Resilient and Sustainable Housing Models against Climate Change: A Review
Abstract
:1. Introduction
2. Background
2.1. Cities and Climate Change
2.2. Transition to Resilience and Sustainability
2.3. The Role of Housing against Climate Change
3. Materials and Methods
Literature Review
4. Results
4.1. Resilient Housing Models
4.2. Sustainable Housing Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN: General Assembly A/RES/217: Declaración Universal de los Derechos Humanos. 1948. Available online: https://documents-dds-ny.un.org/doc/RESOLUTION/GEN/NR0/046/82/PDF/NR004682.pdf?OpenElement (accessed on 15 November 2022).
- UN: General Assembly International Covenant on Economic, Social and Cultural Rights. 1966. Available online: https://www.ohchr.org/en/instruments-mechanisms/instruments/international-covenant-economic-social-and-cultural-rights (accessed on 15 November 2022).
- UN-HABITAT. Vivienda y ODS en México. 2018. Available online: https://onuhabitat.org.mx/index.php/la-vivienda-en-el-centro-de-los-ods-en-mexico (accessed on 15 November 2022).
- Daude, C.; Fajardo, G.; Brassiolo, P.; Estrada, R.; Goytia, C.; Sanguinetti, P.; Álvarez, F.; Vargas, J. RED 2017. Crecimiento Urbano y Acceso a Oportunidades: Un Desafío para América Latina. CAF. 2017. Available online: https://cafscioteca.azurewebsites.net/handle/123456789/1090 (accessed on 29 November 2022).
- United Nations Human Settlements Programme. Global Report on Human Settlements 2011: Cities and Climate Change. Available online: https://unhabitat.org/global-report-on-human-settlements-2011-cities-and-climate-change (accessed on 3 May 2022).
- United Nations Educational, Scientific and Cultural Organization. Culture: Urban Future; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2016; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000248920?posInSet=2&queryId=b6737e56-6e6f-4f21-b939-8fb7cda40088 (accessed on 10 November 2022).
- Trifković, M.; Kuburić, M.; Nestorović, Ž.; Jovanović, G.; Kekanović, M. The Attractiveness of Urban Complexes: Economic Aspect and Risks of Environmental Pollution. Sustainability 2021, 13, 8098. [Google Scholar] [CrossRef]
- Águila, M.J.; Prada-Trigo, J. Crecimiento urbano y segregación socioespacial en Valdivia. Urbano 2020, 23, 32–43. [Google Scholar] [CrossRef]
- African Development Bank; Asian Development Bank; European Bank for Reconstruction and Development, and Inter-American Development Bank. Creating Livable Cities: Regional Perspectives; Asian Development Bank: Mandaluyong City, Philippines, 2019. [Google Scholar] [CrossRef]
- UN-HABITAT. World Cities Report 2022: Envisaging the Future of Cities; UN-Habitat: Nairobi, Kenya, 2022; Available online: https://unhabitat.org/sites/default/files/2022/06/wcr_2022.pdf (accessed on 30 October 2022).
- Intergovernmental Panel on Climate Change. Informe de Síntesis AR5: Cambio Climático 2014. 2014. Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 11 December 2022).
- IPCC. Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Working Group I Contribution to the IPCC Sixth Assessment Report; IPCC: Geneva, Switzerland, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-12/ (accessed on 26 December 2022).
- Wright Wendel, H.E.; Zarger, R.K.; Mihelcic, J.R. Accessibility and usability: Green space preferences, perceptions, and barriers in a rapidly urbanizing city in Latin America. Landsc. Urban Plan. 2012, 107, 272–282. [Google Scholar] [CrossRef]
- Irassar, E.; John, V.; Tobón, J.; García, K.; Mack, J. Rol del Cemento en la Construcción de Ciudades Sostenibles y Resilientes. Federación Interamericana del Cemento—FICEM. 2020. Available online: https://ficem.org/dev/wp-content/uploads/2021/03/Paper-ciudades-resilientes.pdf (accessed on 21 September 2022).
