Greening Foundation Industries: Shared Processes and Sustainable Pathways
Abstract
:1. Introduction
2. Methodology
2.1. Industry Selection
2.2. Process Mapping
2.3. Commonality Matrix
2.4. Process Analysis
2.5. Abatement Options
3. Results
3.1. Material Selection and Process Mapping
3.1.1. Metals
3.1.2. Glass
3.1.3. Chemicals
3.1.4. Ceramics
3.1.5. Paper
3.1.6. Cement
3.1.7. Process Maps
3.2. Commonality Matrix
3.3. Processes Analysis
3.4. Abatement Options
3.4.1. Pyroprocessing
3.4.2. Drying
3.4.3. Crushing and Grinding
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Process | Concept | Outcome | Machinery | |
---|---|---|---|---|
1 | Ore crushing | Size reduction | Reduction in particle size | Crusher |
2 | Raw meal crushing | Size reduction | Reduction in particle size | Grinding mills, ball mills |
3 | Ceramic crushing | Size reduction | Reduction in particle size | Crusher |
4 | Cullet crushing | Size reduction | Reduction in particle size | Crusher |
5 | Raw meal grinding | Size reduction | Reduction in particle size | Crusher |
6 | Cement grinding | Size reduction | Reduction in particle size | Grinding mills, ball mills |
7 | Chopping | Size reduction | Reduction in particle size | Chipper |
8 | Iron making | Pyroprocessing (reduction) | Molten product | Blast furnace |
9 | Steelmaking | Pyroprocessing (oxidation) | Molten product | Basic oxygen furnace |
10 | Sintering | Pyroprocessing (Solid-state) | Agglomeration of ores | Sinter strand |
11 | Coke-making | Pyroprocessing (decomposition) | Decomposition of raw materials | Coke oven |
12 | Clinkerisation | Pyroprocessing (Solid state) | Sintering of intermediate product | Rotary kilns |
13 | ceramic firing | Pyroprocessing | Sintering and densification | Furnace |
14 | Steam cracking | Pyroprocessing (pyrolysis) | Decomposition of raw materials | Cracker furnace |
15 | Glass melting | Pyroprocessing | Molten product | Furnace |
16 | Spray drying | Moisture removal | Dry Intermediate product | Spray dryer |
17 | Ceramic drying | Moisture removal | Dry Intermediate product | Dryers |
18 | Paper drying | Moisture removal | Dry Intermediate product | Steam dryer |
19 | Ceramic moulding | Shaping | Formation of shape | Pressing machines |
20 | Glass moulding | Shaping | Formation of shape | Moulding machine |
21 | Hot rolling | Shaping | Plastic deformation | Rolling mill |
22 | Clinker cooling | Temperature reduction | Cooling of intermediate product | Air coolers |
23 | Paper forming | Forming | Formation of shape | Fourdrinier |
24 | Calendaring | Forming | Sheet formation | Calendars |
25 | Quenching | Temperature reduction | Gas stabilisation | Heat exchangers |
26 | Extrusion | Forming | Pelletised product | Extruder |
27 | Annealing | Temperature reduction | Strengthened product | Lehr oven |
28 | De-barking | Surface treatment | Decontaminated raw material | Drum debarker |
29 | Coating | Surface treatment | Hardened product | Sprayer |
30 | Continuous casting | Solidification | Solidified product | Ladle, tundish, mould |
31 | Glazing | Surface coating | Decorated layer | Printers |
32 | Pulp making | Delignification | Processed intermediate product | Cooking digester |
33 | Compression | Pressurisation | Increase pressure | Compressors |
34 | Fractionation | Co-products separation | Isolation of individual products | Fractionating columns |
35 | Polymerisation | Radical polymerisation | Polymer formation | Polymerisation reactor |
36 | Degassing | Degasification | Quality enhancement | Degasser |
37 | Glass mixing | Homogenization | Raw material mixture | Blender |
References
- EIA Manufacturing Energy Consumption Survey (MECS). Available online: https://www.eia.gov/consumption/manufacturing/data/2018/ (accessed on 20 July 2023).
- Jolly, M.; Velenturf, A.P.M.; Salonitis, K.; Paddea, S. The UK Transforming the Foundation Industries Research and Innovation Hub (TransFIRe). In REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I); The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2022; pp. 341–353. [Google Scholar] [CrossRef]
- Balderson, U.; Trappmann, V.; Cutter, J. Decarbonising the Foundation Industries and the Implications for Workers and Skills in the UK: The Case of Steel, Glass and Cement Industries. 2022. Available online: https://eprints.whiterose.ac.uk/194161/ (accessed on 10 July 2023).
- Jeurissen, R. John Elkington, Cannibals With Forks: The Triple Bottom Line of 21st Century Business. J. Bus. Ethics 2000, 23, 229–231. [Google Scholar] [CrossRef]
- Jayal, A.D.; Badurdeen, F.; Dillon, O.W.; Jawahir, I.S. Sustainable Manufacturing: Modeling and Optimization Challenges at the Product, Process and System Levels. CIRP J. Manuf. Sci. Technol. 2010, 2, 144–152. [Google Scholar] [CrossRef]
- BEIS. Energy Consumption in the UK (ECUK) 1970 to 2020. 2021. Available online: https://www.gov.uk/government/statistics/energy-consumption-in-the-uk-2021 (accessed on 10 July 2023).
- BEIS. Updated Energy and Emissions Projections 2019. 2020. Available online: https://www.gov.uk/government/publications/updated-energy-and-emissions-projections-2019 (accessed on 10 July 2023).
- Griffin, P.W.; Hammond, G.P.; McKenna, R.C. Industrial Energy Use and Decarbonisation in the Glass Sector: A UK Perspective. Adv. Appl. Energy 2021, 3, 100037. [Google Scholar] [CrossRef]
- Preston, F.; Lehne, J. Making Concrete Change: Innovation in Low-Carbon Cement and Concrete. 2018. Available online: https://www.chathamhouse.org/2018/06/making-concrete-change-innovation-low-carbon-cement-and-concrete (accessed on 12 July 2023).
- IEA. Technology Roadmap—Low-Carbon Transition in the Cement Industry. 2018. Available online: https://www.iea.org/reports/technology-roadmap-low-carbon-transition-in-the-cement-industry (accessed on 12 July 2023).
- IEA. World Energy Outlook 2021. 2021. Available online: https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 12 July 2023).
- Robinson, P. Scaling-Up Technologies for the Foundation Industries. Available online: https://www.royce.ac.uk/news/scaling-up-technologies-for-the-foundation-industries/ (accessed on 20 July 2023).
- Sherif, Z.; Sarfraz, S.; Jolly, M.; Salonitis, K. Identification of the Right Environmental KPIs for Manufacturing Operations: Towards a Continuous Sustainability Framework. Materials 2022, 15, 7690. [Google Scholar] [CrossRef] [PubMed]
- Elahi, B. Risk Analysis Techniques. In Safety Risk Management for Medical Devices; Academic Press: Cambridge, MA, USA, 2018; pp. 67–120. [Google Scholar] [CrossRef]
- Wahyono, Y.; Hadiyanto, H.; Gheewala, S.H.; Budihardjo, M.A.; Adiansyah, J.S. Evaluating the Environmental Impacts of the Multi-Feedstock Biodiesel Production Process in Indonesia Using Life Cycle Assessment (LCA). Energy Convers. Manag. 2022, 266, 115832. [Google Scholar] [CrossRef]
- Islam, M.T.; Huda, N. Material Flow Analysis (MFA) as a Strategic Tool in E-Waste Management: Applications, Trends and Future Directions. J. Environ. Manag. 2019, 244, 344–361. [Google Scholar] [CrossRef] [PubMed]
- May, M.C.; Neidhöfer, J.; Körner, T.; Schäfer, L.; Lanza, G. Applying Natural Language Processing in Manufacturing. Procedia CIRP 2022, 115, 184–189. [Google Scholar] [CrossRef]
- Wazed, M.A.; Ahmed, S.; Nukman, Y. Commonality in Manufacturing Resources Planning-Issues and Models: A Review. Eur. J. Ind. Eng. 2010, 4, 167–188. [Google Scholar] [CrossRef]
- Collier, D.A. The Measurement And Operating Benefits Of Component Part Commonality. Decis. Sci. 1981, 12, 85–96. [Google Scholar] [CrossRef]
- Heese, H.S.; Swaminathan, J.M. Product Line Design with Component Commonality and Cost-Reduction Effort. Manuf. Serv. Oper. Manag. 2006, 8, 206–219. [Google Scholar] [CrossRef]
- Ahn, H.; Chang, T.W. A Similarity-Based Hierarchical Clustering Method for Manufacturing Process Models. Sustainability 2019, 11, 2560. [Google Scholar] [CrossRef]
- Fradi, A.; Louhichi, B.; Mahjoub, M.A.; Eynard, B. A New Approach for Reusable 3D CAD Objects Detection, by Similarity Calculation Based on Bayesian Network Models (BNM). Int. J. Comput. Integr. Manuf. 2021, 34, 1285–1304. [Google Scholar] [CrossRef]
- Kosztyán, Z.T.; Kiss, J. Matrix-Based Project Planning Methods. Probl. Manag. 21st Century 2011, 1, 67–85. [Google Scholar] [CrossRef]
- Eppinger, S.D.; Browning, T.R. Design Structure Matrix Methods and Applications; The MIT Press: Cambridge, MA, USA, 2012; ISBN 9780262301428. [Google Scholar]
- Wilschut, T.; Etman, L.F.P.; Rooda, J.E.; Vogel, J.A. Similarity, Modularity, and Commonality Analysis of Navigation Locks in the Netherlands. J. Infrastruct. Syst. 2019, 25, 04018043. [Google Scholar] [CrossRef]
- Zhao, C.; Dinar, M.; Melkote, S.N. Automated Classification of Manufacturing Process Capability Utilizing Part Shape, Material, and Quality Attributes. J. Comput. Inf. Sci. Eng. 2020, 20, 021011. [Google Scholar] [CrossRef]
- Giess, M.; McMahon, C.; Booker, J.D.; Stewart, D. Application of Faceted Classification in the Support of Manufacturing Process Selection. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2009, 223, 597–608. [Google Scholar] [CrossRef]
- Groover, M.P. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 978-1-119-47521-7. [Google Scholar]
- Gracis, S.; Thompson, V.; Ferencz, J.; Silva, N.; Bonfante, E. A New Classification System for All-Ceramic and Ceramic-like Restorative Materials. Int. J. Prosthodont. 2016, 28, 227–235. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Foteinopoulos, P. Modelling of Additive Manufacturing Processes: A Review and Classification. Manuf. Rev. 2018, 5, 2. [Google Scholar] [CrossRef]
- Xue, H.; Filipovic, A.; Pandit, S.M.; Sutherland, J.W.; Olson, W.W. Using a Manufacturing Process Classification System for Improved Environmental Performance; SAE Technical Paper No. 2000-01-0020; SAE: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Mert, M.; Bölük, G.; Çağlar, A.E. Interrelationships among Foreign Direct Investments, Renewable Energy, and CO2 Emissions for Different European Country Groups: A Panel ARDL Approach. Environ. Sci. Pollut. Res. Int. 2019, 26, 21495–21510. [Google Scholar] [CrossRef]
- UN. THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 20 July 2023).
- Kumaraguru, S.; Rachuri, S.; Lechevalier, D. Faceted Classification of Manufacturing Processes for Sustainability Performance Evaluation. Int. J. Adv. Manuf. Technol. 2014, 75, 1309–1320. [Google Scholar] [CrossRef]
- Kellens, K.; Dewulf, W.; Overcash, M.; Hauschild, M.Z.; Duflou, J.R. Methodology for Systematic Analysis and Improvement of Manufacturing Unit Process Life-Cycle Inventory (UPLCI)-CO2PE! Initiative (Cooperative Effort on Process Emissions in Manufacturing). Part 1: Methodology Description. Int. J. Life Cycle Assess. 2012, 17, 69–78. [Google Scholar] [CrossRef]
- Statista. World Crude Steel Production. Available online: https://www.statista.com/statistics/267264/world-crude-steel-production/ (accessed on 20 July 2023).
- Global Market Insights Aluminum Market Report. Available online: https://www.gminsights.com/industry-analysis/aluminum-market (accessed on 20 July 2023).
- Venkataraman, M.; Csereklyei, Z.; Aisbett, E.; Rahbari, A.; Jotzo, F.; Lord, M.; Pye, J. Zero-Carbon Steel Production: The Opportunities and Role for Australia. Energy Policy 2022, 163, 112811. [Google Scholar] [CrossRef]
- Madhavan, N.; Brooks, G.; Rhamdhani, M.A.; Bordignon, A. Contribution of CO2 Emissions from Basic Oxygen Steelmaking Process. Metals 2022, 12, 797. [Google Scholar] [CrossRef]
- Statista. Glass Production Global Distribution by Type 2018. Available online: https://www.statista.com/statistics/1059469/distribution-of-glass-production-globally-by-type/ (accessed on 20 July 2023).
- Martins, B.; Reis, A.; Teixeira, P.; Machado, M.; Rodrigues, J.; Cesar De Sá, J. Integrated Thermomechanical Model for Forming of Glass Containers. MATEC Web Conf. 2016, 80, 16010. [Google Scholar] [CrossRef]
- Thomas. How Glass Bottles Are Made. Available online: https://www.thomasnet.com/articles/materials-handling/glass-bottles-made/ (accessed on 20 July 2023).
- Statista. U.S. Chemicals and Plastics Production by Type. Available online: https://www.statista.com/statistics/299725/total-us-plastics-and-chemicals-shipments-by-type/ (accessed on 20 July 2023).
- Amghizar, I.; Vandewalle, L.A.; Van Geem, K.M.; Marin, G.B. New Trends in Olefin Production. Engineering 2017, 3, 171–178. [Google Scholar] [CrossRef]
- Fritz, M.; Aydemir, A. The Energy of Exergy—Analysis of Different Olefin Production Routes. In Proceedings of the ECEEE Industrial Summer Study, Stockholm, Sweden, 15–17 September 2020. [Google Scholar]
- Worrell, E.; Price, L.; Neelis, M.; Galitsky, C.; Zhou, N. Title World Best Practice Energy Intensity Values for Selected Industrial Sectors. 2007. Available online: https://escholarship.org/uc/item/77n9d4sp (accessed on 20 July 2023).
- Zhong, X.; Zhao, X.; Qian, Y.; Zou, Y. Polyethylene Plastic Production Process. Insight-Mater. Sci. 2017, 1, 1–8. [Google Scholar] [CrossRef]
- Furszyfer Del Rio, D.D.; Sovacool, B.K.; Foley, A.M.; Griffiths, S.; Bazilian, M.; Kim, J.; Rooney, D. Decarbonizing the Ceramics Industry: A Systematic and Critical Review of Policy Options, Developments and Sociotechnical Systems. Renew. Sustain. Energy Rev. 2022, 157, 112081. [Google Scholar] [CrossRef]
- Giacomini, P. Editorial—In: Ceramic World Review. 2022. Available online: https://ceramicworldweb.com/en/magazines/ceramic-world-review-1452022 (accessed on 20 July 2023).
- Cerame-Unie. Ceramic Applications—The European Industry Association. Available online: https://cerameunie.eu/ceramic-industry/applications/ (accessed on 30 August 2023).
- Department for Business Energy & Industrial Strategy; British Ceramic Confederation. Ceramic Sector Industrial, Joint Industry—Government, Decarbonisation and Energy Efficiency Roadmap Action Plan. 2017. Available online: https://assets.publishing.service.gov.uk/media/5a81fedbe5274a2e87dc0981/ceramics-decarbonisation-action-plan.pdf (accessed on 30 August 2023).
- FOASTAT. Forestry Production and Trade. Available online: https://www.fao.org/faostat/en/#data/FO (accessed on 20 July 2023).
- Moya, J.; Pavel, C. Energy Efficiency and GHG Emissions: Prospective Scenarios for the Pulp and Paper Industry; Publications Office: Luxembourg, 2018. [Google Scholar]
- USGS. Cement Statistics and Information. Available online: https://www.usgs.gov/centers/national-minerals-information-center/cement-statistics-and-information (accessed on 20 July 2023).
- Habert, G. Assessing the Environmental Impact of Conventional and ‘Green’ Cement Production. In Eco-efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies; Elsevier: Amsterdam, The Netherlands, 2014; pp. 199–238. [Google Scholar] [CrossRef]
- Gökçekus, H.; Ghaboun, N.; Ozsahin, D.U.; Uzun, B. Evaluation of Cement Manufacturing Methods Using Multi Criteria Decision Analysis (MCDA). In Proceedings of the 2021 14th International Conference on Developments in eSystems Engineering (DeSE), Sharjah, United Arab Emirates, 7–10 December 2021; pp. 39–43. [Google Scholar] [CrossRef]
- Sahoo, N.; Kumar, A.; Samsher. Review on Energy Conservation and Emission Reduction Approaches for Cement Industry. Environ. Dev. 2022, 44, 100767. [Google Scholar] [CrossRef]
- Pardo, N.; Moya, J.A.; Vatopoulos, K. Prospective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron & Steel Industry. Energy 2013, 54, 113–128. [Google Scholar]
- Worrell, E.; Price, L.; Martin, N.; Farla, J.; Schaeffer, R. Energy Intensity in the Iron and Steel Industry: A Comparison of Physical and Economic Indicators. Energy Policy 1997, 25, 727–744. [Google Scholar] [CrossRef]
- US. Department of Energy. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing; DOE Energy Efficiency & Renewable Energy: Washington, DC, USA, 2015. [Google Scholar]
- Papadogeorgos, I.; Schure, K.M. Decarbonisation Options for the Dutch Container and Tableware Glass Industry; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2019. [Google Scholar]
- Jankovic, A. Comminution and Classification Technologies of Iron Ore. In Iron Ore; Elsevier: Amsterdam, The Netherlands, 2022; pp. 269–308. [Google Scholar]
- Haque, N.; Norgate, T. Life Cycle Assessment of Iron Ore Mining and Processing. In Iron Ore; Elsevier: Amsterdam, The Netherlands, 2015; pp. 615–630. [Google Scholar]
- Benhelal, E.; Zahedi, G.; Hashim, H. A Novel Design for Green and Economical Cement Manufacturing. J. Clean Prod. 2012, 22, 60–66. [Google Scholar] [CrossRef]
- Afkhami, B.; Akbarian, B.; Beheshti, A.N.; Kakaee, A.H.; Shabani, B. Energy Consumption Assessment in a Cement Production Plant. Sustain. Energy Technol. Assess. 2015, 10, 84–89. [Google Scholar] [CrossRef]
- Madlool, N.A.; Saidur, R.; Hossain, M.S.; Rahim, N.A. A Critical Review on Energy Use and Savings in the Cement Industries. Renew. Sustain. Energy Rev. 2011, 15, 2042–2060. [Google Scholar] [CrossRef]
- Benhelal, E.; Shamsaei, E.; Rashid, M.I. Challenges against CO2 Abatement Strategies in Cement Industry: A Review. J. Environ. Sci. 2021, 104, 84–101. [Google Scholar] [CrossRef] [PubMed]
- Mezquita, A.; Monfort, E.; Ferrer, S.; Gabaldón-Estevan, D. How to Reduce Energy and Water Consumption in the Preparation of Raw Materials for Ceramic Tile Manufacturing: Dry versus Wet Route. J. Clean Prod. 2017, 168, 1566–1570. [Google Scholar] [CrossRef]
- Bajpai, P. Pulp and Paper Production Processes and Energy Overview. In Pulp and Paper Industry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 15–49. [Google Scholar]
- Stolarski, J.; Wierzbicki, S.; Nitkiewicz, S.; Stolarski, M.J. Wood Chip Production Efficiency Depending on Chipper Type. Energies 2023, 16, 4894. [Google Scholar] [CrossRef]
- Ren, T.; Patel, M.; Blok, K. Olefins from Conventional and Heavy Feedstocks: Energy Use in Steam Cracking and Alternative Processes. Energy 2006, 31, 425–451. [Google Scholar] [CrossRef]
- Monfort, E.; Mezquita, A.; Granel, R.; Vaquer, E.; Escrig, A.; Miralles, A.; Zaera, V. 2010, undefined Analysis of Energy Consumption and Carbon Dioxide Emissions in Ceramic Tile Manufacture. Bol. Soc. Esp. Ceram. Vidr. 2010, 49, 303–310. [Google Scholar]
- Carpenter, A. CO2 Abatement in the Iron and Steel Industry. IEA Clean Coal Cent. 2012, 25, 193. [Google Scholar]
- Shen, F.; Wang, X.; Huang, L.; Ye, Z.; Qian, F. Modeling and Optimization of a Large-Scale Ethylene Plant Energy System with Energy Structure Analysis and Management. Ind. Eng. Chem. Res. 2019, 58, 1686–1700. [Google Scholar] [CrossRef]
- Remus, R.; Aguado-Monsonet, M.A.; Roudier, S.; Delgado Sancho, L. Best Available Techniques (BAT) Reference Document for Iron and Steel Production—Industrial Emissions Directive 2010/75/EU—Integrated Pollution Prevention and Control; Publications Office: Luxembourg, 2013. [Google Scholar]
- Springer, C.; Hasanbeigi, A. Emerging Energy Efficiency and Carbon Dioxide Emissions-Reduction Technologies for the Glass Industry; Lawrence Berkeley National Laboratory [LBNL], University of California: Berkeley, CA, USA, 2017. [Google Scholar]
- Karellas, S.; Giannakopoulos, D.; Hatzilau, C.S.; Dolianitis, I.; Skarpetis, G.; Zitounis, T. The Potential of WHR/Batch and Cullet Preheating for Energy Efficiency in the EU ETS Glass Industry and the Related Energy Incentives. Energy Effic. 2018, 11, 1161–1175. [Google Scholar] [CrossRef]
- Oliveira, T.M.; Santos, M.F.; Angelico, R.A.; Pandolfelli, V.C. Thermo-Mechanical Finite Element Analysis of a Fused Cast AZS Block Applied to a Glass Melting Furnace during the Heating Step. Ceram. Int. 2022, 48, 20534–20545. [Google Scholar] [CrossRef]
- Oorja Energy Engineering Services. Heat Recovery from Rotary Kilns—Solar Impulse Efficient Solution. Available online: https://solarimpulse.com/solutions-explorer/heat-recovery-from-rotary-kilns (accessed on 20 July 2023).
- Lin, P.-H.; Wang, P.-H.; Chen, H.-T.; Chung, W.-L. Efficiency Improvement of the Hot Blast Generating System by Waste Heat Recovery. WIT Trans. Ecol. Environ. 2007, 105, 9. [Google Scholar] [CrossRef]
- Peris, B.; Navarro-Esbrí, J.; Molés, F.; Mota-Babiloni, A. Experimental Study of an ORC (Organic Rankine Cycle) for Low Grade Waste Heat Recovery in a Ceramic Industry. Energy 2015, 85, 534–542. [Google Scholar] [CrossRef]
- Cunningham, M.A.; Leventhal, K.G. From Emissions Inventories to Cost Accounting: Making Business as Usual Visible for Climate Action Planning. Sustainability 2023, 15, 11657. [Google Scholar] [CrossRef]
- The European Ceramic Industry Association. Ceramic Roadmap To 2050—Continuing Our Path towards Climate Neutrality; The European Ceramic Industry Association: Brussels, Belgium, 2012. [Google Scholar]
- Velenturf, M.E.; Khalil, A.M.E.; Velenturf, A.P.M.; Ahmadinia, M.; Zhang, S. Context Analysis for Transformative Change in the Ceramic Industry. Sustainability 2023, 15, 12230. [Google Scholar] [CrossRef]
- Jacob, R.M.; Tokheim, L.A. Electrified Calciner Concept for CO2 Capture in Pyro-Processing of a Dry Process Cement Plant. Energy 2023, 268, 126673. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Shi, L.; Klemeš, J.J. Uncovering Energy Use, Carbon Emissions and Environmental Burdens of Pulp and Paper Industry: A Systematic Review and Meta-Analysis. Renew. Sustain. Energy Rev. 2018, 92, 823–833. [Google Scholar] [CrossRef]
