Hydrogen Horizons: A Bibliometric Review of Trends in Diverse Emission Sectors
Abstract
:1. Introduction
1.1. Previous Research
1.2. Research Outline
2. Materials and Methods
3. Results
3.1. Performance Analysis
3.1.1. Annual Indicators of Publications
3.1.2. Types and Research Areas of Publications
3.1.3. Highly Cited Publications
3.2. Analysis of the Countries/Regions, Institutions, and Authors
Citation Analysis
3.3. Keyword Analysis
3.3.1. Co-Occurrence Analysis
3.3.2. Timeline Visualization
3.3.3. Sustainability Topic Analysis
3.4. Sector Analysis
3.4.1. Power Sector
3.4.2. Industry Sector
3.4.3. Transport Sector
3.4.4. Agriculture Sector
3.4.5. Commercial Sector
3.4.6. Residential Sector
4. Discussion
- Hydrogen production technologies (e.g., gasification, electrolysis, steam reforming).
- Keywords characterizing the climate (e.g., climate change, greenhouse gas, carbon dioxide).
- Keywords related to the use of hydrogen (e.g., hydrogen technologies, hydrogen storage, commerce).
- Policy-related keywords (e.g., energy policy, energy security, decarbonization, hydrogen economy, economic and social effects, investments).
- Mobility sector (transportation sector, fuel economy, fuel cells, combustion engines, etc.)
- Keywords related to analysis (cost benefit analysis, economic analysis, decision-making).
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Letcher, T. (Ed.) Climate Change: Observed Impacts on Planet Earth, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Ozturk, M.; Dincer, I. A comprehensive review on power-to-gas with hydrogen options for cleaner applications. Int. J. Hydrogen Energy 2021, 46, 31511–31522. [Google Scholar] [CrossRef]
- How Renewable Energy Consumption Lower Global CO2 Emissions? Evidence from Countries with Different Income Levels—Dong—2020—The World Economy—Wiley Online Library’. Available online: https://onlinelibrary-wiley-com.resursi.rtu.lv/doi/full/10.1111/twec.12898 (accessed on 29 August 2023).
- Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Global Primary Energy Consumption 2022|Statista. Available online: https://www.statista.com/statistics/265598/consumption-of-primary-energy-worldwide/ (accessed on 29 August 2023).
- World Energy Transitions Outlook. 2022. Available online: https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2022 (accessed on 29 August 2023).
- Yusaf, T.; Laimon, M.; Alrefae, W.; Kadirgama, K.; Dhahad, H.A.; Ramasamy, D.; Kamarulzaman, M.K.; Yousif, B. Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach. Appl. Sci. 2022, 12, 17. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Mahmoud, M.S.; Elsaid, K.; Obaideen, K.; Rezk, H.; Wilberforce, T.; Eisa, T.; Chae, K.J.; Sayed, E.T. Green hydrogen: Pathways, roadmap, and role in achieving sustainable development goals. Process Saf. Environ. Prot. 2023, 177, 664–687. [Google Scholar] [CrossRef]
- Miah, M.S.; Hossain Lipu, M.S.; Meraj, S.T.; Hasan, K.; Ansari, S.; Jamal, T.; Masrur, H.; Elavarasan, R.M.; Hussain, A. Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends. Sustainability 2021, 13, 12800. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kumar, N.M.; Jayakumar, A.; Dash, S.K.; Elangovan, D. Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions. Sustainability 2021, 13, 12918. [Google Scholar] [CrossRef]