- Unión Interamericana para la Vivienda (UNIAPRAVI) and División de Vivienda y Desarrollo Urbano del Banco Interamericano de Desarrollo. Estado del Arte de Vivienda y Hábitat Urbano en América Latina y el Caribe. 2020. Available online: https://www.citiesalliance.org/sites/default/files/2021-06/ES%20-%20Informe%20del%20Estado%20del%20Arte%20de%20la%20Vivienda%20y%20el%20H%C3%A1bitat%20Urbano%20en%20Am%C3%A9rica%20Latina%20y%20el%20Caribe%202020.pdf (accessed on 5 December 2022).
- Comisión Económica Para América Latina y el Caribe, Panorama Multidimensional del Desarrollo Urbano en América Latina y el Caribe. CEPAL. 2017. Available online: https://www.cepal.org/es/publicaciones/41974-panorama-multidimensional-desarrollo-urbano-america-latina-caribe (accessed on 21 December 2022).
- Internal Displacement Monitoring Centre. Global Report on Internal Displacement 2023; Internal Displacement Monitoring Centre: Ginebra, Switzerland, 2023; Available online: https://www.internal-displacement.org/global-report/grid2023/ (accessed on 26 December 2022).
- UN Secretary-General; World Commission on Environment and Development. Report of the World Commission on Environment and Development: Our Common Future; UN: New York, NY, USA, 1987; Available online: https://digitallibrary.un.org/record/139811 (accessed on 22 September 2021).
- Astudillo, J.A.; Garcimartín, C. Condiciones Habitacionales y Déficit de Vivienda en la Década de la Construcción de Panamá; Inter-American Development Bank: Washington, DC, USA, 2021. [Google Scholar]
- Seto, K.C.; Satterthwaite, D. Interactions between urbanization and global environmental change. Curr. Opin. Environ. Sustain. 2010, 2, 127–128. [Google Scholar] [CrossRef]
- UN-HABITAT. Ações Recomendadas para a Resiliência e Sustentabilidade: Teresina. 2022. Available online: https://urbanresiliencehub.org/wp-content/uploads/2022/06/PT-Ac%CC%A7o%CC%83es-Recomendadas-para-a-Resilie%CC%82ncia-e-Sustentabilidade-Teresina-Pages-LQ.pdf (accessed on 27 December 2022).
- Comisión Económica para América Latina y el Caribe. Plan de Acción Regional para la Implementación de la Nueva Agenda Urbana en América Latina y el Caribe, 2016–2036; CEPAL: Santiago, Chile, 2018; Available online: https://www.cepal.org/es/publicaciones/42144-plan-accion-regional-la-implementacion-la-nueva-agenda-urbana-america-latina (accessed on 10 November 2022).
- Instituto Nacional de Estadística y Censo. Definiciones y Explicaciones. 2010. Available online: https://www.inec.gob.pa/Aplicaciones/POBLACION_VIVIENDA/notas/def_vol1.htm (accessed on 19 March 2021).
- UN Office of the High Commissioner for Human Rights (OHCHR). Fact Sheet No. 21, The Human Right to Adequate Housing. 2019. Available online: https://www.refworld.org/docid/479477400.html (accessed on 23 August 2023).
- UN Office of the High Commissioner for Human Rights (OHCHR). A/77/226: Informe del Relator Especial Sobre la Promoción y la Protección de los Derechos Humanos en el Contexto del Cambio Climático—Promoción y Protección de los Derechos Humanos en el Contexto de la Mitigación del Cambio Climático, las Pérdidas y los Daños y la Participación; OHCHR: Ginebra, Switzerland, 2022; Available online: https://www.ohchr.org/es/documents/thematic-reports/a77226-promotion-and-protection-human-rights-context-climate-change (accessed on 24 August 2023).
