (%) | 1.862 | 0.968 | 1.700 | 1.742 |
3 | Magnesium Mg++ (mg·kg−1) | 1969.192 | 1660.571 | 1964.776 | 1995.331 |
4 | Nitrogen inorganic(mg·kg−1) | 76.151 | 59.622 | 75.192 | 62.752 |
5 | Organic matter (%) | 1.789 | 1.676 | 1.939 | 1.763 |
6 | pH [1:2 soil/water solution] | 7.878 | 7.744 | 7.851 | 7.813 |
7 | Phosphorus P-olsen (mg·kg−1) | 16.643 | 15.274 | 14.559 | 17.123 |
8 | Potassium K+ (mg·kg−1) | 405.655 | 403.556 | 409.28 | 417.689 |
9 | Clay (size: <0.002 mm) (%) | 25.349 | 25.052 | 25.317 | 23.814 |
10 | Gravel (%) | 0.083 | 0.093 | 0.077 | 0.057 |
11 | Sand pr (size: 0.2–2 mm) (%) | 32.367 | 34.386 | 32.728 | 33.873 |
12 | Silt (size: 0.002–0.02 mm) (%) | 20.357 | 18.545 | 19.441 | 20.229 |
13 | Soil Erodibility (Mg·ha·h·ha−1·MJ−1·mm−1) | 0.0309 | 0.0301 | 0.0301 | 0.0313 |
14 | Vfs sand (size: 0.02–0.2 mm) (%) | 21.868 | 22.010 | 21.903 | 21.981 |
15 | Bulk density (g·cm−1) | 1.386 | 1.411 | 1.469 | 1.397 |
16 | Field capacity θfc (m3·m−3) | 28.536 | 27.528 | 27.640 | 27.072 |
17 | Plant available water PAW (cm·cm−1) | 0.1146 | 0.1081 | 0.1066 | 0.1138 |
18 | Sat. Hydraulic conductivity Ks (mm·h−1) | 16.634 | 16.368 | 11.719 | 19.676 |
19 | Saturation θsat (m3·m−3) | 47.991 | 46.762 | 44.454 | 47.362 |
20 | Wilting point θwp (m3·m−3) | 16.257 | 15.989 | 16.364 | 15.426 |
21 | Nitrogen (kg·ha−1) VRA mean (1st c.s.) | 518.985 | 593.528 | 548.310 | 572.270 |
22 | Nitrogen (kg·ha−1) VRA mean (2nd c.s.) | 612.402 | 611.334 | 594.916 | 595.160 |
23 | P2O5 (kg·ha−1) VRA mean (1st c.s.) | 28.648 | 45.290 | 49.929 | 25.168 |
24 | P2O5 (kg·ha−1) VRA mean (2nd c.s.) | 44.404 | 40.761 | 39.943 | 44.799 |
Dependent Variable | C.s. | MZs | Irrigation Level | Management Zones Effects | Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|---|---|---|---|
coriander_YIELD1_FI | 1st | IR1:FI | Between Groups | 235,792.892 | 3 | 78,597.631 | 21.296 | 0.000 | |
4 | Within Groups | 516,711.442 | 140 | 3690.796 | |||||
Total | 752,504.333 | 143 | |||||||
coriander_YIELD1_VDI | 1st | IR2:VDI | Between Groups | 219,431.814 | 3 | 73,143.938 | 20.471 | 0.000 | |
4 | Within Groups | 500,228.460 | 140 | 3573.060 | |||||
Total | 719,660.275 | 143 | |||||||
coriander_YIELD2_FI | 2nd | IR1:FI | Between Groups | 7959.955 | 3 | 2653.318 | 1.118 | 0.344 | |
4 | Within Groups | 332,194.483 | 140 | 2372.818 | |||||
Total | 340,154.438 | 143 | |||||||
coriander_YIELD2_VDI | 2nd | IR2:VDI | Between Groups | 7285.969 | 3 | 2428.656 | 1.069 | 0.364 | |
4 | Within Groups | 318,066.413 | 140 | 2271.903 | |||||
Total | 325,352.381 | 143 | |||||||
Essential_Oil_1_FI | 1st | IR1:FI | Between Groups | 0.103 | 3 | 0.034 | 36.645 | 0.000 | |
4 | Within Groups | 0.132 | 140 | 0.001 | |||||
Total | 0.235 | 143 | |||||||
Essential_Oil_1_VDI | 1st | IR2:VDI | Between Groups | 0.119 | 3 | 0.040 | 35.515 | 0.000 | |
4 | Within Groups | 0.156 | 140 | 0.001 | |||||
Total | 0.275 | 143 | |||||||
Essential_Oil_2_FI | 2nd | IR1:FI | Between Groups | 0.001 | 3 | 0.000 | 0.618 | 0.604 | |
4 | Within Groups | 0.093 | 140 | 0.001 | |||||
Total | 0.094 | 143 | |||||||
Essential_Oil_2_VDI | 2nd | IR2:VDI | Between Groups | 0.020 | 3 | 0.007 | 8.215 | 0.000 | |
4 | Within Groups | 0.115 | 140 | 0.001 | |||||
Total | 0.135 | 143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filintas, A.; Gougoulias, N.; Kourgialas, N.; Hatzichristou, E. Management Soil Zones, Irrigation, and Fertigation Effects on Yield and Oil Content of Coriandrum sativum L. Using Precision Agriculture with Fuzzy k-Means Clustering. Sustainability 2023, 15, 13524. https://doi.org/10.3390/su151813524
Filintas A, Gougoulias N, Kourgialas N, Hatzichristou E. Management Soil Zones, Irrigation, and Fertigation Effects on Yield and Oil Content of Coriandrum sativum L. Using Precision Agriculture with Fuzzy k-Means Clustering. Sustainability. 2023; 15(18):13524. https://doi.org/10.3390/su151813524
Chicago/Turabian StyleFilintas, Agathos, Nikolaos Gougoulias, Nektarios Kourgialas, and Eleni Hatzichristou. 2023. "Management Soil Zones, Irrigation, and Fertigation Effects on Yield and Oil Content of Coriandrum sativum L. Using Precision Agriculture with Fuzzy k-Means Clustering" Sustainability 15, no. 18: 13524. https://doi.org/10.3390/su151813524
APA StyleFilintas, A., Gougoulias, N., Kourgialas, N., & Hatzichristou, E. (2023). Management Soil Zones, Irrigation, and Fertigation Effects on Yield and Oil Content of Coriandrum sativum L. Using Precision Agriculture with Fuzzy k-Means Clustering. Sustainability, 15(18), 13524. https://doi.org/10.3390/su151813524