Milk Thistle (Silybum marianum (L.) Gaertner) Endosperm as an Alternative Protein Source for a Sustainable Food System (SFS)—Pilot Studies
Abstract
:1. Introduction
- RQ1 What is the nutritional value of milk thistle endosperm?
- RQ2 Is the amino acid profile of milk thistle endosperm proteins and the fatty acid profile valuable in the context of applicable standards in human nutrition?
- RQ3 What directions of S. marianum endosperm processing can be considered prospective for SFS?
2. Materials and Methods
2.1. Analytical Standards and Reagents
2.2. Plant Material
2.3. Nutrition and Energy Value of Milk Thistle Endosperm
2.4. Fatty Acid (FA) Profile Determination (GC-FID Analysis)
2.5. Lipid Health Quality Indices
2.6. Amino Acids Content Determination (HPLC-DAD)
2.7. Calculation of Protein Digestibility-Corrected Amino Acid Score (PDCAAS)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Nutritional and Energy Value of Milk Thistle Endosperm
3.2. Amino Acid Profile of Milk Thistle Endosperm
3.3. Fatty Acid Profile of Milk Thistle Endosperm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boye, J.; Zare, F.; Pletch, A. Pulse Proteins: Processing, Characterization, Functional Properties and Applications in Food and Feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Fischer, E.; Cachon, R.; Cayot, N. Pisum Sativum vs Glycine Max, a Comparative Review of Nutritional, Physicochemical, and Sensory Properties for Food Uses. Trends Food Sci. Technol. 2020, 95, 196–204. [Google Scholar] [CrossRef]
- Lo, B.; Kasapis, S.; Farahnaky, A. Lupin Protein: Isolation and Techno-Functional Properties, a Review. Food Hydrocoll. 2021, 112, 106318. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea Protein Isolates: Structure, Extraction, and Functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- Daba, S.D.; Morris, C.F. Pea Proteins: Variation, Composition, Genetics, and Functional Properties. Cereal Chem. 2022, 99, 8–20. [Google Scholar] [CrossRef]
- Waglay, A.; Karboune, S.; Alli, I. Potato Protein Isolates: Recovery and Characterization of Their Properties. Food Chem. 2014, 142, 373–382. [Google Scholar] [CrossRef]
- Wanasundara, J.P.D.; McIntosh, T.C.; Perera, S.P.; Withana-Gamage, T.S.; Mitra, P. Canola/Rapeseed Protein-Functionality and Nutrition. OCL 2016, 23, D407. [Google Scholar] [CrossRef]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. The Composition, Extraction, Functionality and Applications of Rice Proteins: A Review. Trends Food Sci. Technol. 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, Y.L. Processing, Nutrition, and Functionality of Hempseed Protein: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 936–952. [Google Scholar] [CrossRef]
- EUVEPRO. Other Sources of Plant-Based Proteins for Food. Available online: https://euvepro.eu/about-proteins/other-plant-proteins/ (accessed on 7 August 2023).
- The Business Research Company. Plant-Based Protein Global Market Report 2022. Available online: https://www.researchandmarkets.com/reports/5522314/plant-based-protein-global-market-report-2022-by?gclid=Cj0KCQiArsefBhCbARIsAP98hXSjbM_LFfnUTM1rcdFyagFtkOsuPd2pj8YfeFeRz3cxdvC5NFiRLn8aAvrXEALw_wcB (accessed on 7 August 2023).
- FAIRR Food Companies Praised for Growing Adoption of Sustainable Protein Targets Following Five Year Investor Engagement. Available online: https://www.fairr.org/article/press-release-appetite-for-disruption-the-last-serving/ (accessed on 7 August 2023).