- Levy, B.S.; Patz, J.A. The Impact of Climate Change on Public Health, Human Rights, and Social Justice. In Encyclopedia of the Anthropocene; Dellasala, D.A., Goldstein, M.I., Eds.; Elsevier: Oxford, UK, 2018; pp. 435–439. ISBN 978-0-12-813576-1. [Google Scholar]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.M.B.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Vera, F.; Uribe, M.C.; Castillo, S.D. Acción climática y Acuerdo de París: El rol de las ciudades de América Latina y el Caribe; Inter-American Development Bank: Washington, DC, USA, 2023; Available online: https://publications.iadb.org/es/accion-climatica-y-acuerdo-de-paris-el-rol-de-las-ciudades-de-america-latina-y-el-caribe (accessed on 25 May 2022).
- Intergovernmental Panel on Climate Change. Informe de Síntesis AR6: Cambio Climático 2023. Available online: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed on 24 August 2023).
- Pachauri, R.K.; y Reisinger, A. (Eds.) Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007; Available online: https://archive.ipcc.ch/publications_and_data/ar4/wg1/es/ts.html (accessed on 21 September 2022).
- UN-HABITAT. La Nueva Agenda Urbana; UN-HABITAT: Nairobi, Kenya, 2020; Available online: https://unhabitat.org/es/the-new-urban-agenda-illustrated (accessed on 6 October 2022).
- ONU: Asamblea General. A/RES/70/1: Transforming Our World: The 2030 Agenda for Sustainable Development. Naciones Unidas. 2015. Available online: https://documents-dds-ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?OpenElement (accessed on 3 December 2022).
- Lilley, H.; Payne, R.; Fox, D.; Brown, R.J.; Fountain, D. PMU68 Systematic vs. Non-systematic Literature Review Methodology for Publication in Leading Journals. Value Health 2020, 23, S614. [Google Scholar] [CrossRef]
- Takwoingi, Y.; Partlett, C.; Riley, R.D.; Hyde, C.; Deeks, J.J. Methods and reporting of systematic reviews of comparative accuracy were deficient: A methodological survey and proposed guidance. J. Clin. Epidemiol. 2020, 121, 1–14. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Gaur, A.; Kumar, M. A systematic approach to conducting review studies: An assessment of content analysis in 25 years of IB research. J. World Bus. 2018, 53, 280–289. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Fell, T.; Mattsson, J. The Role of Public-Private Partnerships in Housing as a Potential Contributor to Sustainable Cities and Communities: A Systematic Review. Sustainability 2021, 13, 7783. [Google Scholar] [CrossRef]
- Goris, G.; Adolf, S.J. Utilidad y tipos de revisión de literatura. ENE Revista de Enfermería 2015, 9, 2. [Google Scholar] [CrossRef]
- Calle, L. Metodologías para Hacer la Revisión de Literatura de una Investigación. 2016. Available online: https://www.researchgate.net/publication/301748735_Metodologias_para_hacer_la_revision_de_literatura_de_una_investigacion (accessed on 21 December 2022).
