In Silico Dissection of Regulatory Regions of PHT Genes from Saccharum spp. Hybrid and Sorghum bicolor and Expression Analysis of PHT Promoters under Osmotic Stress Conditions in Tobacco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval of Promoter Regions and Determination of TSSs
2.2. Documentation of Common Candidate Motifs and TFs
2.3. Gene Ontology Analysis
2.4. Search for CpG Islands for PHT Gene Promoter Regions
2.5. Analysis of TFbs in Sugarcane Promoter Region
2.6. Development of Transgenic Tobacco and Screening under Salt Stress
2.7. Quantitative RT-PCR Analysis
3. Results
3.1. Identification of Transcription Start Sites in Promoter Sequences of the PHT Gene Family
3.2. Identification of Common Motifs in PHT Promoter Regions
3.3. Gene Ontology Analysis for the Identified Sequence Motifs
3.4. Analysis of CpG Islands in Phosphate Transporter Gene Promoter Regions
3.5. Abiotic-Stress-Related TFbs Analysis
3.6. GUS Activity of Transgenic Tobacco EaPHT Promoter under Osmotic Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Budeguer, F.; Enrique, R.; Perera, M.F.; Racedo, J.; Castagnaro, A.P.; Noguera, A.S.; Welin, B. Genetic Transformation of Sugarcane, Current Status and Future Prospects. Front. Plant Sci. 2021, 12, 768609. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, M.; Damaj, M.B.; Vargas-Bautista, C.; Mora, V.; Liu, J.; Padilla, C.S.; Irigoyen, S.; Saini, T.; Sahoo, N.; DaSilva, J.A.; et al. A Sugarcane G-Protein-Coupled Receptor, ShGPCR1, Confers Tolerance to Multiple Abiotic Stresses. Front. Plant Sci. 2021, 12, 745891. [Google Scholar] [CrossRef] [PubMed]
- Godoy, F.; Olivos-Hernández, K.; Stange, C.; Handford, M. Abiotic Stress in Crop Species: Improving Tolerance by Applying Plant Metabolites. Plants 2021, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- He, M.; He, C.-Q.; Ding, N.-Z. Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Front. Plant Sci. 2018, 9, 1771. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, T.B.; Ribas, A.F.; de Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2022, 2, 9. [Google Scholar] [CrossRef]
- Hoang, X.L.T.; Nhi, D.N.H.; Thu, N.B.A.; Thao, N.P.; Tran, L.-S.P. Transcription Factors and Their Roles in Signal Transduction in Plants under Abiotic Stresses. Curr Genom. 2017, 18, 483–497. [Google Scholar] [CrossRef]
- Madzima, T.F.; Vendramin, S.; Lynn, J.S.; Lemert, P.; Lu, K.C.; McGinnis, K.M. Direct and Indirect Transcriptional Effects of Abiotic Stress in Zea Mays Plants Defective in RNA-Directed DNA Methylation. Front. Plant Sci. 2021, 12, 694289. [Google Scholar] [CrossRef]
- Wittkopp, P.J.; Kalay, G. Cis-Regulatory Elements: Molecular Mechanisms and Evolutionary Processes Underlying Divergence. Nat. Rev. Genet. 2012, 13, 59–69. [Google Scholar] [CrossRef]
- Berendzen, K.W.; Stüber, K.; Harter, K.; Wanke, D. Cis-Motifs Upstream of the Transcription and Translation Initiation Sites Are Effectively Revealed by Their Positional Disequilibrium in Eukaryote Genomes Using Frequency Distribution Curves. BMC Bioinform. 2006, 7, 522. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus Dynamics: From Soil to Plant1. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring Phosphorus Fertilizers and Fertilization Strategies for Improved Human and Environmental Health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef]
- Wang, D.; Lv, S.; Jiang, P.; Li, Y. Roles, Regulation, and Agricultural Application of Plant Phosphate Transporters. Front. Plant Sci. 2017, 8, 817. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Upadhyay, M.K.; Srivastava, A.K.; Abdelrahman, M.; Suprasanna, P.; Tran, L.-S.P. Cellular and Subcellular Phosphate Transport Machinery in Plants. Int. J. Mol. Sci. 2018, 19, 1914. [Google Scholar] [CrossRef]
- Rubio, V.; Linhares, F.; Solano, R.; Martín, A.C.; Iglesias, J.; Leyva, A.; Paz-Ares, J. A Conserved MYB Transcription Factor Involved in Phosphate Starvation Signaling Both in Vascular Plants and in Unicellular Algae. Genes Dev. 2001, 15, 2122–2133. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, Q.; Kong, Y.-H.; Chen, Y.; Duan, J.-Y.; Wu, W.-H.; Chen, Y.-F. Arabidopsis WRKY45 Transcription Factor Activates PHOSPHATE TRANSPORTER1;1 Expression in Response to Phosphate Starvation1[W][OPEN]. Plant Physiol. 2014, 164, 2020–2029. [Google Scholar] [CrossRef] [PubMed]
- Formann, S.; Hahn, A.; Janke, L.; Stinner, W.; Sträuber, H.; Logroño, W.; Nikolausz, M. Beyond Sugar and Ethanol Production: Value Generation Opportunities Through Sugarcane Residues. Front. Energy Res. 2020, 8, 579577. [Google Scholar] [CrossRef]
- Ma, Y.; Dias, M.C.; Freitas, H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front. Plant Sci. 2020, 11, 591911. [Google Scholar] [CrossRef]
- Soltangheisi, A.; Withers, P.J.A.; Pavinato, P.S.; Cherubin, M.R.; Rossetto, R.; Do Carmo, J.B.; da Rocha, G.C.; Martinelli, L.A. Improving Phosphorus Sustainability of Sugarcane Production in Brazil. GCB Bioenergy 2019, 11, 1444–1455. [Google Scholar] [CrossRef]
- Potenza, C.; Aleman, L.; Sengupta-Gopalan, C. Targeting Transgene Expression in Research, Agricultural, and Environmental Applications: Promoters Used in Plant Transformation. In Vitro Cell. Dev. Biol.-Plant 2004, 40, 1–22. [Google Scholar] [CrossRef]
- Peremarti, A.; Twyman, R.M.; Gómez-Galera, S.; Naqvi, S.; Farré, G.; Sabalza, M.; Miralpeix, B.; Dashevskaya, S.; Yuan, D.; Ramessar, K.; et al. Promoter Diversity in Multigene Transformation. Plant Mol. Biol. 2010, 73, 363–378. [Google Scholar] [CrossRef]
- Kebede, A.; Kebede, M. In Silico Analysis of Promoter Region and Regulatory Elements of Glucan Endo-1,3-Beta-Glucosidase Encoding Genes in Solanum Tuberosum: Cultivar DM 1-3 516 R44. J. Genet. Eng. Biotechnol. 2021, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Murugan, N.; Palanisamy, V.; Channappa, M.; Ramanathan, V.; Ramaswamy, M.; Govindakurup, H.; Chinnaswamy, A. Genome-Wide In Silico Identification, Structural Analysis, Promoter Analysis, and Expression Profiling of PHT Gene Family in Sugarcane Root under Salinity Stress. Sustainability 2022, 14, 15893. [Google Scholar] [CrossRef]