- The European Commission. Report from the Commission to the Council and the European Parliament on the Development of Plant Proteins in the European Union; The European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Qavami, N.; Naghdi Badi, H.; Labbafi, M.R.; Mehrafarin, A. A Review on Pharmacological, Cultivation and Biotechnology Aspects of Milk Thistle (Silybum marianum (L.) Gaertn.). J. Med. Plants 2013, 12, 19–37. [Google Scholar]
- Radtke, J. Ostropest Plamisty. Available online: https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-2afe6be9-f502-4f29-850f-74864fbfe12c (accessed on 7 August 2023).
- Carrubba, A.; la Torre, R.; Matranga, A. Cultivation Trials of Some Aromatic and Medicinal Plants in a Semi-Arid Mediterranean Environment. Acta Hortic. 2002, 576, 207–213. [Google Scholar] [CrossRef]
- Karkanis, A.; Bilalis, D.; Efthimiadou, A. Cultivation of Milk Thistle (Silybum marianum L. Gaertn.), a Medicinal Weed. Ind. Crops Prod. 2011, 34, 825–830. [Google Scholar] [CrossRef]
- Web of Science Core Collection. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 7 August 2023).
- Głodowska, M.; Gałązka, A. Intensyfikacja Rolnictwa a Środowisko Naturalne. Zesz. Probl. Postępów Nauk. Rol. 2018, 592, 3–13. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation of the United Nations. The State of Food and Agriculture; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Heinrich-Böll-Stiftung e., V. Meat Atlas 2021: Facts and Figures about the Animals We Eat Itle; Heinrich-Böll-Stiftung e. V.: Brussels, Belgium, 2021. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science (1979) 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; Brough, H.A.; Fiocchi, A.; Miqdady, M.; Munasir, Z.; Salvatore, S.; Thapar, N.; Venter, C.; Vieira, M.C.; Meyer, R. Current Guidelines and Future Strategies for the Management of Cow’s Milk Allergy. J. Asthma Allergy 2021, 14, 1243–1256. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient Density and Nutritional Value of Milk and Plant-Based Milk Alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Panda, R.; Tetteh, A.O.; Pramod, S.N.; Goodman, R.E. Enzymatic Hydrolysis Does Not Reduce the Biological Reactivity of Soybean Proteins for All Allergic Subjects. J. Agric. Food Chem. 2015, 63, 9629–9639. [Google Scholar] [CrossRef]
- Harvard, T.H.; Chan School of Public Health. The Nutrition Source. Available online: https://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/protein/ (accessed on 7 August 2023).
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Oilseed Proteins—Properties and Application as a Food Ingredient. Trends Food Sci. Technol. 2020, 106, 160–170. [Google Scholar] [CrossRef]
- WIPO ST 10/C PL444467 2023; Fermentowany Ekstrakt Białkowy z Ostropestu Plamistego—Sylibum Marianum Oraz Sposób Jego Otrzymywania. Urząd Patenowy Rzeczypospolitej Polskiej: Warszawa, Poland, 2023.
- Apostol, L.; Iorga, C.S.; Moşoiu, C.E.; Mustățea, G.; Cucu, Ș.E. Nutrient Composition of Partially Defatted Milk Thistle Seeds. Sci. Bull. Ser. F. Biotechnol 2017, 21, 165–172. [Google Scholar]
- Foksowicz-Flaczyk, J.; Wójtowski, J.A.; Danków, R.; Mikołajczak, P.; Pikul, J.; Gryszczyńska, A.; Łowicki, Z.; Zajączek, K.; Stanisławski, D. The Effect of Herbal Feed Additives in the Diet of Dairy Goats on Intestinal Lactic Acid Bacteria (LAB) Count. Animals 2022, 12, 255. [Google Scholar] [CrossRef]
- European Parliament and of the Council. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004; European Parliament and of the Council: Washington, DC, USA, 2018. [Google Scholar]
- Teleszko, M.; Zając, A.; Rusak, T. Hemp Seeds of the Polish ‘Bialobrzeskie’ and ‘Henola’ Varieties (Cannabis sativa L. Var. Sativa) as Prospective Plant Sources for Food Production. Molecules 2022, 27, 1448. [Google Scholar] [CrossRef] [PubMed]
