How Does Information and Communication Technology Affect Geothermal Energy Sustainability?
Abstract
:1. Introduction
1.1. Background of Study
1.2. Empirical Review
1.3. Literature Gap
2. Methodology and Material
2.1. Unit Root Testing of Panel Type
2.2. Estimation of Panel Type
2.3. Durbin–Wu–Hausman Test
3. Results and Discussion
3.1. Results
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Observations | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
GT | 810 | 4.000 | 0.489 | 3.000 | 5.386 |
ICT | 810 | 3.604 | 0.321 | 2.223 | 4.354 |
HC | 810 | 1.886 | 0.019 | 1.837 | 1.920 |
EG | 810 | 4.330 | 0.405 | 0.130 | 5.248 |
IQ | 810 | 1.859 | 0.070 | 1.482 | 1.979 |
CO2 | 810 | 0.912 | 0.239 | 0.429 | 1.817 |
Appendix B
Variables | GT | ICT | HC | EG | IQ | CO2 |
---|---|---|---|---|---|---|
GT | 1.000 | |||||
ICT | 0.075 | 1.000 | ||||
HC | 0.299 | 0.179 | 1.000 | |||
EG | 0.189 | 0.189 | 0.445 | 1.000 | ||
IQ | 0.019 | 0.070 | 0.591 | 0.610 | 1.000 | |
CO2 | 0.392 | 0.042 | 0.054 | 0.272 | 0.193 | 1.000 |
Appendix C
Long-Run Coefficient | PMG | MG | DFE | |||
---|---|---|---|---|---|---|
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | |
ECT | 0.389 *** | 0.000 | 0.817 *** | 0.000 | 0.832 | 0.000 |
ICT | 0.079 | 0.170 | 0.072 | 0.167 | 0.026 | 0.286 |
HC | 0.323 | 0.105 | 0.026 | 0.831 | 0.099 | 0.373 |
EG | 0.945 | 0.271 | 0.871 | 0.306 | 0.049 | 0.465 |
IQ | 0.190 | 0.578 | 0.056 | 0.726 | 0.504 ** | 0.024 |
CO2 | 0.168 | 290 | 0.211 | 0.659 | 0.019 | 0.885 |
C | 0.620 *** | 0.000 | 0.650 | 0.198 | 0.887 | 0.331 |
Appendix D
Long-Run Coefficient | PMG | MG | DFE | |||
---|---|---|---|---|---|---|
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | |
ECT | 0.234 ** | 0.019 | 0.774 *** | 0.000 | 0.871 *** | 0.000 |
ICT | 0.051 | 0.955 | 0.039 | 0.385 | 0.016 | 0.439 |
HC | 0.245 | 0.466 | 0.097 | 0.589 | 0.867 *** | 0.000 |
EG | 0.068 | 0.376 | 0.029 | 0.678 | 0.105 | 0.185 |
IQ | 0.102 | 0.389 | 0.295 | 0.379 | 0.817 | 0.619 |
CO2 | 0.826 | 0.113 | 0.727 | 0.442 | 0.250 | 0.528 |
C | 0.745 ** | 0.017 | 0.929 * | 0.061 | 0.307 ** | 0.035 |
Appendix E
Long-Run Coefficient | PMG | MG | DFE | |||
---|---|---|---|---|---|---|
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | |
ECT | 0.480 *** | 0.001 | 0.808 *** | 0.00 | 0.865 *** | 0.000 |
ICT | 0.046 | 0.563 | 0.021 | 0.524 | 0.012 | 0.192 |
HC | 0.031 | 0.477 | 0.187 | 0.287 | 0.054 | 0.965 |
EG | 0.033 * | 0.093 | 0.128 | 0.231 | 0.087 | 0.754 |
IQ | 0.171 | 0.243 | 0.740 | 0.148 | 0.823 *** | 0.000 |
CO2 | 0.108 | 0.202 | 0.225 | 0.224 | 0.045 | 0.745 |
C | 0.255 *** | 0.002 | 0.638 *** | 0.000 | 0.730 ** | 0.025 |
Appendix F
References
- Ramos-Escudero, A.; García-Cascales, M.S.; Cuevas, J.M.; Sanner, B.; Urchueguía, J.F. Spatial analysis of indicators affecting the exploitation of shallow geothermal energy at European scale. Renew. Energy 2021, 16, 266–281. [Google Scholar] [CrossRef]
- Santamarta, J.C.; García-Gil, A.; Expósito, M.D.C.; Casañas, E.; Cruz-Pérez, N.; Rodríguez-Martín, J.; Mejías-Moreno, M.; Götzl, G.; Gemeni, V. The clean energy transition of heating and cooling in touristic infrastructures using shallow geothermal energy in the Canary Islands. Renew. Energy 2021, 171, 505–515. [Google Scholar] [CrossRef]