- Reese, M.G. Application of a Time-Delay Neural Network to Promoter Annotation in the Drosophila Melanogaster Genome. Comput. Chem. 2001, 26, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME Suite: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Takai, D.; Jones, P.A. Comprehensive Analysis of CpG Islands in Human Chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 2002, 99, 3740–3745. [Google Scholar] [CrossRef]
- Chow, C.-N.; Lee, T.-Y.; Hung, Y.-C.; Li, G.-Z.; Tseng, K.-C.; Liu, Y.-H.; Kuo, P.-L.; Zheng, H.-Q.; Chang, W.-C. PlantPAN3.0: A New and Updated Resource for Reconstructing Transcriptional Regulatory Networks from ChIP-Seq Experiments in Plants. Nucleic Acids Res. 2019, 47, D1155–D1163. [Google Scholar] [CrossRef]
- Mohan, C.; Jayanarayanan, A.N.; Narayanan, S. Construction of a Novel Synthetic Root-Specific Promoter and Its Characterization in Transgenic Tobacco Plants. 3 Biotech 2017, 7, 234. [Google Scholar] [CrossRef]
- Jefferson, R.A.; Kavanagh, T.A.; Bevan, M.W. GUS Fusions: Beta-Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in Higher Plants. EMBO J. 1987, 6, 3901–3907. [Google Scholar] [CrossRef]
- Selvarajan, D.; Mohan, C.; Dhandapani, V.; Nerkar, G.; Jayanarayanan, A.N.; Vadakkancherry Mohanan, M.; Murugan, N.; Kaur, L.; Chennappa, M.; Kumar, R.; et al. Differential Gene Expression Profiling through Transcriptome Approach of Saccharum spontaneum L. under Low Temperature Stress Reveals Genes Potentially Involved in Cold Acclimation. 3 Biotech 2018, 8, 195. [Google Scholar] [CrossRef]
- Anunathini, P.; Manoj, V.M.; Padmanabhan, T.S.; Dhivya, S.; Narayan, J.A.; Appunu, C.; Sathishkumar, R. In Silico Characterisation and Functional Validation of Chilling Tolerant Divergence 1 (COLD1) Gene in Monocots during Abiotic Stress. Funct. Plant Biol. 2019, 46, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Manoj, V.M.; Anunanthini, P.; Swathik, P.C.; Dharshini, S.; Ashwin Narayan, J.; Manickavasagam, M.; Sathishkumar, R.; Suresha, G.S.; Hemaprabha, G.; Ram, B.; et al. Comparative Analysis of Glyoxalase Pathway Genes in Erianthus Arundinaceus and Commercial Sugarcane Hybrid under Salinity and Drought Conditions. BMC Genom. 2019, 19, 986. [Google Scholar] [CrossRef] [PubMed]
- Narayan, J.A.; Dharshini, S.; Manoj, V.M.; Padmanabhan, T.S.S.; Kadirvelu, K.; Suresha, G.S.; Subramonian, N.; Ram, B.; Premachandran, M.N.; Appunu, C. Isolation and Characterization of Water-Deficit Stress-Responsive α-Expansin 1 (EXPA1) Gene from Saccharum Complex. 3 Biotech 2019, 9, 186. [Google Scholar] [CrossRef]
- Dharshini, S.; Manoj, V.M.; Suresha, G.S.; Narayan, J.A.; Padmanabhan, T.S.S.; Kumar, R.; Meena, M.R.; Manickavasagam, M.; Ram, B.; Appunu, C. Isolation and Characterization of Nuclear Localized Abiotic Stress Responsive Cold Regulated Gene 413 (SsCor413) from Saccharum Spontaneum. Plant Mol. Biol. Rep. 2020, 38, 628–640. [Google Scholar] [CrossRef]