- Visentin, C.; da Silva Trentin, A.W.; Braun, A.B.; Thomé, A. Life cycle sustainability assessment: A systematic literature review through the application perspective, indicators, and methodologies. J. Clean. Prod. 2020, 270, 122509. [Google Scholar] [CrossRef]
- Ruíz-González, M.A.; Mack-Vergara, Y.L. Indicadores de resiliencia y sostenibilidad para la vivienda urbana panameña frente al cambio climático. Hábitat Sustentable 2022, 12, 8–25. [Google Scholar] [CrossRef]
- Moghayedi, A.; Phiri, C.; Ellmann, A.-M. Improving sustainability of affordable housing using innovative technologies: Case study of SIAH-Livable. Sci. Afr. 2023, 21, e01819. [Google Scholar] [CrossRef]
- Ferlito, T.-L.; Onososen, A.; Tjebane, M.; Musonda, I. Systematic Literature Review on Sustainable Construction Strategies for the Development of Affordable Housing. In Proceedings of the Twelfth International Conference on Construction in the 21st Century, Amman, Jordan, 16–19 May 2022. [Google Scholar]
- Adabre, M.A.; Chan, A.P.C.; Edwards, D.J.; Mensah, S. Evaluation of symmetries and asymmetries on barriers to sustainable housing in developing countries. J. Build. Eng. 2022, 50, 104174. [Google Scholar] [CrossRef]
- Marcos, F.V.; de la Cruz Mera, Á.; Celemin, M.D.R.H. Vivienda y salud: Eficiencia energética, urbanismo sostenible y agenda 2030. Conclusiones y futuro. Rev. Salud Ambient. 2021, 21, 56–64. [Google Scholar]
- Michael, A.; Savvides, A.; Vassiliades, C.; Triantafyllidou, E. Design and Creation of an Energy Efficient Prefabricated Housing Unit based on Specific Taxonomy and Optimization Techniques. Procedia Manuf. 2020, 44, 261–268. [Google Scholar] [CrossRef]
- McCabe, A.; Pojani, D.; van Groenou, A.B. The application of renewable energy to social housing: A systematic review. Energy Policy 2018, 114, 549–557. [Google Scholar] [CrossRef]
- Piña Hernández, E.H. Prototipo de vivienda vertical social sustentable, enfoque en resistencia al cambio climático. Rev. INVI 2018, 33, 213–237. [Google Scholar] [CrossRef]
- Moore, T.; Nicholls, L.; Strengers, Y.; Maller, C.; Horne, R. Benefits and challenges of energy efficient social housing. Energy Procedia 2017, 121, 300–307. [Google Scholar] [CrossRef]
- Hancevic, P.; Navajas, F.; Hancevic, P.; Navajas, F. Consumo residencial de electricidad y eficiencia energética. Un enfoque de regresión cuantílica. El Trimest. Económico 2015, 82, 897–927. [Google Scholar] [CrossRef]
- Sánchez Inocencio, Á.; Ramírez Fernández, I. Beneficios de Invertir en Sostenibilidad y Eficiencia Energética: 166 Viviendas BTR Certificadas Passivhaus y Breeam. 2022. Available online: http://www.riarte.es/handle/20.500.12251/2441 (accessed on 23 August 2023).
- Varun Raj, P.; Surya Teja, P.; Sai Siddhartha, K.; Kalyana Rama, J.S. Housing with low-cost materials and techniques for a sustainable construction in India-A review. Mater. Today Proc. 2021, 43, 1850–1855. [Google Scholar] [CrossRef]
- Gaudry, K.-H.; Godoy-Vaca, L.; Espinoza, S.; Fernández, G.; Lobato-Cordero, A. Normativas de energía en edificaciones ante el cambio climático. ACI Av. Cienc. Ing. 2019, 11, 154–171. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Das, B.B. Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making. Case Stud. Constr. Mater. 2023, 19, e02326. [Google Scholar] [CrossRef]
- Meglin, R.; Kytzia, S.; Habert, G. Regional circular economy of building materials: Environmental and economic assessment combining Material Flow Analysis, Input-Output Analyses, and Life Cycle Assessment. J. Ind. Ecol. 2022, 26, 562–576. [Google Scholar] [CrossRef]
- Sunday, D.; shukor Lim, N.H.A.; Mazlan, A.N. Sustainable Affordable Housing Strategies for Solving Low-Income Earners Housing Challenges in Nigeria. Estudios de Economía Aplicada 2021, 39, 4. [Google Scholar] [CrossRef]
- Hadj Ali, C.; Roy, D.; Amireche, L.; Antoni, J.-P. Development of a Cellular Automata-based model approach for sustainable planning of affordable housing projects: An application case study in Algiers. Land Use Policy 2023, 125, 106468. [Google Scholar] [CrossRef]
- Acolin, A.; Green, R.K. Measuring housing affordability in São Paulo metropolitan region: Incorporating location. Cities 2017, 62, 41–49. [Google Scholar] [CrossRef]
- Jara-Baeza, F.; Rajagopalan, P.; Andamon, M.M. A holistic assessment of indoor environmental quality perception in Australian high-rise social housing. Energy Build. 2023, 284, 112859. [Google Scholar] [CrossRef]
- Nieto-Barbosa, V.; Cubillos-González, R.; Barrios-Salcedo, R.; Nieto-Barbosa, V.; Cubillos-González, R.; Barrios-Salcedo, R. Aspectos de diseño resiliente aplicados a la envolvente que determinan el confort térmico en las viviendas sociales. Rev. Ing. Construcción 2021, 36, 197–209. [Google Scholar] [CrossRef]
- Gifreu i Font, J. Ciudades adaptativas y resilientes ante el cambio climático: Estrategias locales para contribuir a la sostenibilidad urbana. Rev. Aragonesa Adm. Pública 2018, 52, 102–158. [Google Scholar]
- Nederhand, J.; Avelino, F.; Awad, I.; De Jong, P.; Duijn, M.; Edelenbos, J.; Engelbert, J.; Fransen, J.; Schiller, M.; Van Stapele, N. Reclaiming the city from an urban vitalism perspective: Critically reflecting smart, inclusive, resilient and sustainable just city labels. Cities 2023, 137, 104257. [Google Scholar] [CrossRef]
- Mallick, S.K.; Das, P.; Maity, B.; Rudra, S.; Pramanik, M.; Pradhan, B.; Sahana, M. Understanding future urban growth, urban resilience and sustainable development of small cities using prediction-adaptation-resilience (PAR) approach. Sustain. Cities Soc. 2021, 74, 103196. [Google Scholar] [CrossRef]
- Cobbinah, P.B.; Gaisie, E.; Oppong-Yeboah, N.Y.; Anim, D.O. Kumasi: Towards a sustainable and resilient cityscape. Cities 2020, 97, 102567. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Xu, J.; Pan, G.; Wang, Y. An integrated framework to select resilient and sustainable sponge city design schemes for robust decision making. Ecol. Indic. 2020, 119, 106810. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Pena Jardim Gonçalves, L.A. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Shamout, S.; Boarin, P.; Wilkinson, S. The shift from sustainability to resilience as a driver for policy change: A policy analysis for more resilient and sustainable cities in Jordan. Sustain. Prod. Consum. 2021, 25, 285–298. [Google Scholar] [CrossRef]
- Cuerdo-Vilches, T.; Navas-Martín, M.Á.; Oteiza, I. A Mixed Approach on Resilience of Spanish Dwellings and Households during COVID-19 Lockdown. Sustainability 2020, 12, 10198. [Google Scholar] [CrossRef]
- Tokazhanov, G.; Tleuken, A.; Guney, M.; Turkyilmaz, A.; Karaca, F. How is COVID-19 Experience Transforming Sustainability Requirements of Residential Buildings? A Review. Sustainability 2020, 12, 8732. [Google Scholar] [CrossRef]
- Li, C.Z.; Chen, Z.; Xue, F.; Kong, X.T.R.; Xiao, B.; Lai, X.; Zhao, Y. A blockchain- and IoT-based smart product-service system for the sustainability of prefabricated housing construction. J. Clean. Prod. 2021, 286, 125391. [Google Scholar] [CrossRef]
- Thomas, A.S.; Hamm Rios, I.; Grádiz Fonseca, P.; Chavarría Elvir, V.; Sampson, N. Resilient Homes Challenge—Antu House. BUILD ACADEMY. 2018. Available online: https://buildacademy.com/project/antu/ (accessed on 3 April 2021).
- KZ Architecture. Spirited Bamboo. KZ Architecture. 2019. Available online: https://kzarchitecture.com/spirited-bamboo/ (accessed on 30 December 2022).