- Calandra, D.; Wang, T.D.; Cane, M.; Alfiero, S. Management of hydrogen mobility challenges: A systematic literature review. J. Clean. Prod. 2023, 410, 137305. [Google Scholar] [CrossRef]
- Santos, A.L.D.; Castro, A.L.S.; Salomon, K.R.; de Souza, T.S.; Vich, D.V. Global research trends on anaerobic digestion and biogas production from cassava wastewater: A bibliometric analysis. J. Chem. Technol. Biotechnol. 2022, 97, 1379–1389. [Google Scholar] [CrossRef]
- Migo-Sumagang, M.V.; Tan, R.R.; Promentilla, M.A.B.; Aviso, K.B. Applications of P-graph to Carbon Management: A Mini-Review. Chem. Eng. Trans. 2022, 94, 31–36. [Google Scholar]
- Ribeiro, H.C.M.; Corrêa, R. Analysis of the Scientific Production on the Green Hydrogen Theme Published in Scientific Journals Indexed by EBSCO. Rev. Gestao Soc. E Ambient. 2023, 17, e03165. [Google Scholar] [CrossRef]
- Sinigaglia, T.; Freitag, T.E.; Kreimeier, F.; Martins, M.E.S. Use of patents as a tool to map the technological development involving the hydrogen economy. World Pat. Inf. 2019, 56, 1–8. [Google Scholar] [CrossRef]
- Viteri, J.P.; Viteri, S.; Alvarez-Vasco, C.; Henao, F. A systematic review on green hydrogen for off-grid communities –technologies, advantages, and limitations. Int. J. Hydrogen Energy 2023, 48, 19751–19771. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Bibliometric mapping of the computational intelligence field. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2007, 15, 625–645. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L.; Noyons, E.C.M.; Buter, R.K. Automatic term identification for bibliometric mapping. Scientometrics 2010, 82, 581–596. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Lan, J.; Lian, L.; Huang, S.; Zhao, C.; Dong, Z.; Weng, J. A bibliometric study on research trends in hydrogen safety. Process Saf. Environ. Prot. 2022, 159, 1064–1081. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Yao, J.; Ye, D.; Lang, Z.; Glowacz, A. Mapping the knowledge domains of new energy vehicle safety: Informetrics analysis-based studies. J. Energy Storage 2021, 35, 102275. [Google Scholar] [CrossRef]
- Anand, A.; Argade, P.; Barkemeyer, R.; Salignac, F. Trends and patterns in sustainable entrepreneurship research: A bibliometric review and research agenda. J. Bus. Ventur. 2021, 36, 106092. [Google Scholar] [CrossRef]
- Thonon, F.; Boulkedid, R.; Delory, T. Measuring the Outcome of Biomedical Research: A Systematic Literature Review. PLoS ONE 2015, 10, e0122239. [Google Scholar] [CrossRef]
- Catumba, B.D.; Sales, M.B.; Borges, P.T.; Ribeiro Filho, M.N.; Lopes, A.A.S.; de Sousa Rios, M.A.; Desai, A.S.; Bilal, M.; dos Santos, J.C.S. Sustainability and challenges in hydrogen production: An advanced bibliometric analysis. Int. J. Hydrogen Energy 2023, 48, 7975–7992. [Google Scholar] [CrossRef]
- Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem. 2010, 12, 1493–1513. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Preuste, P.; Papp, C.; Wasserscheid, P. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy. Acc. Chem. Res. 2017, 50, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Serrano, E.; Guillermo, R.; García-Martínez, J. Nanotechnology for sustainable energy—ScienceDirect. Renew. Sustain. Energy Rev. 2009, 13, 2373–2384. [Google Scholar] [CrossRef]
- Singh, S.; Jain, S.; Venkateswaran, P.S.; Tiwari, A.K.; Nouni, M.R.; Pandey, J.K.; Goel, S. Hydrogen: A sustainable fuel for future of the transport sector. Renew. Sustain. Energy Rev. 2015, 51, 623–633. [Google Scholar] [CrossRef]
- Wilberforce, T.; Alaswad, A.; Palumbo, A.; Dassisti, M.; Olabi, A.G. Advances in stationary and portable fuel cell applications. Int. J. Hydrogen Energy 2016, 41, 16509–16522. [Google Scholar] [CrossRef]
- Voldsund, M.; Jordal, K.; Anantharaman, R. Hydrogen production with CO2 capture. Int. J. Hydrogen Energy 2016, 41, 4969–4992. [Google Scholar] [CrossRef]
- Puga, A.V. Photocatalytic production of hydrogen from biomass-derived feedstocks. Coord. Chem. Rev. 2016, 315, 1–66. [Google Scholar] [CrossRef]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in energy transition: A review. Int. J. Hydrogen Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Nicoletti, G.; Arcuri, N.; Nicoletti, G.; Bruno, R. A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers. Manag. 2015, 89, 205–213. [Google Scholar] [CrossRef]
- Razmjoo, A.; Kaigutha, L.G.; Rad, M.A.V.; Marzband, M.; Davarpanah, A.; Denai, M. A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area. Renew. Energy 2021, 164, 46–57. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. The potential role of hydrogen as a sustainable transportation fuel to combat global warming. Int. J. Hydrogen Energy 2020, 45, 3396–3406. [Google Scholar] [CrossRef]
- Dovì, V.G.; Friedler, F.; Huisingh, D.; Klemeš, J.J. Cleaner energy for sustainable future. J. Clean. Prod. 2009, 17, 889–895. [Google Scholar] [CrossRef]
- Agrawal, R.; Singh, N.R.; Ribeiro, F.H.; Delgass, W.N. Sustainable fuel for the transportation sector. Proc. Natl. Acad. Sci. USA 2008, 104, 4828–4833. [Google Scholar] [CrossRef] [PubMed]
- Dominković, D.F.; Bačeković, I.; Pedersen, A.S.; Krajačić, G. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition. Renew. Sustain. Energy Rev. 2018, 82, 1823–1838. [Google Scholar] [CrossRef]
- Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S.M. Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers. Manag. 2022, 251, 114898. [Google Scholar] [CrossRef]
- Alazemi, J.; Andrews, J. Automotive hydrogen fuelling stations: An international review. Renew. Sustain. Energy Rev. 2015, 48, 483–499. [Google Scholar] [CrossRef]
- Gökçek, M.; Kale, C. Techno-economical evaluation of a hydrogen refuelling station powered by Wind-PV hybrid power system: A case study for İzmir-Çeşme. Int. J. Hydrogen Energy 2018, 43, 10615–10625. [Google Scholar] [CrossRef]
- Elam, C.C.; Padró, C.E.G.; Sandrock, G.; Luzzi, A.; Lindblad, P.; Hagen, E.F. Realizing the hydrogen future: The International Energy Agency’s efforts to advance hydrogen energy technologies. Int. J. Hydrogen Energy 2003, 28, 601–607. [Google Scholar] [CrossRef]
- Bartolozzi, I.; Rizzi, F.; Frey, M. Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy. Appl. Energy 2013, 101, 103–111. [Google Scholar] [CrossRef]
- Anandarajah, G.; McDowall, W.; Ekins, P. Decarbonising road transport with hydrogen and electricity: Long term global technology learning scenarios. Int. J. Hydrogen Energy 2013, 38, 3419–3432. [Google Scholar] [CrossRef]
- Schemme, S.; Samsun, R.C.; Peters, R.; Stolten, D. Power-to-fuel as a key to sustainable transport systems—An analysis of diesel fuels produced from CO2 and renewable electricity. Fuel 2017, 205, 198–221. [Google Scholar] [CrossRef]
- Murphy, R.; Woods, J.; Black, M.; McManus, M. Global developments in the competition for land from biofuels. Food Policy 2011, 36, S52–S61. [Google Scholar] [CrossRef]
- Al-Qahtani, A.; Parkinson, B.; Hellgardt, K.; Shah, N.; Guillen-Gosalbez, G. Uncovering the true cost of hydrogen production routes using life cycle monetization. Appl. Energy 2021, 281, 115958. [Google Scholar] [CrossRef]
- Evangelisti, S.; Tagliaferri, C.; Brett, D.J.L.; Lettieri, P. Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles. J. Clean. Prod. 2017, 142, 4339–4355. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Sudharsanaa, T.; Bharghavi, A.; Jayamuthunagai, J.; Praveenkumar, R. Biohydrogen and Biogas—An overview on feedstocks and enhancement process. Fuel 2016, 185, 810–828. [Google Scholar] [CrossRef]
- Lozano, F.J.; Lozano, R. Assessing the potential sustainability benefits of agricultural residues: Biomass conversion to syngas for energy generation or to chemicals production. J. Clean. Prod. 2018, 172, 4162–4169. [Google Scholar] [CrossRef]
- Levidow, L.; Papaioannou, T. State imaginaries of the public good: Shaping UK innovation priorities for bioenergy. Environ. Sci. Policy 2013, 30, 36–49. [Google Scholar] [CrossRef]
- Olabi, A.G.; Shehata, N.; Sayed, E.T.; Rodriguez, C.; Anyanwu, R.C.; Russell, C.; Abdelkareem, M.A. Role of microalgae in achieving sustainable development goals and circular economy. Sci. Total Environ. 2023, 854, 158689. [Google Scholar] [CrossRef]
- Negi, R.; Kaur, T.; Devi, R.; Kour, D.; Sheikh, I.; Tyagi, V.; Yadav, A.N. First report on Rahnella sp. strain EU-A3SNfb, a plant growth promoting endophytic bacterium from wild wheat relative Aegilops kotschyi. Natl. Acad. Sci. Lett. 2022, 45, 393–396. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Umetsu, K.; Rooney, D.W. Integration of biogas systems into a carbon zero and hydrogen economy: A review. Environ. Chem. Lett. 2022, 20, 2853–2927. [Google Scholar] [CrossRef]
Title | Year | Sectors Discussed | SDGs Mapped by SCOPUS | Source |
---|---|---|---|---|
Optimized energy management schemes for electric vehicle applications: A bibliometric analysis towards future trends | 2021 | Mainly transport, power sector | 7, 9, 13, 17 | [9] |
Selected aspects of sustainable mobility reveals implementable approaches and conceivable actions | 2021 | Mainly transport, power sector | 7, 8, 11, 13 | [10] |
Management of hydrogen mobility challenges: A systematic literature review | 2023 | Mainly transport, power sector, commerce sector | 9, 11, 17 | [11] |
Global research trends on anaerobic digestion and biogas production from cassava wastewater: A bibliometric analysis | 2022 | Mainly industry, agriculture | 6, 7, 8, 9, 17 | [12] |
Applications of P-graph to carbon management: A mini-review | 2022 | Industry, power sector, agriculture | 7, 9, 13, 17 | [13] |
Analysis of the scientific production on the green hydrogen theme published in scientific journals indexed by EBSCO | 2023 | Power sector, industry, transport | 7, 8, 9, 17 | [14] |
Use of patents as a tool to map the technological development involving the hydrogen economy | 2019 | Transport, industry | 7, 13 | [15] |
A systematic review on green hydrogen for off-grid communities—technologies, advantages, and limitations | 2023 | Power sector, industry | 7, 17 | [16] |