- Zhang, X.; Penaka, S.R.; Giriraj, S.; Sánchez, M.N.; Civiero, P.; Vandevyvere, H. Characterizing Positive Energy District (PED) through a Preliminary Review of 60 Existing Projects in Europe. Buildings 2021, 11, 318. [Google Scholar] [CrossRef]
- Fry, N. Cost and Technical Profiling of Geothermal District Heating Using GEOPHIRES and Comsof Heat Simulation Software. In Proceedings of the ASME 2021 15th International Conference on Energy Sustainability Collocated with the ASME 2021 Heat Transfer Summer Conference, Online, 16–18 June 2021. [Google Scholar] [CrossRef]
- Sigurjonsson, H.; Cook, D.; Davíðsdóttir, B.; Bogason, S.G. A life-cycle analysis of deep enhanced geothermal systems–The case studies of Reykjanes, Iceland and Vendenheim, France. Renew. Energy 2021, 177, 1076–1086. [Google Scholar] [CrossRef]
- Grace, C.W.; Emily, L.; Oluwafemi, S.D.; Richard, C.; Erica, B.; Brian, C.; Douglas, A.; Marcela, O.; Arne, O. Low-impact land use pathways to deep decarbonization of electricity. Environ. Res. Lett. 2020, 15, 074044. [Google Scholar] [CrossRef]
- Khasani, D.; Ryuichi, I. Numerical study of the effects of CO2 gas in geothermal water on the fluid-flow characteristics in sustainabile development wells. Eng. Appl. Comput. Fluid Mech. 2021, 15, 111–129. [Google Scholar] [CrossRef]
- Pasimeni, F.; Fiorini, A.; Georgakaki, A. Assessing private RandD spending in Europe for climate change mitigation technologies via patent data. World Pat. Inf. 2019, 59, 101927. [Google Scholar] [CrossRef]
- Tomaszewska, B.; Bundschuh, J.; Pająk, L.; Dendys, M.; Quezada, V.D.; Bodzek, M.; Armienta, M.A.; Muñoz, M.O.; Kasztelewicz, A. Use of low-enthalpy and waste geothermal energy sources to solve arsenic problems in freshwater sustainabile development in selected regions of Latin America using a process membrane distillation–research into model solutions. Sci. Total Environ. 2020, 714, 136853. [Google Scholar] [CrossRef]
- McBain, B.; Lenzen, M.; Albrecht, G.; Wackernagel, M. Future Transitions to a Renewable Stationary Energy Sector: Implications of the Future Ecological Footprint and Land Use. Agroecol. Footpr. Manag. Sustain. Food Syst. 2021, 2, 155–178. [Google Scholar] [CrossRef]
- Greiner, C.; Greven, D.; Klagge, B. Roads to Change: Livelihoods, Land Disputes, and Anticipation of Future Developments in Rural Kenya. Eur. J. Dev. Res. 2021, 33, 1044–1068. [Google Scholar] [CrossRef]
- Naqvi, A.A.; Rehm, M. A multi-agent model of a low income economy: Simulating the distributional effects of natural disasters. J. Econ. Interact. Coord. 2014, 9, 275–309. [Google Scholar] [CrossRef]
- Alsaleh, M.; Zubair, A.O.; Abdul-Rahim, A.S. The impact of global competitiveness on the sustainability of bioenergy industry in EU-28 region. Sustain. Dev. 2020, 28, 1304–1316. [Google Scholar] [CrossRef]
- Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; van Wees, J.-D. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization. Renew. Sustain. Energy Rev. 2018, 82, 961–975. [Google Scholar] [CrossRef]
- Zwaan, B.C.C.; Longa, F.D. Integrated assessment projections for global geothermal energy use. Geothermics 2019, 82, 203–211. [Google Scholar] [CrossRef]
- Musharavati, F.; Khanmohammadi, S.; Pakseresht, A. A novel multi-generation energy system based on geothermal energy source: Thermo-economic evaluation and optimization. Energy Convers. Manag. 2021, 230, 113829. [Google Scholar] [CrossRef]