- Naditz, A. Resilient House: Ready for the Next One. Green Builder. 2022. Available online: https://www.greenbuildermedia.com/blog/resilient-house-ready-for-the-next-one (accessed on 4 January 2023).
- World Bank. Resilient Homes Challenge. World Bank. 2019. Available online: https://www.worldbank.org/en/topic/disasterriskmanagement/brief/resilient-homes-challenge (accessed on 3 January 2023).
- U.S. Green Building Council. Sistema de Clasificación LEED. U.S. Green Building Council. 2020. Available online: https://www.usgbc.org/about/building-re-entry-resources?creative=480767628465&device=c&gclid=Cj0KCQjwv5uKBhD6ARIsAGv9a-wn9zi639pQ6KMyILlritgPFlNAXl9FzLEcFnSOaeH8kbnPWbbR63MaAo_5EALw_wcB&keyword=leed&matchtype=b&network=g&utm_campaign=covid-resources&utm_content=covid-resources&utm_medium=cpc&utm_source=google (accessed on 19 September 2021).
- BRE Global Limited. BREEAM—Certificado de Construcción Sostenible. BREEAM® ES. 2020. Available online: https://breeam.es/ (accessed on 19 September 2021).
- Green Building Council of Australia. What Is Green Star? Green Building Council of Australia. 2020. Available online: https://new.gbca.org.au/green-star/green-star/ (accessed on 19 September 2021).
- Commonwealth of Australia. Harmony House. Your Home. 2022. Available online: https://www.yourhome.gov.au/case-studies/warm/Inverloch-victoria (accessed on 7 January 2023).
- Alternative Technology Association. Case Studies: Caloundra, Queensland. Your Home. 2013. Available online: https://www.yourhome.gov.au/case-studies/caloundra-queensland (accessed on 4 April 2021).
- Heather Benjamin. The LEED Platinum Owen Residence Sets an Example in Arkansas. Green Home Guide. 2019. Available online: https://www.greenhomeguide.com/know-how/article/the-leed-platinum-owen-residence-sets-an-example-in-arkansas (accessed on 9 January 2023).
- Master Builders Association. Blue Eco Homes. Master Builders Association. 2020. Available online: https://www.mbansw.asn.au/excellence-awards/blue-eco-homes-winner-0 (accessed on 25 August 2023).
- Department of Climate Change, Energy, the Environment and Water of Commonwealth of Australia. Your Home: Australia’s Guide to Environmentally Sustainable Homes. 2022. Available online: https://www.yourhome.gov.au/ (accessed on 7 January 2023).
- Long, M.U.S. Green Building Council Announces Annual LEED Homes Awards, Recognizing Residential LEED Projects Elevating the Living Standard through Sustainable Design|U.S. Green Building Council. S. Green Building Council. 2019. Available online: https://www.usgbc.org/articles/us-green-building-council-announces-annual-leed-homes-awards-recognizing-residential-leed-p (accessed on 9 January 2023).
- Maxwell Newton, S. Taking the LEED. At Home in Arkansas. 2019. Available online: https://www.athomearkansas.com/article/taking-the-leed/ (accessed on 8 January 2023).
- Blue Eco Concepts. Sapphire Passive House. Sustainable House Day. 2021. Available online: https://sustainablehouseday.com/listing/sapphire-passive-house-2/ (accessed on 25 August 2023).