Author/Authors | Title, Year | Cited by | SDG | Source |
---|---|---|---|---|
Alonso, David Martin; Bond, Jesse Q.; Dumesic, James A. | Catalytic conversion of biomass to biofuels, 2010 | 1912 | 7 | [24] |
Hosseini, Seyed Ehsan Hosseini S.E.; Wahid, Mazlan Abdul | Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development, 2016 | 1296 | 7, 13 | [25] |
Preuster, Patrick; Papp, Christian; Wasserscheid, Peter | Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen-free hydrogen economy, 2017 | 531 | 7, 8, 13 | [26] |
Serrano, Elena; Rus, Guillermo; García-Martínez, Javier | Nanotechnology for sustainable energy, 2009 | 444 | 7 | [27] |
Singh, Sonal; Jain, Shikha; Ps, Venkateswaran; Tiwari, Avanish K.; Nouni, Mansa R.; Pandey, Jitendra K.; Goel, Sanket | Hydrogen: A sustainable fuel for future of the transport sector, 2015 | 407 | 7, 9, 12, 13 | [28] |
Tabbi Wilberforce; A. Alaswad; A. Palumbo; M. Dassisti; A.G. Olabi | Advances in stationary and portable fuel cell applications, 2016 | 391 | 7, 8, 9, 13 | [29] |
Mari Voldsund; Kristin Jordal; Rahul Anantharaman | Hydrogen production with CO2 capture, 2016 | 313 | 7, 13 | [30] |
Puga A.V. | Photocatalytic production of hydrogen from bio-mass-derived feedstocks, 2016 | 308 | 7, 9, 11, 13 | [31] |
Kovač, Ankica; Paranos, Matej; Marciuš, Doria | Hydrogen in energy transition: A review, 2021 | 285 | 7, 9, 13, 17 | [32] |
Nicoletti, Giovanni; Arcuri, Natale; Nicoletti, Gerardo; Bruno, Roberto | A technical and environmental comparison between hydrogen and some fossil fuels, 2015 | 285 | 7 | [33] |
Rank | Source | NP | NC | ANC |
---|---|---|---|---|
1 | International Journal of Hydrogen Energy | 91 | 4692 | 51.56 |
2 | Energies | 55 | 970 | 17.67 |
3 | Renewable And Sustainable Energy Reviews | 33 | 4165 | 123.19 |
4 | Journal Of Cleaner Production | 31 | 1563 | 50.42 |
5 | Sustainability (Switzerland) | 27 | 332 | 12.30 |
6 | Energy Conversion and Management | 26 | 1132 | 43.54 |
7 | Applied Energy | 21 | 683 | 32.52 |
8 | Fuel | 13 | 458 | 35.23 |
9 | Energy | 12 | 97 | 8.08 |
10 | SAE Technical papers | 12 | 27 | 2.25 |
11 | Science Of the Total Environment | 11 | 559 | 5.81 |
12 | Energy Policy | 10 | 391 | 39.10 |
Rank | Country/Region | NP | NC | Institution | NP | Author | NP |
---|---|---|---|---|---|---|---|
1 | U.S. | 137 | 5975 | Yildiz Technical University | 5 | Dincer, I. | 12 |
2 | India | 131 | 3281 | Purdue University | 4 | Agrawal, R. | 8 |
3 | Germany | 108 | 2711 | Technologico de Monterrey | 4 | Delgass, W.N. | 6 |
4 | UK | 99 | 3208 | University of Cassino and Southern Lazio | 4 | Ribeiro, F.H. | 6 |
5 | Italy | 92 | 3316 | Centre for Process System Engineering | 4 | Bartolucci, L. | 5 |
6 | China | 69 | 2148 | National Renewable Energy Laboratory | 3 | Breyer, C. | 5 |
7 | Spain | 64 | 2382 | Clean Energy Research Laboratory, Ontario | 3 | Cordiner, S. | 5 |
8 | Canada | 57 | 1829 | Aston University | 3 | Iqbal, H.M.N. | 5 |
9 | Australia | 37 | 1609 | University of Naples Parthenope | 3 | Mulone, V. | 5 |
10 | Netherlands | 36 | 1598 | University of Rome Tor Vergata | 3 | Singh, N.R. | 5 |
Stolten, D. | 5 |
Cluster ID | Size | Mean (Year) | Top 5 Keywords Ranked by Total Link Strength |
---|---|---|---|
1 (red) | 44 | 2017.4 | Hydrogen |
2017.9 | Sustainable development | ||
2018.5 | Carbon dioxide | ||
2019.0 | Sustainability | ||
2018.8 | Climate change | ||
2 (green) | 39 | 2019.9 | Hydrogen production |
2020.0 | Hydrogen storage | ||
2018.5 | Renewable energy resources | ||
2018.9 | Energy policy | ||
2020.0 | Renewable energies | ||
3 (blue) | 20 | 2019.5 | Greenhouse gases |
2019.3 | Fossil fuels | ||
2017.1 | Fuel cells | ||
2018.9 | Gas emissions | ||
2018.0 | Hydrogen fuels | ||
4 (yellow) | 8 | 2019.9 | Emission control |
2018.3 | Costs | ||
2018.8 | Economic analysis | ||
2020.6 | Cost benefit analysis | ||
2018.8 | Decision making |
Rank | Keyword | Mean (Year) | Total Link Strength |
---|---|---|---|
1 | Hydrogen | 2017.4 | 2486 |
2 | Sustainable development | 2017.9 | 2048 |
3 | Hydrogen production | 2019.5 | 1743 |
4 | Greenhouse gases | 2019.1 | 1521 |
5 | Fossil fuels | 2019.3 | 1434 |
6 | Carbon dioxide | 2018.5 | 1380 |
7 | Fuel cells | 2017.1 | 1218 |
8 | Hydrogen storage | 2020.0 | 1149 |
9 | Gas emissions | 2018.6 | 1143 |
10 | Hydrogen fuels | 2018.0 | 1125 |
11 | Renewable energy sources | 2019.4 | 1038 |
12 | Energy policy | 2018.9 | 970 |
13 | Renewable energies | 2020.0 | 937 |
14 | Sustainability | 2019.0 | 889 |
15 | Climate change | 2018.8 | 806 |
Sector | Cluster ID | Size | Mean (Year) | Top 5 Keywords Ranked by Total Link Strength |
---|---|---|---|---|
Power | P1 (red) | 36 | 2020.2 | Hydrogen production |
2019.3 | Energy policy | |||
2020.5 | Hydrogen storage | |||
2018.7 | Renewable energy resources | |||
2020.3 | Renewable energies | |||
P2 (blue) | 34 | 2017.8 | Hydrogen | |
2019.7 | Fossil fuels | |||
2020.0 | Greenhouse gases | |||
2018.9 | Carbon dioxide | |||
2019.5 | Gas emissions | |||
P3 (green) | 16 | 2018.5 | Sustainable development | |
2019.0 | Sustainability | |||
2020.6 | Life cycle | |||
2018.9 | Biomass | |||
2018.5 | Biofuels | |||
P4 (yellow) | 15 | 2018.8 | Economic analysis | |
2017.9 | Fuel cell | |||
2019.2 | Costs | |||
2021.2 | Cost benefit analysis | |||
2019.4 | Decision making |
Sector | Cluster ID | Size | Mean (Year) | Top 5 Keywords Ranked by Total Link Strength |
---|---|---|---|---|
Industry | I1 (red) | 36 | 2019.5 | Sustainable development |
2019.8 | Sustainability | |||
2019.8 | Biofuels | |||
2020.3 | Biofuel | |||
2020.0 | Biomass | |||
I2 (blue) | 34 | 2019.0 | Hydrogen | |
2019.5 | Carbon dioxide | |||
2020.6 | Greenhouse gases | |||
2020.6 | Gas emissions | |||
2019.8 | Carbon | |||
I3 (green) | 21 | 2020.8 | Hydrogen production | |
2020.9 | Fossil fuels | |||
2020.6 | Hydrogen storage | |||
2018.7 | Renewable energy resources | |||
2020.5 | Climate change |
Sector | Cluster ID | Size | Mean (Year) | Top 5 Keywords Ranked by Total Link Strength |
---|---|---|---|---|
Transport | T1 (red) | 32 | 2016.94 | Hydrogen |
2019.07 | Sustainability | |||
2017.67 | Carbon | |||
2018.25 | Biofuels | |||
2017.05 | Fuel cell | |||
T2 (green) | 30 | 2019.51 | Hydrogen production | |
2018.84 | Fossil fuels | |||
2019.55 | Hydrogen storage | |||
2020.20 | Energy policy | |||
2018.33 | Renewable energy resources | |||
T3 (blue) | 24 | 2018.13 | Sustainable development | |
2018.46 | Carbon dioxide | |||
2019.58 | Emission control | |||
2019.12 | Global warming | |||
202.13 | Life cycle | |||
T4 (yellow) | 17 | 2017.55 | Fuel cells | |
2020.17 | Greenhouse gases | |||
2018.72 | Hydrogen fuels | |||
2019.52 | Gas emissions | |||