- American Oil Chemist’s Society. AOCS Official Methods and Recommended Practices of the American Oil Chemist’s Society, 2nd ed.; AOACS Press: Champaign, IL, USA, 1997. [Google Scholar]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty Acid Profiles and Health Lipid Indices in the Breast Muscles of Local Polish Goose Varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernandes, C.E.; Vasconcelos, M.A.d.S.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; Filho, A.B.d.M. Nutritional and Lipid Profiles in Marine Fish Species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Commission Regulation (EC). No. 152/2009 Laying down the Methods of Sampling and Analysis for the Official Control of Feed. Off. J. Eur. Union 2009, L 54/1, 1–130. [Google Scholar]
- Henderson, J.W.; Robert, D.R.; Brian, A.B.; Cliff, W. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids. Amino Acid Analysis Using Zorbax Eclipse-AAA Columns and the Agilent 1100 HPLC; Agilent Technical Note, 1999. Agilent Technical Note 1999, 1100, 1–10. [Google Scholar]
- Haraf, G.; Wołoszyn, J.; Okruszek, A.; Orkusz, A.; Wereńska, M. Nutritional Value of Proteins and Lipids in Breast Muscle of Geese from Four Different Polish Genotypes. Eur. Poult. Sci. 2018, 82, 1–11. [Google Scholar] [CrossRef]
- Çevikkalp, S.A.; Löker, G.B.; Yaman, M.; Amoutzopoulos, B. A Simplified HPLC Method for Determination of Tryptophan in Some Cereals and Legumes. Food Chem. 2016, 193, 26–29. [Google Scholar] [CrossRef]
- Untea, A.E.; Margareta, O.; Panaite, T. Development and Validation of an RP-HPLC Method for Methionine, Cystine and Lysine Separation and Determination in Corn Samples. Revista Chimie 2013, 64, 673–679. [Google Scholar]
- Zhu, S.; Dong, Y.; Tu, J.; Zhou, Y.; Dai, C. Amino Acid Composition and In Vitro Digestibility of Protein Isolates from Silybum Marianum. J. Food Agric. Environ. 2013, 11, 136–140. [Google Scholar]
- Li, F.; Wu, X.; Zhao, T.; Li, F.; Zhao, J.; Yang, L. Extraction, Physicochemical, and Functional Properties of Proteins From Milk Thistle Silybum marianum L. Gaernt Seeds. Int. J. Food Prop. 2013, 16, 1750–1763. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; Noga, M.; Sabat, R. Characterisation of Five Potato Cultivars According to Their Nutritional and Pro-Health Components. Acta Sci. Pol. Technol. Aliment. 2011, 10, 77–81. [Google Scholar] [PubMed]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Nutritional and Sensory Characteristics of “Early” Potato Cultivars under Organic and Conventional Cultivation Systems. Food Chem. 2012, 133, 1249–1254. [Google Scholar] [CrossRef]
- Hamaker, B.R. The Influence of Rice Protein on Rice Quality. In Food Science and Technology; MARCEL DEKKER: New York, NY, USA, 1991; p. 177. [Google Scholar]
- Ai, Y.; Jane, J. Macronutrients in Corn and Human Nutrition. Compr. Rev. Food Sci. Food Saf. 2016, 15, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.S.; Ahmad, A.; Sohail, A.; Asad, M.J. Nutritional and Functional Characterization of Different Oat (Avena sativa L.) Cultivars. Int. J. Food Prop. 2020, 23, 1373–1385. [Google Scholar] [CrossRef]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and Fat Composition of Mare’s Milk: Some Nutritional Remarks with Reference to Human and Cow’s Milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Przygoda, B.; Nadolna, I.; Iwanow, K. Food Composition Tables, 2nd ed.; PZWL: Warsaw, Poland, 2017; ISBN 978-83-200-5311-1. [Google Scholar]
- ESCO Working Group Members. EFSA Compendium of Botanicals That Have Been Reported to Contain Toxic, Addictive, Psychotropic or Other Substances of Concern. EFSA Support. Publ. 2009, 6, 281R. [Google Scholar] [CrossRef]
- Zuberbier, T. Soya Allergy. Available online: https://www.ecarf.org/en/information-portal/allergies-overview/soya-allergy/ (accessed on 7 August 2023).