- Darko, A.; Chan, A.P.C. Review of Barriers to Green Building Adoption. Sustain. Dev. 2017, 25, 167–179. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Pearce, A.R.; Wang, Y.; Wang, G. Drivers and barriers of sustainable design and construction: The perception of green building experience. Int. J. Sustain. Build. Technol. Urban Dev. 2013, 4, 35–45. [Google Scholar] [CrossRef]
- Munyasya, B.M.; Chileshe, N. Towards Sustainable Infrastructure Development: Drivers, Barriers, Strategies, and Coping Mechanisms. Sustainability 2018, 10, 4341. [Google Scholar] [CrossRef]
- Adabre, M.A.; Chan, A.P.C.; Darko, A. Interactive effects of institutional, economic, social and environmental barriers on sustainable housing in a developing country. Build. Environ. 2022, 207, 108487. [Google Scholar] [CrossRef]
- Golić, K.; Kosorić, V.; Kosić, T.; Vučković, S.S.; Kujundžić, K. A Platform of Critical Barriers to Socially Sustainable Residential Buildings: Experts’ Perspective. Sustainability 2023, 15, 7485. [Google Scholar] [CrossRef]
Energy | Water and Sanitization | Built Form | Resources Management | Location | Comfort |
---|---|---|---|---|---|
Energy assessment of the house | Innovative water techniques applicable to housing | Resilient and sustainable building regulations and guidelines | Efficient use of resources and waste management | Security assurance and vulnerability analysis | Understanding the physical–social environment |
Energy [43,44,45,46,47,48,49,50,51] | Water and Sanitization [43,44,45,52] | Built Form [43,44,47,53,54] | Resources Management [43,44,47,53,55,56,57] | Location [57,58,59] | Comfort [43,44,45,50,52,59,60,61] |
---|---|---|---|---|---|
|
|
|
|
|
|
Characteristics | Resilient House Antu: Caribbean Countries (Figure 3A) [72,75] | Spirited Bamboo: Caribbean Countries (Figure 3B) [73,75] | Resilient Liaison House: Puerto Rico (Figure 3C) [74] |
---|---|---|---|
Footage | 43 m2 | 50 m2 | 50 m2 |
Energy | This house did not include energy efficiency measures or alternative energy systems. | This house incorporates the use of solar energy to supply electricity to the house that, supported by passive cooling measures with the double-roof system, shade and insulation and incorporation of cross-ventilation, promotes thermal comfort. | This house has a portable solar power plant with the capacity to store 1.5 kilowatts (kW) per day. |
Water and Sanitation | This house did not include water efficiency measures or alternative systems. | This house includes the collection of rainwater for reuse in a low-pressure drip irrigation system for crops within the field and/or with a UV filtration system for use as drinking water. | This house provides water and sanitation through a 200-gallon rainwater cistern that runs by gravity, making it usable even during power outages, as well as an underground greywater system. |
Location and Resistance to extreme events | This house was designed according to the realities of the terrain, local capacities and the challenges evidenced by hurricanes Irma and Maria. | This house was designed according to local capabilities and evidenced challenges, such that it allows for resistance to earthquakes and strong hurricane winds. | This house respected the building codes in force in the country, while considering the needs of the user and the protection of the environment. In addition to considering the challenges received by the island: hurricanes, strong winds and floods. |
Materials | This house uses common materials and low maintenance: wood, river stones and concrete, with a construction cost of USD 9962.00. | This house uses bamboo and concrete pillars as materials, with a construction cost of USD 8107.00. | This house uses common materials such as masonry and concrete panels with structural insulation on the roof. |
Observation | This house participated in the Resilient Homes Challenge. | This house was awarded as the winner of the Resilient Homes Challenge. | This house won the XVI Biennial of Architecture and Landscape Architecture of Puerto Rico 2021 award, and the Green Builders 2022 Green Home of the Year. |
Characteristics | Harmony House: Australia (Figure 4A) [79,83] | Caloundra: Australia (Figure 4B) [80] | The Owen Residence: Estados Unidos (Figure 4C) [84,85] | Sapphire Passive House: Australia (Figure 4D) [82,86] |
---|---|---|---|---|
Footage | 194 m2 | 150 m2 | 800 m2 | 238 m2 |