- Li, Q.; Cherian, J.; Shabbir, M.S.; Sial, M.S.; Li, J.; Mester, I.; Badulescu, A. Exploring the Relationship between Renewable Energy Sources and Economic Sustainability. The Case of SAARC Countries. Energies 2021, 14, 520. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S. Do global competitiveness factors effects the industry sustainability practices? Evidence from European hydropower industry. J. Clean. Sustain. Dev. 2021, 310, 127492. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Shatri, M.S.; Putra, Z.A.; Zaini, J.; Caesarendra, W.; Sasmito, A.P. Geothermal energy extraction using abandoned oil and gas wells: Techno-economic and policy review. Int. J. Energy Res. 2021, 46, 28–60. [Google Scholar] [CrossRef]
- Olabi, A.G.; Mahmoud, M.; Soudan, B.; Wilberforce, T.; Ramadan, M. Geothermal based hybrid energy systems, toward eco-friendly energy approaches. Renew. Energy 2020, 147, 2003–2012. [Google Scholar] [CrossRef]
- Longa, F.D.; Nogueira, L.P.; Limberger, J.; Wees, J.; Zwaan, B. Scenarios for geothermal energy deployment in Europe. Energy 2020, 206, 118060. [Google Scholar] [CrossRef]
- Moya, D.; Aldás, C.; Kaparaju, P. Geothermal energy: Power plant technology and direct heat applications. Renew. Sustain. Energy Rev. 2018, 94, 889–901. [Google Scholar] [CrossRef]
- Shortall, R.; Kharrazi, A. Cultural factors of sustainable energy development: A case study of geothermal energy in Iceland and Japan. Renew. Sustain. Energy Rev. 2017, 79, 101–109. [Google Scholar] [CrossRef]
- Jocic, N.; Muller, J.; Pozar, T.; Bertermann, D. Renewable Energy Sources in a Post-Socialist Transitional Environment: The Influence of Social Geographic Factors on Potential Utilization of Very Shallow Geothermal Energy within Heating Systems in Small Serbian Town of Ub. Appl. Sci. 2020, 10, 2739. [Google Scholar] [CrossRef] [Green Version]
- Britta, K.; Clemens, G.; David, G.; Chigozie, N.E. Cross-Scale Linkages of Centralized Electricity Generation: Geothermal Development and Investor–Community Relations in Kenya. Politics Gov. 2020, 8, 211–222. [Google Scholar] [CrossRef]
- Garcia-Gil, A.; Mejías Moreno, M.; Garrido Schneider, E.; Marazuela, M.Á.; Abesser, C.; Mateo Lázaro, J.; Sánchez Navarro, J.Á. Nested Shallow Geothermal Systems. Sustainability 2020, 12, 5152. [Google Scholar] [CrossRef]
- Cui, C.; Shufeng, P.; Zhenhua, R.; Bin, D.; Fulong, N.; Jiaqiang, W. Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2. Energy 2021, 217, 119340. [Google Scholar] [CrossRef]
- Koon, K.R.; Shah, K.; Ashtine, M.; Lewis, S. A Resource and Policy Driven Assessment of the Geothermal Energy Potential Across the Islands of St. Vincent and the Grenadines. Front. Energy Res. 2021, 9, 546367. [Google Scholar] [CrossRef]
- Carla, D.L. What are the regionally specific institutions that matter for renewable energy deployment and how can they be identified? Some insights from Italian regions. Local Environ. 2021, 26, 632–649. [Google Scholar] [CrossRef]
- Mahbaz, S.B.; Yaghoubi, A.; Dehghani-Sanij, A.; Sarvaramini, E.; Leonenko, Y.; Dusseault, M.B. Well-Doublets: A First-Order Assessment of Geothermal SedHeat Systems. Appl. Sci. 2021, 11, 697. [Google Scholar] [CrossRef]