- Peter, S.C.; Murugan, N.; Mohanan, M.V.; Sasikumar, S.P.T.; Selvarajan, D.; Jayanarayanan, A.N.; Shivalingamurthy, S.G.; Chennappa, M.; Ramanathan, V.; Govindakurup, H.; et al. Isolation, Characterization and Expression Analysis of Stress Responsive Plant Nuclear Transcriptional Factor Subunit (NF-YB2) from Commercial Saccharum Hybrid and Wild Relative Erianthus Arundinaceus. 3 Biotech 2020, 10, 304. [Google Scholar] [CrossRef] [PubMed]
- Ashwin Narayan, J.; Chakravarthi, M.; Nerkar, G.; Manoj, V.M.; Dharshini, S.; Subramonian, N.; Premachandran, M.N.; Arun Kumar, R.; Krishna Surendar, K.; Hemaprabha, G.; et al. Overexpression of Expansin EaEXPA1, a Cell Wall Loosening Protein Enhances Drought Tolerance in Sugarcane. Ind. Crops Prod. 2021, 159, 113035. [Google Scholar] [CrossRef]
- Dharshini, S.; Chakravarthi, M.; Manoj, V.M.; Naveenarani, M.; Kumar, R.; Meena, M.; Ram, B.; Appunu, C. De Novo Sequencing and Transcriptome Analysis of a Low Temperature Tolerant Saccharum spontaneum Clone IND 00-1037. J. Biotechnol. 2016, 231, 280–294. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yamashita, R.; Wakaguri, H.; Sugano, S.; Suzuki, Y.; Nakai, K. DBTSS Provides a Tissue Specific Dynamic View of Transcription Start Sites. Nucleic Acids Res. 2010, 38, D98–D104. [Google Scholar] [CrossRef]
- Dai, Z.; Xiong, Y.; Dai, X. DNA Signals at Isoform Promoters. Sci. Rep. 2016, 6, 28977. [Google Scholar] [CrossRef]
- Ueda, H.R.; Chen, W.; Adachi, A.; Wakamatsu, H.; Hayashi, S.; Takasugi, T.; Nagano, M.; Nakahama, K.; Suzuki, Y.; Sugano, S.; et al. A Transcription Factor Response Element for Gene Expression during Circadian Night. Nature 2002, 418, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ding, C.; Li, X.; Xiao, K. Molecular Characterization and Expression Analysis of TaZFP15, a C2H2-Type Zinc Finger Transcription Factor Gene in Wheat (Triticum aestivum L.). J. Integr. Agric. 2012, 11, 31–42. [Google Scholar] [CrossRef]
- Ding, W.; Wang, Y.; Fang, W.; Gao, S.; Li, X.; Xiao, K. TaZAT8, a C2H2-ZFP Type Transcription Factor Gene in Wheat, Plays Critical Roles in Mediating Tolerance to Pi Deprivation through Regulating P Acquisition, ROS Homeostasis and Root System Establishment. Physiol. Plant 2016, 158, 297–311. [Google Scholar] [CrossRef]
- Ma, X.; Liang, W.; Gu, P.; Huang, Z. Salt Tolerance Function of the Novel C2H2-Type Zinc Finger Protein TaZNF in Wheat. Plant Physiol. Biochem. 2016, 106, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Khan, A.R.; Gan, Y. C2H2 Zinc Finger Proteins Response to Abiotic Stress in Plants. Int. J. Mol. Sci. 2022, 23, 2730. [Google Scholar] [CrossRef]
- Ashikawa, I. Gene-Associated CpG Islands in Plants as Revealed by Analyses of Genomic Sequences. Plant J. 2001, 26, 617–625. [Google Scholar] [CrossRef]
- Deaton, A.M.; Bird, A. CpG Islands and the Regulation of Transcription. Genes Dev. 2011, 25, 1010–1022. [Google Scholar] [CrossRef]
- Baek, D.; Chun, H.J.; Yun, D.-J.; Kim, M.C. Cross-Talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants. Mol. Cells 2017, 40, 697–705. [Google Scholar] [CrossRef]