2017.43 | Transport sectors |
Sector | Cluster ID | Size | Mean (Year) | Top 5 Keywords Ranked by Total Link Strength |
---|---|---|---|---|
Agriculture | A1 (red) | 24 | 2017.9 | Agriculture |
2022.0 | Article | |||
2020.1 | Sustainable development | |||
2017.3 | Hydrogen | |||
2017.3 | Carbon | |||
A2 (green) | 16 | 2020.4 | Nonhuman | |
2019.3 | Review | |||
2018.6 | Procedures | |||
2020.8 | Sustainable agriculture | |||
2021.3 | Animals | |||
A3 (blue) | 14 | 2018.1 | Anaerobic digestion | |
2019.8 | Biogas | |||
2018.0 | Greenhouse gas | |||
2020.5 | Greenhouse gases | |||
2017.0 | Bioenergy | |||
A4 (yellow) | 11 | 2017.6 | Biomass | |
2020.3 | Carbon dioxide | |||
2019.8 | Pyrolysis | |||
2017.8 | Recycling | |||
2022.8 | Fertilizer |
Sector | Cluster ID | Size | Mean (Year) | Top 5 Keywords Ranked by Total Link Strength |
---|---|---|---|---|
Commercial | C1 (red) | 21 | 2016.3 | Sustainability |
2019.3 | Bio-hydrogen | |||
2018.0 | Cost effectiveness | |||
2019.3 | Biofuels | |||
2020.2 | Biohydrogen | |||
C2 (blue) | 15 | 2019.2 | Hydrogen production | |
2016.1 | Renewable energy resources | |||
2016.8 | Renewable energies | |||
2016.2 | Renewable energy | |||
2017.3 | Environmental impact | |||
C3 (green) | 16 | 2017.4 | Hydrogen | |
2016.6 | Fuel cells | |||
2018.3 | Greenhouse gases | |||
2015.4 | Gas emissions | |||
2012.0 | Internal combustion engines | |||
C4 (yellow) | 11 | 2016.0 | Fossil fuels | |
2016.8 | Sustainable development | |||
2021.3 | Hydrogen storage | |||
2021.6 | Current | |||
2021.5 | Hydrogen economy | |||
C5 (purple) | 11 | 2020.0 | Hydrogen fuels | |
2018.8 | Alternative fuels | |||
2021.3 | Carbon dioxide | |||
2021.3 | Decarbonisation | |||
2017.5 | Combustion |
Sector | Cluster ID | Size | Mean (Year) | Top 5 Keywords Ranked by Total Link Strength |
---|---|---|---|---|
Residential | R1 (red) | 9 | 2018.0 | Hydrogen |
20213 | Alternative energy | |||
2021.0 | Renewable energies | |||
2021.5 | Hydrogen energy | |||
2021.5 | Sustainability | |||
R2 (blue) | 8 | 2021.67 | Emission control | |
2021.67 | Natural gas | |||
2021.67 | Costs | |||
2021.50 | Housing | |||
2021.50 | Sustainable development | |||
R3 (green) | 9 | 2022.67 | Decarbonisation | |
2022.33 | Gas emissions | |||
2022.50 | Decarbonization | |||
2022.50 | Energy policy | |||
2022.75 | Hydrogen storage | |||
R4 (yellow) | 4 | 2019.25 | Greenhouse gases | |
2021.00 | Fuel cells | |||
2017.50 | Fossil fuels | |||
2021.50 | Hydrogen production | |||
2017.00 | Electricity generation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safronova, A.; Barisa, A. Hydrogen Horizons: A Bibliometric Review of Trends in Diverse Emission Sectors. Sustainability 2023, 15, 14355. https://doi.org/10.3390/su151914355
Safronova A, Barisa A. Hydrogen Horizons: A Bibliometric Review of Trends in Diverse Emission Sectors. Sustainability. 2023; 15(19):14355. https://doi.org/10.3390/su151914355
Chicago/Turabian StyleSafronova, Alīna, and Aiga Barisa. 2023. "Hydrogen Horizons: A Bibliometric Review of Trends in Diverse Emission Sectors" Sustainability 15, no. 19: 14355. https://doi.org/10.3390/su151914355
APA StyleSafronova, A., & Barisa, A. (2023). Hydrogen Horizons: A Bibliometric Review of Trends in Diverse Emission Sectors. Sustainability, 15(19), 14355. https://doi.org/10.3390/su151914355