- Polish Coeliac Society Celiakia—Co to Za Choroba?—Informacje Dla Pacjenta. Available online: https://celiakia.pl/celiakia/celiakia/ (accessed on 7 August 2023).
- AllergenOnline Allergen Database. Available online: http://www.allergenonline.org/ (accessed on 7 August 2023).
- Aziz, M.; Saeed, F.; Ahmad, N.; Ahmad, A.; Afzaal, M.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Anjum, F.M. Biochemical Profile of Milk Thistle (Silybum marianum L.) with Special Reference to Silymarin Content. Food Sci. Nutr. 2021, 9, 244–250. [Google Scholar] [CrossRef]
- Keshavarz Afshar, R.; Chaichi, M.R.; Rezaei, K.; Asareh, M.H.; Karimi, M.; Hashemi, M. Irrigation Regime and Organic Fertilizers Influence on Oil Content and Fatty Acid Composition of Milk Thistle Seeds. Agron. J. 2015, 107, 187–194. [Google Scholar] [CrossRef]
- Ahmad, T.; Zeb, A.; Nagra, S.A.; Perveen, S. Characteristics of Silybum Marianum as a Potential Source of Dietary Oil and Protein. Pak. J. Sci. Ind. Res. 2007, 50, 36–40. [Google Scholar]
- Sindel, B.M. A Review of the Ecology and Control of Thistles in Australia. Weed Res. 1991, 31, 189–201. [Google Scholar] [CrossRef]
- Takase, M.; Feng, W.; Wang, W.; Gu, X.; Zhu, Y.; Li, T.; Yang, L.; Wu, X. Silybum Marianum Oil as a New Potential Non-Edible Feedstock for Biodiesel: A Comparison of Its Production Using Conventional and Ultrasonic Assisted Method. Fuel Process. Technol. 2014, 123, 19–26. [Google Scholar] [CrossRef]
- Hahn, H.J.; Jung, H.J.; Schrammek-Drusios, M.C.; Lee, S.N.; Kim, J.-H.; Kwon, S.B.; An, I.-S.; An, S.; Ahn, K.J. Instrumental Evaluation of Anti-Aging Effects of Cosmetic Formulations Containing Palmitoyl Peptides, Silybum marianum Seed Oil, Vitamin E and Other Functional Ingredients on Aged Human Skin. Exp. Ther. Med. 2016, 12, 1171–1176. [Google Scholar] [CrossRef]
- Bedrníček, J.; Lorenc, F.; Jarošová, M.; Bártová, V.; Smetana, P.; Kadlec, J.; Jirotková, D.; Kyselka, J.; Petrášková, E.; Bjelková, M.; et al. Milk Thistle Oilseed Cake Flour Fractions: A Source of Silymarin and Macronutrients for Gluten-Free Bread. Antioxidants 2022, 11, 2022. [Google Scholar] [CrossRef]
- Dietary Protein Quality Evaluation in Human Nutrition. Report of an FAQ Expert Consultation. FAO Food Nutr. Pap. 2013, 92, 1–66. [Google Scholar]
- Oseyko, M.; Romanovska, T.; Shevchyk, V. Justification of the Amino Acid Composition of Sunflower Proteins for Dietary and Functional Products. Ukr. Food J. 2020, 9, 394–403. [Google Scholar] [CrossRef]
- Pikul, J.; Pospiech, E. Białka Pochodzenia Zwierzęcego, Ich Charakterystyka i Znaczenie w Żywności. In Białka w Żywności i Żywieniu; Gawęcki, J., Ed.; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2016; pp. 25–44. (In Polish) [Google Scholar]
- Nenova, N.; Drumeva, M. Investigation on Protein Content and Amino Acid Composition in the Kernels of Some Sunflower Lines. Helia 2012, 35, 41–46. [Google Scholar] [CrossRef]
- Kawka, A.; Kędzior, Z. Białka Pochodzenia Roślinnego, Ich Charakterystyka i Znaczenie w Żywności. In Białka w Żywności i Żywieniu; Gawęcki, J., Ed.; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2016; pp. 51–63. (In Polish) [Google Scholar]
- Mossé, J.; Baudet, J. Crude Protein Content and Aminoacid Composition of Seeds: Variability and Correlations. Plant Foods Hum. Nutr. 1983, 32, 225–245. [Google Scholar] [CrossRef]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.A.A.; Ren, W.; Yin, Y. The Role of Methionine on Metabolism, Oxidative Stress, and Diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef]
- Kałużna-Czaplińska, J.; Gątarek, P.; Chirumbolo, S.; Chartrand, M.S.; Bjørklund, G. How Important Is Tryptophan in Human Health? Crit. Rev. Food Sci. Nutr. 2019, 59, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.Y.J.; SRV, A.; Chiang, J.H.; Henry, C.J. Plant Proteins for Future Foods: A Roadmap. Foods 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Guidi, S.; Formica, F.A.; Denkel, C. Mixing Plant-Based Proteins: Gel Properties of Hemp, Pea, Lentil Proteins and Their Binary Mixtures. Food Res. Int. 2022, 161, 111752. [Google Scholar] [CrossRef] [PubMed]
- Hewlings, S. Coconuts and Health: Different Chain Lengths of Saturated Fats Require Different Consideration. J. Cardiovasc. Dev. Dis. 2020, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.; Mougan, I. Fatty Acid Composition of Human Brain Phospholipids During Normal Development. J. Neurochem. 2002, 71, 2528–2533. [Google Scholar] [CrossRef] [PubMed]
- Hamazaki, K.; Hamazaki, T.; Inadera, H. Fatty Acid Composition in the Postmortem Amygdala of Patients with Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. J. Psychiatr. Res. 2012, 46, 1024–1028. [Google Scholar] [CrossRef]
- Simopoulos, A. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Hajeyah, A.A.; Griffiths, W.J.; Wang, Y.; Finch, A.J.; O’Donnell, V.B. The Biosynthesis of Enzymatically Oxidized Lipids. Front. Endocrinol. 2020, 11, 591819. [Google Scholar] [CrossRef]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Rokosik, E.; Dwiecki, K.; Siger, A. Nutritional Quality and Phytochemical Contents of Cold Pressed Oil Obtained from Chia, Milk Thistle, Nigella, and White and Black Poppy Seeds. Grasas y Aceites 2020, 71, 368. [Google Scholar] [CrossRef]
- Shen, H.; Alex, R.; Bellner, L.; Raffaele, M.; Licari, M.; Vanella, L.; Stec, D.E.; Abraham, N.G. Milk Thistle Seed Cold Press Oil Attenuates Markers of the Metabolic Syndrome in a Mouse Model of Dietary-induced Obesity. J. Food Biochem. 2020, 44, e13522. [Google Scholar] [CrossRef] [PubMed]
- Gaber, H.H.; Sedki, A.G.; Sherbiny, W.A.E.; Elgendy, E.M. Biological In Vitro and in Vivo Studies of the Milk Thistle Seed Oil. Food Nutr. Sci. 2022, 13, 1015–1035. [Google Scholar] [CrossRef]
- Zarrouk, A.; Martine, L.; Grégoire, S.; Nury, T.; Meddeb, W.; Camus, E.; Badreddine, A.; Durand, P.; Namsi, A.; Yammine, A.; et al. Profile of Fatty Acids, Tocopherols, Phytosterols and Polyphenols in Mediterranean Oils (Argan Oils, Olive Oils, Milk Thistle Seed Oils and Nigella Seed Oil) and Evaluation of Their Antioxidant and Cytoprotective Activities. Curr. Pharm. Des. 2019, 25, 1791–1805. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, M.; Ren, M.; Bao, H.; Wang, Q.; Wang, N.; Sun, S.; Xu, J.; Yang, X.; Zhao, X.; et al. From Medical Herb to Functional Food: Development of a Fermented Milk Containing Silybin and Protein from Milk Thistle. Foods 2023, 12, 1308. [Google Scholar] [CrossRef]
Parameter | Content in Fresh Matter (FM) | Content in Dry Matter (DM) |
---|---|---|
Energy value [kJ/100 g] | 1966.50 ± 10.61 | 2120.53 ± 9.95 |
Energy value [kcal/100 g] | 477.00 ± 2.83 | 514.56 ± 2.69 |
Crude protein [%] | 19.63 ± 0.01 | 21.10 ± 0.00 |
Fat (total) [%] | 36.32 ± 0.47 | 39.40 ± 0.47 |
Saturated fatty acid (SFA) [g/100 g] | 7.23 ± 0.06 | 7.77 ± 0.06 |
Total sugars [%] | 1.82 ± 0.03 | 1.96 ± 0.03 |
Digestible carbohydrates [%] | 2.40 ± 0.52 | 2.57 ± 0.56 |
Total ash [%] | 5.00 ± 0.21 | 5.21 ± 0.22 |
Fiber [%] | 29.41 ± 0.24 | 31.78 ± 0.24 |
Amino Acid | Amino Acid Contents | PDCAAS (Children 6 Months to 3 Years) * [%] | PDCAAS (Older Children, Adolescents, Adults) * [%] | ||
---|---|---|---|---|---|
g/100 g of DM | g/100 g of FM | g/100 g of all Amino Acids in FM | |||
Asp (aspartic acid) | 1.18 ± 0.04 | 1.10 ± 0.04 | 9.55 | ||
Glu (glutamic acid) | 2.47 ± 0.08 | 2.30 ± 0.07 | 19.96 | ||
Ser (serine) | 0.65 ± 0.02 | 0.60 ± 0.02 | 5.24 | ||
His (histidine) | 0.35 ± 0.02 | 0.33 ± 0.01 | 2.84 | 123.61 | 154.51 |
Gly (glycine) | 0.70 ± 0.01 | 0.65 ± 0.01 | 5.64 | ||
Thr (threonine) | 0.47 ± 0.01 | 0.43 ± 0.01 | 3.78 | 105.96 | 131.40 |
Arg (arginine) | 1.25 ± 0.04 | 1.16 ± 0.04 | 10.07 | ||
Ala (alanine) | 0.52 ± 0.02 | 0.49 ± 0.02 | 4.24 | ||
Tyr (tyrosine) | 0.47 ± 0.02 | 0.44 ± 0.02 | 3.78 | ||
Val (valine) | 0.53 ± 0.01 | 0.49 ± 0.01 | 4.25 | 85.85 | 92.29 |
Phe (phenylalanine) | 0.54 ± 0.03 | 0.50 ± 0.03 | 4.35 | ||
Ile (isoleucine) | 0.48 ± 0.02 | 0.45 ± 0.02 | 3.90 | 105.80 | 112.86 |
Leu (leucine) | 0.77 ± 0.03 | 0.72 ± 0.03 | 6.24 | 82.23 | 88.97 |
Hyp (hydroxyproline) | 0.06 ± 0.01 | 0.06 ± 0.01 | 0.49 | ||