Energy | This house produces its electricity using a 14 kW photovoltaic system. In addition, it has a passive solar design that contemplates internal thermal mass, cross-flow ventilation and strategic window placement. | This house implemented the use of glass windows and doors with low emissivity, a 1.5 kW photovoltaic solar system and the exclusive use of thrifty appliances. | With the help of 42 solar panels and the exclusive use of Energy Star appliances, this house does not consume energy from the grid, even returning its surplus to it. | This house is 90 percent more energy efficient, with an average use of 1.66 kW per day to run. However, it has a zero-carbon classification, supplying its consumption within a 5 kW photovoltaic solar system with a 10 kW battery storage system. |
Water and Sanitation | This house has enough storage for 27,000 L to meet all water needs, without the need to connect to the public network. Domestic wastewater is processed by a worm farm septic system, thus providing a chemical-free and relatively easy-to-maintain method. | The main water use is kept to a minimum by incorporating a 5000-L rainwater tank for reuse in bathrooms, laundry and gardens. In addition, high-efficiency plumbing is incorporated. | Opted for products with efficiency certification in everything related to plumbing. The design included eight barrels of rainwater to collect runoff from the roof and considered a landscape with unirrigated, drought-tolerant, site-appropriate landscaping and a fully permeable lot to maximize stormwater absorption and reduce runoff. | Rainwater is collected from the roof in a 22,000-L rainwater tank, which is connected to all internal fittings. The kitchen tap is the only tap connected to the main water supply. However, the entire plumbing system is highly efficient. |
Location and Resistance to extreme events | This house considers climatic zones, adaptability to local needs and lifestyle. | This house considers climatic zones, adaptability to local needs and lifestyle. | This house considers the climatic zones and the resources of the locality. | This house considers climatic zones, adaptability to local needs and lifestyle. For example, it is the first Certified Passive House in Australia to meet the highest bushfire risk rating. |
Materials | This house is clad in designer-finished fiber cement, an easy maintenance material. In addition, the walls have a ‘self-cleaning’ coating, whereby silica particles absorb water molecules from the air to form a protective film on the surface of the house. | This house model considers the quality and comfort of the inhabitants and the environment by using paints and laminates with low VOC, thermally more efficient materials and recycled materials, as well as materials that can be recycled, such that most of the house can be disassembled or reused at the end of its life span. | This house incorporates as many recycled materials as possible into the construction. | Any excavated materials were re-used on the site, with rocks also used for the building and landscaping. Local materials were used as much as possible. |
Observation | This house illustrates a case study from “Your Home: Australia’s Guide to Environmentally Sustainable Homes.” | This house illustrates a case study from “Your Home: Australia’s Guide to Environmentally Sustainable Homes.” | This house has been widely highlighted since its construction, with a LEED Platinum certification, and is named one of three outstanding single-family homes by the U.S. Green Building Council (USGBC) in the 2018 LEED Homes Awards, where it also won Project of the Year. | This house is the first certified Passive House in the Blue Mountains and the first certified Passive House in Australia to also be built to Bushfire Attack Level Flame Zone (BAL-FZ) regulations, and the first house in New South Wales to receive Healthy House Australia certification. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruíz, M.A.; Mack-Vergara, Y.L. Resilient and Sustainable Housing Models against Climate Change: A Review. Sustainability 2023, 15, 13544. https://doi.org/10.3390/su151813544
Ruíz MA, Mack-Vergara YL. Resilient and Sustainable Housing Models against Climate Change: A Review. Sustainability. 2023; 15(18):13544. https://doi.org/10.3390/su151813544
Chicago/Turabian StyleRuíz, Michelle A., and Yazmin L. Mack-Vergara. 2023. "Resilient and Sustainable Housing Models against Climate Change: A Review" Sustainability 15, no. 18: 13544. https://doi.org/10.3390/su151813544
APA StyleRuíz, M. A., & Mack-Vergara, Y. L. (2023). Resilient and Sustainable Housing Models against Climate Change: A Review. Sustainability, 15(18), 13544. https://doi.org/10.3390/su151813544