- Zhang, C.; Meng, S.; Li, M.; Zhao, Z. Genomic Identification and Expression Analysis of the Phosphate Transporter Gene Family in Poplar. Front. Plant Sci. 2016, 7, 1398. [Google Scholar] [CrossRef]
- Miao, J.; Sun, J.; Liu, D.; Li, B.; Zhang, A.; Li, Z.; Tong, Y. Characterization of the Promoter of Phosphate Transporter TaPHT1.2 Differentially Expressed in Wheat Varieties. J. Genet. Genom. 2009, 36, 455–466. [Google Scholar] [CrossRef]
Promoter ID | Number of Identified TSS | Predictive Score | Location of the Best TSS from Start Codon (ATG) |
---|---|---|---|
ShPHT1-1 | 5 | 1.00, 0.97, 0.95, 0.93, 0.81 | −1645 |
ShPHT1-2 | 4 | 0.99, 0.99, 0.91, 0.87 | −1662 |
ShPHT1-3 | 7 | 0.97, 0.94, 0.94, 0.94, 0.90, 0.84, 0.81 | −951 |
ShPHT1-4 | 6 | 1.00, 0.97, 0.94, 0.93, 0.85, 0.81 | −737 |
ShPHT1-5 | 2 | 1.00, 0.90 | −446 |
ShPHT1-6 | 3 | 0.94, 0.89, 0.88 | −609 |
ShPHT1-7 | 2 | 0.97, 0.90 | −331 |
ShPHT1-8 | 2 | 0.99, 0.92 | −294 |
ShPHT2-1 | 2 | 0.93, 0.90 | −456 |
ShPHT3-1 | 2 | 0.99, 0.90 | −908 |
ShPHT3-2 | 2 | 0.99, 0.83 | −319 |
ShPHT3-3 | 5 | 1.00, 0.95, 0.95, 0.92, 0.88 | −380 |
ShPHT3-4 | 9 | 1.00, 1.00, 0.99, 0.98, 0.92, 0.89, 0.88, 0.84, 0.82 | −751 |
ShPHT4-1 | 1 | 0.94 | −329 |
ShPHT4-2 | 1 | 0.97 | −237 |
ShPHT4-3 | 6 | 0.98, 0.96, 0.96, 0.83, 0.83, 0.81 | −1686 |
ShPHT4-4 | 1 | 0.83 | −1194 |
ShPHT4-5 | 3 | 0.86, 0.84, 0.81 | −473 |
ShPHT4-6 | 3 | 0.99, 0.91, 0.84 | −856 |
ShPHO1-1 | 1 | 0.94 | −486 |
ShPHO1-2 | 1 | 0.95 | −219 |
ShPHO1-3 | 4 | 0.99, 0.93, 0.91, 0.82 | −524 |
ShPHO1-4 | 2 | 0.91, 0.91 | −110 |
Promoter ID | Number of Identified TSS | Predictive Score | Location of the Best TSS from Start Codon (ATG) |
---|---|---|---|
SbPHT1-1 | 3 | 0.99, 0.99, 0.98 | −171 |
SbPHT1-2 | 3 | 0.99, 0.98, 0.97 | −884 |
SbPHT1-3 | 7 | 1.00, 0.95, 0.95, 0.92, 0.92, 0.89, 0.88 | −226 |
SbPHT1-4 | 4 | 0.98, 0.88, 0.88, 0.83 | −796 |
SbPHT1-5 | 1 | 0.95 | −421 |
SbPHT1-6 | 8 | 0.99, 0.99, 0.98, 0.95, 0.94, 0.91, 0.88, 0.85 | −1780 |
SbPHT1-7 | 7 | 1.00, 0.99, 0.99, 0.95, 0.90, 0.87, 0.85 | −384 |
SbPHT1-8 | 1 | 0.92 | −562 |
SbPHT1-9 | 7 | 1.00, 1.00, 0.99, 0.95, 0.94, 0.93, 0.82 | −1685 |
SbPHT1-10 | 6 | 0.99, 0.99, 0.97, 0.94, 0.82, 0.81 | −280 |
SbPHT1-11 | 4 | 1.00, 0.99, 0.96, 0.83 | −1868 |
SbPHT1-12 | 4 | 1.00, 1.00, 0.97, 0.97 | −1501 |
SbPHT2-1 | 4 | 0.97, 0.88, 0.86, 0.83 | −800 |
SbPHT3-1 | 2 | 0.91, 0.88 | −265 |
SbPHT3-2 | 3 | 1.00, 0.99, 0.86 | −798 |
SbPHT3-3 | 4 | 0.96, 0.94, 0.93, 0.83 | −647 |
SbPHT3-4 | 5 | 0.99, 0.94, 0.90, 0.85, 0.80 | −113 |
SbPHT3-5 | 4 | 1.00, 1.00, 0.92, 0.90 | −743 |
SbPHT3-6 | 2 | 0.99, 0.89 | −445 |
SbPHT4-1 | 1 | 0.99 | −253 |
SbPHT4-2 | 2 | 0.92, 0.81 | −279 |
SbPHT4-3 | 5 | 0.99, 0.95, 0.95, 0.91, 0.81 | −158 |
SbPHT4-4 | 8 | 1.00, 1.00, 0.95, 0.93, 0.90, 0.84, 0.83, 0.81 | −406 |
SbPHT4-5 | 6 | 0.99, 0.99, 0.95, 0.93, 0.92, 0.91 | −618 |
SbPHT4-6 | 4 | 0.99, 0.94, 0.91, 0.85 | −1510 |
SbPHO1-1 | 6 | 1.00, 1.00, 0.94, 0.91, 0.90, 0.89 | −218 |
SbPHO1-2 | 3 | 1.00, 0.95, 0.88 | −181 |
Matrix ID | Gene Name | E-Value | Overlap | Offset | Orientation | TF Family/Class |