- Cook, D.; Davíðsdóttir, B.; Malinauskaite, L. A cascade model and initial exploration of co-sustainabile development processes underpinning the ecosystem services of geothermal areas. Renew. Energy 2020, 161, 917–927. [Google Scholar] [CrossRef]
- Neves, R.; Cho, H.; Zhang, J. State of the nation: Customizing energy and finances for geothermal technology in the United States residential sector. Renew. Sustain. Energy Rev. 2020, 137, 110463. [Google Scholar] [CrossRef]
- Mahbaz, S.B.; Dehghani-Sanij, A.R.; Dusseault, M.B.; Nathwani, J.S. Enhanced and integrated geothermal systems for sustainable development of Canada’s northern communities. Sustain. Energy Technol. Assess. 2020, 37, 100565. [Google Scholar] [CrossRef]
- Aviles, D.; Sabri, F.; Hooman, K. Techno-economic analysis of a hybrid solar-geothermal power plant integrated with a desalination system. Int. J. Energy Res. 2021, 45, 17955–17970. [Google Scholar] [CrossRef]
- Wu, Y.; Li, P. The potential of coupled carbon storage and geothermal extraction in a CO2-enhanced geothermal system: A review. Geotherm Energy 2020, 8, 19. [Google Scholar] [CrossRef]
- Sun, Z.; Bongole, K.; Yao, J. Combination of double and single cyclic pressure alternation technique to increase CO2 sequestration with heat mining in enhanced geothermal reservoirs by thermo-hydro-mechanical coupling method. Int. J. Energy Res. 2020, 44, 3478–3496. [Google Scholar] [CrossRef]
- Ball, P.J. A Review of Geothermal Technologies and Their Role in Reducing Greenhouse Gas Emissions in the USA. J. Energy Resour. Technol. 2020, 143, 010903. [Google Scholar] [CrossRef]
- Amoatey, P.; Chen, M.; Al-Maktoumi, A.; Izady, A.; Baawain, M.S. A review of geothermal energy status and potentials in Middle-East countries. Arab. J. Geosci. 2021, 14, 245. [Google Scholar] [CrossRef]
- Al-Douri, Y.; Waheeb, S.A.; Johan, M.R. Exploiting of geothermal energy reserve and potential in Saudi Arabia: A case study at Ain Al Harrah. Energy Rep. 2019, 5, 632–638. [Google Scholar] [CrossRef]
- Anser, M.K.; Shabbir, M.S.; Tabash, M.I.; Shah, S.H.A.; Ahmad, M.; Peng, M.Y.-P.; Lopez, L.B. Do renewable energy sources improve clean environmental-economic sustainability? Empirical investigation from South Asian economies. Energy Explor. Exploit. 2021, 39, 1491–1514. [Google Scholar] [CrossRef]
- Piłatowska, M.; Geise, A. Impact of Clean Energy on CO2 Emissions and Economic Sustainability within the Phases of Renewables Diffusion in Selected European Countries. Energies 2021, 14, 812. [Google Scholar] [CrossRef]
- Soltani, M.; Moradi, K.; Souri, M.; Rafiei, B.; Jabarifar, M.; Gharali, K.; Nathwani, J.S. Environmental, economic, and social impacts of geothermal energy systems. Renew. Sustain. Energy Rev. 2021, 140, 110750. [Google Scholar] [CrossRef]
- Kashem, S.B.A.; Hasan-Zia, M.; Nashbat, M.; Kunju, A.; Esmaeili, A.; Ashraf, A.; Odud, M.A.; Majid, M.E.; Chowdhury, M.E.H. A Review and Feasibility Study of Geothermal Energy in Indonesia. Int. J. Technol. 2021, 2, 19–34. [Google Scholar]
- Talbi, B. CO2 emissions reduction in the road transport sector in Tunisia. Renew. Sustain. Energy Rev. 2017, 69, 232–238. [Google Scholar] [CrossRef]
- Begum, R.A.; Sohag, K.; Abdullah, S.M.S.; Jaafar, M. CO2 emissions, energy consumption, economic and population sustainability in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 594–601. [Google Scholar] [CrossRef]
- Yeh, J.C.; Liao, C.H. Impact of population and economic sustainability on carbon emissions in Taiwan using an analytic tool STIRPAT. Sustain. Environ. Res. 2017, 27, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.Y.; Perron, P. Pitfall and opportunities: What Macroeconomists Should Know about Unit Roots. In Technical Working Paper 100; NBER Working Paper Series; National Bureau Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Ramirez, M.D. A Panel Unit Root and Panel Cointegration Test of the Complementarity Hypothesis in the Mexican Case, 1960–2001; Center Discussion Papers 28402; Yale University, Economic Sustainability Center: New Haven, CT, USA, 2006. [Google Scholar]
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit Root Test in Panel Data: Asymptotic and Finite-sample Properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.; Shin, Y. Testing for Unit Roots in Heterogeneous Panels. J. Econom. 1997, 115, 53–74. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Y. The Study of the Relationship between Carbon Dioxide (CO2) Emission and Economic Sustainability. J. Int. Glob. Econ. Stud. 2013, 6, 45–61. [Google Scholar]
- Pesaran, M.H.; Smith, R. Estimating long-run relationships from dynamic heterogeneous panels. J. Econom. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled mean group estimation of dynamic heterogeneous panels. Am. Stat. Assoc. 1999, 446, 621–634. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification Tests in Econometrics. Econometrica 2021, 46, 1251–1271. [Google Scholar] [CrossRef]
- Shaari, M.S.; Abdul Karim, Z.; Zainol-Abidin, N. The Effects of Energy Consumption and National Output on CO2 Emissions: New Evidence from OIC Countries Using a Panel ARDL Analysis. Sustainability 2020, 12, 3312. [Google Scholar] [CrossRef] [Green Version]
- Snee, R. Origins of the Variance Inflation Factor as Recalled by Cuthbert Daniel; Technical Report; Snee Associates: Delaware, DE, USA, 1981. [Google Scholar]
- Rawlings, O.; Pantula, G.; Dickey, A. Applied Regression Analysis: A Research Tool, 2nd ed.; Springer: New York, NY, USA, 1998; pp. 372–373. ISBN 0387227539. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning, 8th ed.; Springer Science and Business Media: New York, NY, USA, 2017; ISBN 978-1-4614-7138-7. [Google Scholar]
- Li, Q.; Cherian, J.; Shabbir, M.S.; Sial, M.S.; Li, J.; Mester, I.; Badulescu, A. The relationship between renewable energy sources and sustainable economic sustainability: Evidence from SAARC countries. Environ. Sci. Pollut. Res. 2021, 28, 33390–33399. [Google Scholar] [CrossRef]
- Ghobadi, A.H.; Hassankolaei, M.G. Numerical treatment of magneto Carreau nanofluid over a stretching sheet considering Joule heating impact and nonlinear thermal ray. Heat Transf.—Asian Res. 2019, 48, 4133–4151. [Google Scholar] [CrossRef]
- Ghobadi, A.H.; Armin, M.; Hassankolaei, S.G.; Gholinia Hassankolaei, M. A new thermal conductivity model of CNTs/C2H6O2–H2O hybrid base nanoliquid between two stretchable rotating discs with Joule heating. Int. J. Ambient Energy 2022, 43, 3310–3321. [Google Scholar] [CrossRef]
- Khandouzi, O.; Pourfallah, M.; Yoosefirad, E.; Shaker, B.; Gholinia, M.; Mouloodi, S. Evaluating and optimizing the geometry of thermal foundation pipes for the utilization of the geothermal energy: Numerical simulation. J. Energy Storage 2021, 37, 102464. [Google Scholar] [CrossRef]