- Mezquita, A.; Boix, J.; Monfort, E.; Mallol, G. Energy Saving in Ceramic Tile Kilns: Cooling Gas Heat Recovery. Appl. Therm. Eng. 2014, 65, 102–110. [Google Scholar] [CrossRef]
- Utlu, Z.; Kincay, O. An Assessment of a Pulp and Paper Mill through Energy and Exergy Analyses. Energy 2013, 57, 565–573. [Google Scholar] [CrossRef]
- Sherif, Z.; Patsavellas, J.; Salonitis, K. Printed Carbon Nanotube and Graphene Heaters for Drying Ceramics. In TMS Annual Meeting & Exhibition; Minerals, Metals & Materials Series; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 77–88. [Google Scholar] [CrossRef]
- Putra, M.A.; Teh, K.C.; Tan, J.; Choong, T.S.Y. Sustainability Assessment of Indonesian Cement Manufacturing via Integrated Life Cycle Assessment and Analytical Hierarchy Process Method. Environ. Sci. Pollut. Res. Int. 2020, 27, 29352–29360. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, S.; Sherif, Z.; Jolly, M.; Salonitis, K. Towards Framework Development for Benchmarking Energy Efficiency in Foundation Industries: A Case Study of Granulation Process. In TMS Annual Meeting & Exhibition; Springer Nature Switzerland: Cham, Switzerland, 2023; ISBN 9783031227646. [Google Scholar] [CrossRef]
- Sakharov, D.F.; Vitushkin, A.V. Energy Efficiency of a Cone Crusher with Stops. Steel Transl. 2022, 52, 933–938. [Google Scholar] [CrossRef]
Principle | 1 | Process A | Process B | Process C | Process D | Process E |
Outcome | 2 | |||||
Equipment | 3 | |||||
Sector A | Process A | |||||
Process B | ||||||
Process C | ||||||
Process D | ||||||
Process E |
Process | Electrical Energy GJ/t | Top Electrical Consumer | Thermal Energy GJ/t | Top Thermal Consumer | CO2 Emissions kg/t | Top CO2 Emitter |
---|---|---|---|---|---|---|
Ore crushing | 0.11 | ✓ | 0 | 0 | ||
Raw meal crushing | 0.12 | ✓ | 0 | 0 | ||
Ceramic crushing | 0.168 | ✓ | 0 | 0 | ||
Cullet crushing | 0.5 | ✓ | 0 | 0 | ||
Raw meal grinding | 0.1 | ✓ | 0 | 0 | ||
Cement grinding | 0.169 | ✓ | 0 | 0 | ||
Chopping | 0.37 | ✓ | 0 | 0 | ||
Iron making | 0.09 | 12.85 | ✓ | 1219 | ✓ | |
Steelmaking | 0.09 | −0.26 | 282 | ✓ | ||
Sintering | 0.1 | ✓ | 1.37 | ✓ | 200 | ✓ |
Coke-making | 0.09 | 3.82 | ✓ | 794 | ✓ | |
Clinkerisation | 0.007 | 2.9 | ✓ | 580 | ✓ | |
Ceramic firing | 0.2 | ✓ | 2.85 | ✓ | 147 | ✓ |
Steam cracking | 1 | ✓ | 12.5 | ✓ | 1600 | ✓ |
Glass melting | 0.38 | ✓ | 4.39 | ✓ | 318 | ✓ |
Spray drying | 0.113 | ✓ | 1.22 | ✓ | 89 | ✓ |
Ceramic drying | 0.01 | 0.33 | ✓ | 21 | ✓ | |
Paper drying | 0.58 | ✓ | 5.4 | ✓ | 250 | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherif, Z.; Sarfraz, S.; Jolly, M.; Salonitis, K. Greening Foundation Industries: Shared Processes and Sustainable Pathways. Sustainability 2023, 15, 14422. https://doi.org/10.3390/su151914422
Sherif Z, Sarfraz S, Jolly M, Salonitis K. Greening Foundation Industries: Shared Processes and Sustainable Pathways. Sustainability. 2023; 15(19):14422. https://doi.org/10.3390/su151914422
Chicago/Turabian StyleSherif, Ziyad, Shoaib Sarfraz, Mark Jolly, and Konstantinos Salonitis. 2023. "Greening Foundation Industries: Shared Processes and Sustainable Pathways" Sustainability 15, no. 19: 14422. https://doi.org/10.3390/su151914422
APA StyleSherif, Z., Sarfraz, S., Jolly, M., & Salonitis, K. (2023). Greening Foundation Industries: Shared Processes and Sustainable Pathways. Sustainability, 15(19), 14422. https://doi.org/10.3390/su151914422