Pro (proline) | 0.49 ± 0.07 | 0.46 ± 0.06 | 3.99 | ||
Lys (lysine) | 0.47 ± 0.04 | 0.44 ± 0.04 | 3.79 | 57.77 | 68.61 |
Cys (cysteine) | 0.39 ± 0.01 | 0.37 ± 0.01 | 3.19 | ||
Met (methionine) | 0.22 ± 0.06 | 0.21 ± 0.07 | 1.79 | ||
Trp (tryptophan) | 0.36 ± 0.01 | 0.34 ± 0.02 | 2.91 | 298.05 | 383.85 |
TOTALS | 12.37 | 11.51 | 100.0 | ||
Sulfur AA (Met+Cys) | 0.61 | 0.58 | 4.98 | 160.38 | 188.27 |
Aromatic AA (Phe+Tyr) | 1.01 | 0.94 | 8.13 | 135.97 | 172.45 |
Fatty Acid (FA) | [%] | g of FA/100 g FM | g of FA/100 g DM | |
---|---|---|---|---|
myristic | C14:0 | 0.11 ± 0.01 | 0.04 ± 0.00 | 0.04 ± 0.00 |
palmitic | C16:0 | 8.27 ± 0.23 | 3.00 ± 0.06 | 3.23 ± 0.07 |
palmitoleic | C16:1 n-7 | 0.09 ± 0.01 | 0.03 ± 0.01 | 0.04 ± 0.01 |
margaric | C17:0 | 0.06 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 |
stearic | C18:0 | 5.32 ± 0.18 | 1.93 ± 0.05 | 2.07 ± 0.06 |
oleic | C18:1 n-9 | 22.47 ± 0.76 | 8.16 ± 0.33 | 8.77 ± 0.35 |
cis-vaccenic | C18:1 n-7 | 0.57 ± 0.06 | 0.21 ± 0.02 | 0.22 ± 0.03 |
linoleic (LA) | C18:2 n-6 | 55.64 ± 0.86 | 20.25 ± 0.24 | 21.76 ± 0.28 |
α-linolenic (ALA) | C18:3 n-3 | 0.42 ± 0.04 | 0.15 ± 0.02 | 0.16 ± 0.02 |
arachidic | C20:0 | 2.93 ± 0.04 | 1.06 ± 0.01 | 1.14 ± 0.01 |
cis-11-eicosenoic | C20:1 | 0.80 ± 0.08 | 0.29 ± 0.03 | 0.31 ± 0.03 |
eicosadienoic | C20:2 n-9 | 0.05 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 |
behenic | C22:0 | 2.61 ± 0.49 | 0.95 ± 0.19 | 1.02 ± 0.20 |
lignoceric | C24:0 | 0.60 ± 0.00 | 0.22 ± 0.00 | 0.23 ± 0.00 |
nervonic | C24:1 | 0.09 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 |
SFA [%] | 19.89 ± 0.06 | 7.23 ± 0.03 | 7.77 ± 0.06 | |
UFA [%] | 80.11 ± 0.06 | 29.14 ± 0.08 | 31.31 ± 0.09 | |
MUFA [%] | 24.01 ± 0.76 | 8.72 ± 0.16 | 9.37 ± 0.35 | |
PUFA [%] | 56.11 ± 0.81 | 20.42 ± 0.09 | 21.95 ± 0.26 | |
n-6/n-3 ratio AI TI h/H | 132.46 0.11 0.33 9.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teleszko, M.; Haraf, G.; Zając, A.; Krzos, G. Milk Thistle (Silybum marianum (L.) Gaertner) Endosperm as an Alternative Protein Source for a Sustainable Food System (SFS)—Pilot Studies. Sustainability 2023, 15, 14411. https://doi.org/10.3390/su151914411
Teleszko M, Haraf G, Zając A, Krzos G. Milk Thistle (Silybum marianum (L.) Gaertner) Endosperm as an Alternative Protein Source for a Sustainable Food System (SFS)—Pilot Studies. Sustainability. 2023; 15(19):14411. https://doi.org/10.3390/su151914411
Chicago/Turabian StyleTeleszko, Mirosława, Gabriela Haraf, Adam Zając, and Grzegorz Krzos. 2023. "Milk Thistle (Silybum marianum (L.) Gaertner) Endosperm as an Alternative Protein Source for a Sustainable Food System (SFS)—Pilot Studies" Sustainability 15, no. 19: 14411. https://doi.org/10.3390/su151914411