- Armin, M.; Gholinia, M.; Pourfallah, M.; Ranjbar, A.A. Investigation of the fuel injection angle/time on combustion, energy, and emissions of a heavy-duty dual-fuel diesel engine with reactivity control compression ignition mode. Energy Rep. 2021, 7, 5239–5247. [Google Scholar] [CrossRef]
- Li, T.; Liu, Q.; Xu, Y.; Dong, Z.; Meng, N.; Jia, Y.; Qin, H. Techno-economic performance of multi-generation energy system driven by associated mixture of oil and geothermal water for oilfield in high water cut. Geothermics 2021, 89, 101991. [Google Scholar] [CrossRef]
- Gholinia, M.; Ranjbar, A.A.; Javidan, M.; Hosseinpour, A.A. Employing a new micro-spray model and (MWCNTs-SWCNTs)-H2O nanofluid on Si-IGBT power module for energy storage: A numerical simulation. Energy Rep. 2021, 7, 6844–6853. [Google Scholar] [CrossRef]
- Assareh, E.; Alirahmi, S.M.; Ahmadi, P. A Sustainable model for the integration of solar and geothermal energy boosted with thermoelectric generators (TEGs) for electricity, cooling and desalination purpose. Geothermics 2021, 92, 102042. [Google Scholar] [CrossRef]
- Aydin, H.; Merey, S. Potential of geothermal energy sustainabile development from depleted gas fields: A case study of Dodan Field, Turkey. Renew. Energy 2021, 164, 1076–1088. [Google Scholar] [CrossRef]
- Garcia-Gil, A.; Goetzl, G.; Kłonowski, M.R.; Borovic, S.; Boon, D.P.; Abesser, C.; Janza, M.; Herms, I.; Petitclerc, E.; Erlström, M.; et al. Governance of shallow geothermal energy resources. Energy Policy 2020, 138, 111283. [Google Scholar] [CrossRef]
- Tingting, K.; Shaopeng, H.; Wei, X.; Xuxiang, L. Study on heat extraction performance of multiple-doublet system in Hot Sedimentary Aquifers: Case study from the Xianyang geothermal field, Northwest China. Geothermics 2021, 94, 102131. [Google Scholar] [CrossRef]
- European Commission. Commission Delegated Regulation (EU) 2021/268. Off. J. Eur. Union 2020. Available online: http://data.europa.eu/eli/reg_del/2021/268/oj (accessed on 24 April 2020).
- Im, D.H.; Chung, J.B.; Kim, E.S.; Moon, J.W. Public perception of geothermal power plants in Korea following the Pohang earthquake: A social representation theory study. Public Underst. Sci. 2021, 30, 724–739. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Alsaleh, M.; Abdul-Rahim, A.S. The role of information and communication technologies in achieving hydropower sustainability: Evidence from EU economies. Energy Environ. 2022. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A.S. The Pathway toward Bioenergy Growth: Does Information and Communication Technology Development Make a Difference in EU Economies? Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
Variable | Abbreviated | Data Source | Statistics/Expected Sign | Unit |
---|---|---|---|---|
Geothermal Output | GT | Eurostat | Dependent Variable | Terajoule |
Information and Communication Technology | ICT | World Bank Datasets | Significant/+ | Innovation application trademark (Direct resident %) |
Human Capital | HC | Eurostat | Significant/+ | Thousand |
Institutional Quality | IQ | WBD | Significant/+ | Worldwide Governance Indicator (%) |
Carbon Dioxide | CO2 | Eurostat | Significant/− | Metric tons per capita |
Economic Sustainability | GDP | Eurostat | Significant/+ | GDP sustainability (annual %) |
Variable | Level | First Level | ||
---|---|---|---|---|
LLC | IPS | LLC | IPS | |
GT | 8.665 *** (0.000) | 9.744 *** (0.000) | 41.509 *** (0.000) | 64.504 *** (0.000) |
ICT | 1.767 *** (0.000) | 3.393 *** (0.000) | 20.869 *** (0.000) | 21.832 *** (0.000) |
HC | 2.394 *** (0.008) | 3.190 *** (0.000) | 23.588 *** (0.000) | 23.749 *** (0.000) |
EG | 2.387 *** (0.000) | 5.339 *** (0.008) | 17.832 *** (0.000) | 19.796 *** (0.000) |
IQ | 1.903 *** (0.000) | 2.757 *** (0.000) | 18.928 *** (0.000) | 19.640 *** (0.000) |
CO2 | 12.597 *** (0.000) | 15.615 *** (0.006) | 32.235 *** (0.000) | 44.065 *** (0.000) |
Variable | Coefficient | Prob. | VIF |
---|---|---|---|
ICT | 0.069 *** | 0.002 | 1.87 |
HC | 0.941 *** | 0.000 | 1.85 |
EG | 0.059 | 0.220 | 1.81 |
IQ | 1.068 * | 0.240 | 1.99 |
CO2 | 1.001 *** | 0.000 | 2.03 |
C | 0.344 *** | 0.000 |
Model 1. Long-Run Estimation for EU Region 1990–2021 | ||||||
---|---|---|---|---|---|---|
Long-Run Coefficient | PMG | MG | DFE | |||
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | |
ICT | 0.056 ** | 0.013 | 0.035 | 0.449 | 0.023 | 0.908 |
HC | 0.251 *** | 0.000 | 0.095 | 0.645 | 0.122 *** | 0.000 |
EG | 0.057 *** | 0000 | 0.057 | 0.303 | 0.031 | 0.362 |
IQ | 0.029 *** | 0.007 | 0.025 | 0.430 | 0.548 | 0.434 |
CO2 | −0.043 *** | 0.000 | −0.016 | 0.969 | −0.094 * | 0.073 |
Hausman Test | 2.52 | 0.774 | 0.95 | 0.966 |
Model 2. Long-Run Estimation for EU14 Emerged Countries 1990–2021 | ||||||
---|---|---|---|---|---|---|
Long-Run Coefficient | PMG | MG | DFE | |||
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob | |
ICT | 0.112 *** | 0.000 | 0.057 * | 0.063 | 0.054 | 0.756 |
HC | 0.768 *** | 0.000 | 0.585 *** | 0.001 | 0.658 *** | 0.000 |
EG | 0.170 ** | 0.011 | 0.107 | 0.397 | 0.091 | 0.390 |
IQ | 0.421 *** | 0.005 | 0.094 | 0.911 | 0.039 | 0.887 |
CO2 | −0.302 *** | 0.001 | −0.019 | 0.934 | −0.478 *** | 0.000 |
Hausman Test | 0.27 | 0.412 | 0.20 | 0.752 |
Model 3. Long-Run Estimation for Emerging Countries 1990–2021 | ||||||
---|---|---|---|---|---|---|
Long-Run Coefficient | PMG | MG | DFE | |||
Coefficient | Prob. | Coefficient | Prob. | Coefficient | Prob. | |
ICT | 0.057 *** | 0.000 | 0.011 | 0.795 | 0.011 | 0.892 |
HC | 0.752 *** | 0.000 | 0.342 | 0.383 | 0.100 *** | 0.003 |
EG | 0.023 *** | 0.000 | 0.351 | 0.283 | 0.037 | 0.145 |
IQ | 0.032 *** | 0.004 | 0.444 | 0.605 | 0.664 | 0.916 |
CO2 | 0.074 *** | 0.000 | 0.196 | 0.441 | 0.013 * | 0.077 |
Hausman Test | 0.85 | 0.813 | 0.52 | 0.933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaleh, M.; Wang, X. How Does Information and Communication Technology Affect Geothermal Energy Sustainability? Sustainability 2023, 15, 1071. https://doi.org/10.3390/su15021071
Alsaleh M, Wang X. How Does Information and Communication Technology Affect Geothermal Energy Sustainability? Sustainability. 2023; 15(2):1071. https://doi.org/10.3390/su15021071
Chicago/Turabian StyleAlsaleh, Mohd, and Xiaohui Wang. 2023. "How Does Information and Communication Technology Affect Geothermal Energy Sustainability?" Sustainability 15, no. 2: 1071. https://doi.org/10.3390/su15021071
APA StyleAlsaleh, M., & Wang, X. (2023). How Does Information and Communication Technology Affect Geothermal Energy Sustainability? Sustainability, 15(2), 1071. https://doi.org/10.3390/su15021071