---|---|---|---|---|---|---|
MA1125.1 | ZNF384 | 8.48 × 10−1 | 12 | −11 | Reverse Complement | C2H2 zinc finger factors |
MA1104.2 | GATA6 | 9.63 × 10−1 | 13 | −13 | Normal | C4-GATA-related |
MA0041.2 | FOXD3 | 1.85 × 10 | 16 | −13 | Reverse Complement | FOX |
MA1978.1 | ZNF354A | 1.90 × 10 | 18 | −11 | Reverse Complement | C2H2 zinc finger factors |
MA1970.1 | TRPS1 | 4.28 × 10 | 12 | −14 | Normal | C4-GATA-related |
MA1606.1 | Foxf1 | 5.72 × 10 | 11 | −17 | Reverse Complement | FOX |
MA0035.4 | GATA1 | 6.14 × 10 | 11 | −15 | Normal | C4-GATA-related |
MA0029.1 | Mecom | 6.95 × 10 | 14 | −11 | Reverse Complement | C2H2 zinc finger factors |
MA0602.1 | Arid5a | 7.85 × 10 | 12 | −17 | Reverse Complement | ARID-related |
MA0157.3 | Foxo3 | 8.36 × 10 | 12 | −16 | Reverse Complement | FOX |
MA0465.2 | CDX2 | 9.53 × 10 | 12 | −10 | Reverse Complement | HOX |
Promoter ID | No. of Cut Sites | Nucleotide Positions of MspI Sites |
---|---|---|
ShPHT1-1 | 0 | - |
ShPHT1-2 | 1 | 816 |
ShPHT1-3 | 1 | - |
ShPHT1-4 | 0 | - |
ShPHT1-5 | 1 | 106 |
ShPHT1-6 | 0 | - |
ShPHT1-7 | 1 | 1049 |
ShPHT1-8 | 0 | - |
ShPHT2-1 | 0 | - |
ShPHT3-1 | 1 | 147 |
ShPHT3-2 | 1 | 968 |
ShPHT3-3 | 0 | - |
ShPHT3-4 | 2 | 498, 799 |
ShPHT4-1 | 0 | - |
ShPHT4-2 | 0 | - |
ShPHT4-3 | 0 | - |
ShPHT4-4 | 2 | 1081, 1256 |
ShPHT4-5 | 3 | 1062, 1186, 1200 |
ShPHT4-6 | 1 | 876 |
ShPHO1-1 | 0 | - |
ShPHO1-2 | 0 | - |
ShPHO1-3 | 2 | 744, 1061 |
ShPHO1-4 | 3 | 82, 638, 1252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugan, N.; Kumar, R.; Pandey, S.K.; Dhansu, P.; Chennappa, M.; Nallusamy, S.; Govindakurup, H.; Chinnaswamy, A. In Silico Dissection of Regulatory Regions of PHT Genes from Saccharum spp. Hybrid and Sorghum bicolor and Expression Analysis of PHT Promoters under Osmotic Stress Conditions in Tobacco. Sustainability 2023, 15, 1048. https://doi.org/10.3390/su15021048
Murugan N, Kumar R, Pandey SK, Dhansu P, Chennappa M, Nallusamy S, Govindakurup H, Chinnaswamy A. In Silico Dissection of Regulatory Regions of PHT Genes from Saccharum spp. Hybrid and Sorghum bicolor and Expression Analysis of PHT Promoters under Osmotic Stress Conditions in Tobacco. Sustainability. 2023; 15(2):1048. https://doi.org/10.3390/su15021048
Chicago/Turabian StyleMurugan, Naveenarani, Ravinder Kumar, Shashi Kant Pandey, Pooja Dhansu, Mahadevaiah Chennappa, Saranya Nallusamy, Hemaprabha Govindakurup, and Appunu Chinnaswamy. 2023. "In Silico Dissection of Regulatory Regions of PHT Genes from Saccharum spp. Hybrid and Sorghum bicolor and Expression Analysis of PHT Promoters under Osmotic Stress Conditions in Tobacco" Sustainability 15, no. 2: 1048. https://doi.org/10.3390/su15021048
APA StyleMurugan, N., Kumar, R., Pandey, S. K., Dhansu, P., Chennappa, M., Nallusamy, S., Govindakurup, H., & Chinnaswamy, A. (2023). In Silico Dissection of Regulatory Regions of PHT Genes from Saccharum spp. Hybrid and Sorghum bicolor and Expression Analysis of PHT Promoters under Osmotic Stress Conditions in Tobacco. Sustainability, 15(2), 1048. https://doi.org/10.3390/su15021048