Next Article in Journal
A Balanced Scorecard Proposal for Gender Equality and Sustainable Development
Previous Article in Journal
The Use of Precipitation in the Cities of the Future—Problems, Barriers and Challenges
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Enhanced Method for Emergency Scheduling of Natural Gas Pipeline Networks Based on Heuristic Optimization

1
National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China
2
PetroChina Planning & Engineering Institute, Beijing 100083, China
*
Authors to whom correspondence should be addressed.
Sustainability 2023, 15(19), 14383; https://doi.org/10.3390/su151914383
Submission received: 7 August 2023 / Revised: 18 September 2023 / Accepted: 25 September 2023 / Published: 29 September 2023

Abstract

Safety and disturbance issues in system engineering have garnered substantial attention. This study focuses on the analysis of the distinct characteristics of emergency dispatch problems in Natural Gas Pipeline Networks (NGPS). Graph theory serves as a tool to transform the NGPS topology and establish an optimization model for NGPS emergency dispatch. The model also integrates user weights, satisfaction, and reduction factors into the user modeling approach. Its objective is to maximize overall system satisfaction while considering factors such as demand-side requirements and operational constraints. To solve this optimization model, the Particle Swarm Optimization (PSO) method is employed. An in-depth exploration of four unique disturbance scenarios provides solid evidence of the effectiveness and practicality of the PSO method. Compared to other methods, the PSO method consistently boosts overall user satisfaction and aligns more fluidly with the real-time demands of emergency scheduling, regardless of reduced supply capacity, complete supply interruptions, sudden surges in user demand, or pipeline connection failures. The developed emergency scheduling optimization method presents two key advantages. Firstly, it proficiently mitigates potential losses stemming from decreased supply capacity at local or regional levels. By adeptly adjusting natural gas supply strategies, it minimizes economic and production losses while ensuring a steady supply to critical users. Secondly, the method is superior at swiftly reducing the affected area and managing the increased demand for natural gas, thus maintaining NGPS stability. This research underscores the importance of considering user characteristics and demands during emergencies and demonstrates the effectiveness of employing the PSO method to navigate emergency scheduling challenges. By strengthening the resilience of the pipeline network and ensuring a sustainable natural gas supply, this study constitutes a significant contribution to energy security, economic development, and the promotion of clean energy utilization, ultimately propelling the achievement of sustainable development goals.
Keywords: natural gas supply assurance; emergency scheduling; user satisfaction; user reduction; optimization model natural gas supply assurance; emergency scheduling; user satisfaction; user reduction; optimization model

Share and Cite

MDPI and ACS Style

Xiang, Q.; Yang, Z.; He, Y.; Fan, L.; Su, H.; Zhang, J. Enhanced Method for Emergency Scheduling of Natural Gas Pipeline Networks Based on Heuristic Optimization. Sustainability 2023, 15, 14383. https://doi.org/10.3390/su151914383

AMA Style

Xiang Q, Yang Z, He Y, Fan L, Su H, Zhang J. Enhanced Method for Emergency Scheduling of Natural Gas Pipeline Networks Based on Heuristic Optimization. Sustainability. 2023; 15(19):14383. https://doi.org/10.3390/su151914383

Chicago/Turabian Style

Xiang, Qi, Zhaoming Yang, Yuxuan He, Lin Fan, Huai Su, and Jinjun Zhang. 2023. "Enhanced Method for Emergency Scheduling of Natural Gas Pipeline Networks Based on Heuristic Optimization" Sustainability 15, no. 19: 14383. https://doi.org/10.3390/su151914383

APA Style

Xiang, Q., Yang, Z., He, Y., Fan, L., Su, H., & Zhang, J. (2023). Enhanced Method for Emergency Scheduling of Natural Gas Pipeline Networks Based on Heuristic Optimization. Sustainability, 15(19), 14383. https://doi.org/10.3390/su151914383

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop